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In pharmacology, it is crucial to understand the complex biological responses that drugs elicit in the
human organism and howwell they can be inferred frommodel organisms. We therefore identified
a large set of drug-induced transcriptional modules from genome-wide microarray data of drug-
treated human cell lines and rat liver, and first characterized their conservation. Over 70% of these
modules were common for multiple cell lines and 15%were conserved between the human in vitro
and the rat in vivo system. We then illustrate the utility of conserved and cell-type-specific drug-
induced modules by predicting and experimentally validating (i) gene functions, e.g., 10 novel
regulators of cellular cholesterol homeostasis and (ii) newmechanisms of action for existing drugs,
thereby providing a starting point for drug repositioning, e.g., novel cell cycle inhibitors and new
modulators of a-adrenergic receptor, peroxisome proliferator-activated receptor and estrogen
receptor. Taken together, the identifiedmodules reveal the conservation of transcriptional responses
towards drugs across cell types and organisms, and improve our understanding of both the
molecular basis of drug action and human biology.
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Introduction

Understanding the complex responses of the human body to
drug treatments is vitally important to address the efficacy and
safety-related issues of compounds in later stages of drug
development and, thus, to reduce high attrition rates in clinical
trials (Kola and Landis, 2004). The fundamental challenge
towards this goal lies in the selection and thorough character-
ization of model systems that can accurately recapitulate the
drug response of human physiology for diverse drug-screening
projects (Jones and Diamond, 2007; Sharma et al, 2010; Dow
and Lowe, 2012).
One way of obtaining unbiased, large-scale readouts from

model systems is genome-wide expression profiling of the
transcriptional response to various drug treatments (Feng et al,
2009; Iskar et al, 2011). This has first been systematically
explored in model organisms, such as Saccharomyces cerevi-
siae, with the aim to elucidate drug mechanism of action

(MOA) based on their transcriptional effects (Hughes et al,
2000; Ihmels et al, 2002; di Bernardo et al, 2005). Simulta-
neously, coexpression analysis and transcriptional modules of
the yeast data allowed the inference of functional roles for
genes that respond coherently to these perturbations (Hughes
et al, 2000; Ihmels et al, 2002; Wu et al, 2002; Segal et al, 2003;
Tanay et al, 2004).
Recently, the Connectivity Map (CMap) successfully

extended the concept of large-scale gene expression profiling
of drug response to human cell lines (Lamb et al, 2006; Lamb,
2007). In parallel, drug-induced expression changes have been
profiled at a large scale in animal models, such as rat liver
(Ganter et al, 2005; Natsoulis et al, 2008). Computational
advances in mining these data have improved signature
comparison methods leading to novel drug–drug
(Subramanian et al, 2005; Lamb et al, 2006; Iorio et al, 2009,
2010) and drug–disease (Hu and Agarwal, 2009; Sirota et al,

Molecular Systems Biology 9; Article number 662; doi:10.1038/msb.2013.20
Citation: Molecular Systems Biology 9:662
www.molecularsystemsbiology.com

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 1



2011; Dudley et al, 2011; Pacini et al, 2012) connections based
on their (anti)correlated transcriptional effects (Qu and Rajpal,
2012; Iorio et al, 2012). However, these mammalian transcrip-
tional readouts still need to be utilized for uncovering the
underlying gene regulatory networks and for predicting gene
function and delineating pathway membership. Along those
lines, we used a biclustering approach that is well-suited for
revealing the modular organization of transcriptional
responses to drug perturbation (Ihmels et al, 2002; Prelić
et al, 2006), as it can group coregulated genes with the drugs
they respond to (technically, each bicluster consists of both a
gene and a drug subset). We applied it to large-scale
transcriptome resources for three human cell lines and rat
liver to generate, for the first time, a large compendium of
mammalian drug-induced transcriptional modules. We exten-
sively characterized these modules in terms of functional roles
of the genes and the bioactivities of the drugs they contain, in
order to gain insights into both, drug MOA and the perturbed
cellular systems (Figure 1).
Comparing drug-induced transcriptional modules generated

independently for each of the three human cell types and rat
liver allowed us to assess their conservation across tissue types
and organisms. Although it has been noted earlier that
particular transcriptional changes along developmental tra-
jectories, in different growth conditions, stress or disease can
be conserved between species (Stuart et al, 2003; van Noort
et al, 2003), it remains an open question, how well the
modular organization of the transcriptome is conserved across
tissues and organisms (Miller et al, 2010; Zheng-Bradley et al,
2010; Dowell, 2011). In this context, our results on the

conservation of drug-induced transcriptional modules con-
tribute to a better understanding of the degree to which cell
line models recapitulate the biological processes and signaling
pathways taking place in the human physiological context
(Jones and Diamond, 2007; Sharma et al, 2010).

Results and discussion

Identification of drug-induced modules in human
cell lines and rat liver

To identify and compare drug-induced transcriptionalmodules
from human cell lines as well as rat liver tissue, we exploited
data from the following two public resources: (i) the CMap
(Lamb et al, 2006), which contains 6100 expression profiles of
several human cancer cell lines treated with 1309 drug-like
small molecules (hereafter simply referred to as ‘drugs’)
(Supplementary Figure 1) and (ii) the DrugMatrix resource, a
large data set of 1743 expression profiles from liver tissue of
drug-treated rats (Natsoulis et al, 2008). Raw microarray data
were subjected to quality control and preprocessing proce-
dures to improve data consistency and reduce batch effects
(Iskar et al, 2010). For CMap, this resulted in a usable set of
expression measurements of 8964 genes in three human cell
lines (HL60, MCF7 and PC3, see Materials and Methods), each
treated with the same set of 990 drugs. From the rat data set,
only genes with orthologous human genes present in CMap
were considered. This yielded expression profiles for 3618
genes in response to treatments with 344 distinct drugs
(Supplementary Figure 1).
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Figure 1 Overview of the method. Workflow to identify and characterize drug-induced transcriptional modules across four microarray data sets from three human cancer cell
lines and rat liver. Drug and gene sets of conserved drug-induced transcriptional modules (CODIMs) were characterized in detail using several annotation resources. These
reliable CODIMs allow us to propose new MOA for marketed drugs and novel biological roles for poorly characterized genes which were validated experimentally.
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Drug-induced transcriptional modules were detected and
tested for statistical significance separately in each of the four
matrices of expression data using an unsupervised biclustering
approach that has previously been shown to maintain high
accuracy even with noisy input data (Iterative Signature
Algorithm (ISA); Bergmann et al, 2003; Ihmels et al, 2004;
Prelić et al, 2006). Each resulting bicluster (hereafter referred
to as ‘module’) consists of a subset of genes and a subset
of drugs that coherently regulate these genes. To ensure
comprehensiveness and robustness of this analysis, we
explored a wide range of parameter settings for the ISA
workflow (Supplementary Figure 2 and Supplementary

Tables 1 and 2), and in addition, applied a size threshold to
exclude small, likely spurious modules as motivated by
previous studies (Langfelder and Horvath, 2008, and see
Materials and Methods).
As a result, we identified robust, drug-induced transcrip-

tional modules in each system individually: 25 in MCF7 cells,
28 in PC3 cells, 29 in HL60 cells and 43 in rat liver (Figure 2A
and Supplementary Data set 1). On average, these modules
contain 70 genes in the human cell lines and 50 genes in the rat
liver, induced by an average of 29 drug treatments in both data
sets. Within each data set, modules can overlap (on average,
7% of the genes and 34% of the drugs were contained in

Figure 2 Conservation of drug-induced transcriptional modules. (A) The number and proportion of transcriptional modules identified separately in each human cell line
and rat liver that are codetected in multiple cell lines and/or organisms (gene overlap of modules were deemed significant with Fisher’s exact test, FDR-corrected P-value
o0.01). Twenty-three CODIMs were defined from the connected components of the module network (using reciprocal best-hits only). (B) Functional characterization of
conserved drug-induced modules. Connected modules (with data set-specific labels), enriched biological process (in yellow set, 61% of CODIM) and characteristic
compound MOA (in red set, 44% of CODIM, in italics) of selected CODIMs are shown (BP, biological process; HDAC, histone deacetylase; WD40 repeat, b-transducin
repeat). Graph inlets: conservation of modules across cell lines and species as measured by overlapping gene and drugs (Supplementary Figure 3).
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multiple modules), reflecting the effects of polypharmacolo-
gical drugs thatmodulatemultiple targets (Hopkins et al, 2006;
Keiser et al, 2009), which in turn can lead to perturbation of
multiple pathways by the same drug.

Conservation of drug-induced modules across cell
types and organisms

As appropriate animal models that accurately recapitulate the
human drug response are crucial in drug discovery and
development, we assessed the conservation of drug responses
at the transcriptome level by comparing drug-induced
transcriptional modules across cell lines and organisms. This
resulted in a network of module similarity calculated using a
reciprocal best-hit approach, which linked modules from
different cell lines and rat liver to each other if their gene
members significantly overlapped between data sets
(Supplementary Table 3). In addition, we assessed the drug
overlap of modules linked across cell lines (see Materials and
Methods). For 58 out of 82 modules (71%) from human cell
lines, we identified a corresponding module in at least 1 other
cell line, which yielded a total of 23 nonredundant, conserved
drug-induced transcriptional modules (CODIMs; Figure 2A
and Supplementary Figure 3). A conservation level of 71%
between cell lines is in line with a previous study that assessed
the conservation of constitutive coexpression networks across
human brain regions (Oldham et al, 2008). In addition to
similarity across cell lines, we found considerable (statistically
significant) conservation of human modules in rat liver
ranging from 3 to 5 out of 25 to 29 individual modules per
cell line (15% average ratio, permutation-based P-value
o0.001; Figure 2A and Supplementary Figures 3 and 4).
Conservation of drug-inducedmodules across cell lines and rat
liver was observed to be robust to the number of drug
experiments or intrinsic parameters of the ISA procedure as
long as drug perturbations were sufficiently diverse
(Supplementary Figure 5), even though the rat liver modules
are based on much fewer genes (3618 orthologs) and drugs
(141 in common) than the cell line data (Supplementary
Figure 1). In the context of the debate about the conservation
of transcriptional regulatory networks between organisms
(Liao and Zhang, 2006; Miller et al, 2010; Zheng-Bradley et al,
2010; Brawand et al, 2011), our assessment of 15% conserva-
tion of drug-induced modules across species should be
considered as a lower limit; the divergence of modules can
not only be attributed to completely different pharmacoki-
netics between the human in vitro model and the rat in vivo
system, but are likely also the result of different tissue origins
(Liao and Zhang, 2006; Zheng-Bradley et al, 2010) and
heterogeneity of compared data sets, e.g., distinct drug
perturbations profiled and technical differences between
microarray protocols and platforms, with a limited set of
orthologous probes/genes.

Characterization of gene and drug members of
drug-induced modules

To verify the functional coherence of drug-induced transcrip-
tional modules, we first compared their gene members with

functional association networks of human and rat provided by
STRING (Szklarczyk et al, 2011). We observed that 12 out of 23
CODIMs were significantly enriched in functionally related
genes (permutation-based P-value o0.05; 30 out of 82
individual modules from human cell lines and 13 out of 43
from rat liver; Supplementary Figure 6). In agreement with the
earlier functional analyses of coexpression modules (Oldham
et al, 2008), this indicates that drug-induced modules are
useful to infer gene function.
We further characterized CODIMs with respect to both the

functional annotations of gene members and the biological
effects of each of the associated drugs (see Materials and
Methods for details). This analysis revealed that CODIMs
cover a broad diversity of cellular processes in response to
drug treatments (Figure 2B and Supplementary Tables 4
and 5). On the basis of these module annotations, we next
assessed whether gene annotations and drug indications were
consistent in the light of the current biological and pharma-
cological understanding of these processes (Figure 2B and
Supplementary Table 4). In a few cases, the enrichment of
MOAs and biological processes in CODIMs agreed well,
implying a known mechanism of the transcriptional response.
For example, in CODIM1 the majority of drugs are known as
cell cycle blockers and the corresponding gene annotations of
this module are enriched in ‘cell cycle and the transition to M
phase’ (Crawford and Piwnica-Worms, 2001; Whitfield et al,
2002, and see Figure 2B and Supplementary Tables 4 and 5 for
additional examples). However, for the majority of modules
the connection between enriched terms of genes and drugs
was less obvious, suggesting novel aspects of drug MOAs;
CODIM7 is enriched for genes functioning in RNA processing
and pyrimidine metabolism, while it is associated with a
heterogeneous set of chemicals containing several flavonoids
and alkaloids. The impact of these natural products on the
human organism is not fully understood, but there is evidence
that some of these chemicals, including quercetin and
kampferol, inhibit RNA synthesis (Nose, 1984; Kanakis et al,
2006, 2007; Nafisi et al, 2010; Supplementary Tables 4 and 5).
Another unexpected connection was observed for the highly

conserved CODIM2; functional analysis of its gene members
indicates a role in (chole)sterol biosynthesis and endoplasmic
reticulum (ER) related processes, while the associated drugs
were mostly psychiatric medications in CMap (Anatomical
Therapeutic Chemical (ATC) code N05—psycholeptics),
including many antipsychotics (e.g., chlorpromazine) and
antidepressants (e.g., fluoxetine); whereas in the rat liver, all
associated drugs were statins (cholesterol-lowering drugs;
Supplementary Table 5). A broad regulatory effect of diverse
psycholeptic drugs on cholesterol biosynthesis was unex-
pected, although it has been reported for a few cases, and
inhibition of low-density lipoprotein (LDL)-derived choles-
terol transport to the ER was proposed as an underlying
mechanism (Fernø et al, 2005; Kristiana et al, 2010; Canfran-
Duque et al, 2012). This association also offers a potential
explanation for some of the observed side effects of drugs
enriched in CODIM2 (e.g., galactorrhea or breast enlargement,
see Supplementary Table 5), reflecting the phenotypic con-
sequences of dysregulation of steroid hormone biosynthesis.
Taken together, these findings highlight that drug-induced
modules and their annotations provide hints about complex,
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potentially novel biological phenomena of drug responses and
generate hypotheses for further experimental investigations.

Functional discovery within drug-induced
modules

CODIMs can be utilized to functionally characterize the genes
therein, in particular poorly annotated ones. For example,
CODIM2, which is conserved across all cell lines and rat liver

shows a clear enrichment for (chole)sterol biosynthesis
and regulation (see above, Supplementary Table 5). The
biological processes underlying cholesterol homeostasis are
fundamental to cellular metabolism and its regulation at the
transcriptional level has been studied widely (Brown and
Goldstein, 2009); thus, we systematically studied the genes of
this module. Grouping the expression patterns in CODIM2
with hierarchical clustering revealed two major submodules
(Figure 3A). Analysis of the respective genes in the context
of a protein-interaction network (obtained from STRING
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Supplementary Table 6). (C, D) Representative image of fixed cells taken by automated widefield fluorescence microscopy. Cells have been transfected for 48 h with
siRNA targeting indicated gene, and experiments of (C) LDL-uptake assay with fluorescently labeled DiI–LDL and (D) staining with cholesterol binding dye filipin was
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(Szklarczyk et al, 2011)) showed that one of these sub-
modules corresponds to cholesterol biosynthesis pathways
(Supplementary Figure 7), whereas the other one forms a
loosely connected network enriched in stress-related genes
associated to the ER (Figure 3B). Recently, several lines of
evidence have connected these processes and revealed the
functional relevance of biological processes in the ER for the
metabolism and transport of cholesterol (Colgan et al, 2007;
Fu et al, 2012). Therefore, we examined whether genes in
CODIM2 that are poorly characterized or have not previously
been linked to this pathway could be novel regulators of
cholesterol homeostasis. Twenty-four such genes were
knocked down with small interfering RNA (siRNA) and their
effects on LDL uptake (Ghosh et al, 1994) and/or free
cholesterol levels (Börnig and Geyer, 1974) were experimen-
tally assessed with quantitative microscopy-based assays
(Bartz et al, 2009). These experiments confirmed that 10 out
of 24 (42%) tested genes are indeed novel modulators of
cellular cholesterol homeostasis; unexpected examples include
FGFBP1 (fibroblast growth factor binding protein 1) and
DUSP4 (dual specificity phosphatase 4) (Figure 3 and
Supplementary Table 6). This validation rate exceeds that of a
successful previous study, which used these assays to test
candidates derived from targeted expression profiling and
literature survey (Bartz et al, 2009). The experimental
confirmation of as many as ten predictions highlights the
power of our computational approach in defining functionally
coherent transcriptional modules from large-scale drug pertur-
bation experiments and demonstrated the utility of
drug-induced modules for functional annotation of genes.

Towards drug repositioning from drug-induced
modules

Drug repositioning, that is the application of existing drugs to
new indications, on the basis of computational prediction, has
gained increasing attention (Campillos et al, 2008; Keiser et al,
2009; Iorio et al, 2010; Gottlieb et al, 2011). Our drug-induced
transcriptional modules provide a rich source of novel leads
for systematic drug repositioning. As a proof-of-concept, we
suggest new chemotherapeutic agents by exploring the
FDA-approved drugs in CODIM1, which is composed of two
prototypical submodules characterized by inverse gene
expression patterns (Figure 4A). One of them can be attributed
to blocking cell cycle during G1/S transition (e.g., by
methotrexate), whereas the other pattern corresponds to a
G2/M arrest (e.g., by paclitaxel; Crawford and Piwnica-
Worms, 2001; Whitfield et al, 2002). The vast majority of
compounds found in CODIM1 are known cell cycle blockers,
for instance, antifolate drugs (e.g., methotrexate and pyr-
imethamine), which block purine and pyrimidine synthesis,
and thus DNA and RNA synthesis, and microtubule inhibitors
(e.g., paclitaxel), which are used in anticancer therapy
(Figure 4A). In addition to known cell cycle blockers, CODIM1
also comprises nine drugs that were not previously reported,
to our knowledge, as cell cycle inhibitors in the literature and,
hence, are candidates for drug repositioning. We selected three
of them for further experimental validation: (i) vinburnine, a
vasodilator; (ii) sulconazole, a topical antifungal; and (iii)

mephentermine, a cardiac stimulant.With cell viability assays,
we examined whether these compounds indeed show an
inhibitory effect on human cell lines. We did not observe
reduced cell viability after mephentermine treatment (neither
in HL60 nor in MCF7 cells), possibly because the transcrip-
tional signature of mephentermine appeared weaker and more
cell-line-specific than that of other drugs in CODIM1 that were
well known to interfere with DNA replication (such as
methotrexate, trifluridine and etoposide). However, for both
sulconazole and vinburnine the predicted effect could be
confirmed in HL60 and MCF7 with IC50 values of 6.1 mM
(HL60) and 1.7 mM (HL60), respectively (Figure 4B and
Supplementary Figure 8).
Moreover, the direct effects of sulconazole and vinburnine

on the cell cycle were evaluated by propidium iodide (PI)
staining and FACS analysis (Figure 4C and Supplementary
Figure 9). Vinburnine treatment led to G2/M arrest in HL60
cells within 24 h, whereas prolonged treatments (48 and 72 h)
enhanced the sub-G1 accumulation, indicating an apoptotic
phenomenon (Figure 4C). Sulconazole, on the other hand,
induced apoptosis (sub-G1 phase) of HL60 cell line within 24 h
(Figure 4C), similar to the effects of the known apoptosis-
inducing compound betulinic acid (Faujan et al, 2010). These
experiments clearly confirm the inferred biological role of
CODIM1 in cell cycle regulation and highlight the potential of
its drug members as novel cell cycle blockers.

Inferring context-dependent MOAs using cell-type-
specific modules

Although conservation across multiple systems can increase
the robustness of inferences, cell-type-specific responses to a
drug could indicate a very selective effect, which necessitates
cell-line-specific analysis. We thus tried to validate a few drugs
that were unexpected in some of the system-specific modules
and that might thus be candidates for drug repositioning or, at
least, can serve as respective leads. To this end, we further
investigated three cell-line-specific modules, each of which
clearly showed enrichment for particular drug targets. Novel
activity on the associated drug target was experimentally
assessed for each of 10 repositioning candidates, which were
selected to be structurally dissimilar to any drug contained in
the respective module and known to interact with this target
(Tanimoto similarity o0.5, see Materials and Methods). For
example, the peroxisome proliferator-activated receptor sub-
type-g (PPARg) is the main target of antidiabetic drugs
(Vamecq and Latruffe, 1999) and is expressed in the PC3 cell
line, but neither in HL60 nor in MCF7 cell line (Lamb et al,
2006). Our investigation among modules in PC3 revealed that
the drug members of module PC3-9 were mainly comprised of
PPARg activators (Figure 5A and Supplementary Table 5). We
therefore hypothesized that other drugs from PC3-9 also
modulate PPARg (Figure 5A). For one such candidate,
zaprinast, an experimental phosphodiesterase inhibitor, tar-
get-binding assays confirmed that it is indeed a novel
modulator of PPARg (Ki: 14 mM), warranting further investiga-
tion of this drug in the context of diabetes (Figure 5D).
The estrogen receptor is known to be expressed specifically

in MCF7 (Lamb et al, 2006) and is the therapeutic target for,
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e.g., breast cancer treatment and osteoporosis. To infer novel
modulators of the estrogen receptor, we investigated drug
members of module MCF7-9 that is enriched for estrogen
receptor agonists and antagonists (Figure 5C and
Supplementary Table 5). We tested and confirmed that
nitrendipine, a dihydropyridine calcium channel blocker,
weakly binds to the estrogen receptor (Ki about 46 mM,
Figure 5G).

We further analyzed the HL60-17 module in which drugs
with adrenergic activity were overrepresented (Figure 5B).
Adrenergic agonists have therapeutic effects in various
disorders, including vasoconstriction and attention deficit-
hyperactivity disorder. Novel candidates in this module not
previously described to have any adrenergic activity, were
subjected to target-binding assays for ADRA2C. We confirmed
the activity for both hexetidine (antibacterial, Ki: 6.5 mM
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Figure 5 Drug repositioning from drug-induced transcriptional modules. Three examples of cell-line-specific drug-induced modules that were enriched for
pharmacological classes of (A) peroxisome proliferator-activated receptor activators (PC3-9), (B) a-adrenergic 2 agonists (HL60-17), (C) estrogen receptor-a
modulators (MCF7-9; see Supplementary Tables 4 and 5 for a complete list of modules). For each module (as detected by the biclustering approach), a heatmap (A–C)
was drawn to illustrate gene expression changes (fold change) under various drug treatments. Drugs in modules were characterized with respect to their molecular
targets. Specific action on the main target associated with the respective module A–C is indicated by colored boxes. Novel drug–target relationships were inferred for
drug members not previously known to modulate the main targets associated with these modules. Ten predicted modulators were experimentally tested (red labeled
drugs in A–C). (D–G) Four of these predictions could by verified with in vitro binding assays (bold face). In three cases Ki values lower than 15 mM confirmed strong
binding, whereas ERa affinity of nitrendipine (46 mM) was considered ambiguous (Lounkine et al, 2012; Supplementary Figure 10).
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and (þ )-chelidonine, Ki: 15 mM; Figure 5E, F). In total, we
successfully validated target-binding activity for 4 out of 10
candidate drugs selected from these modules (Supplementary
Figure 10). Although the binding affinities measured may be
too low for immediate pharmaceutical application, the
respective drugs can at least be considered as novel leads,
which can be further optimized towards novel therapeutic
uses (Wermuth, 2004; Chong and Sullivan, 2007) and, thus,
corroborate the value of our approach for drug repositioning.

Conclusions

We identified and annotated a large set of mammalian drug-
induced transcriptional modules. We analyzed the modules in
a cell-type-specific manner, which not only allowed us to
uncover cell-type-specific drug responses, but also to derive a
lower limit for the conservation of drug-induced transcriptional
modules across cell lines and organisms. In contrast to previous
studies, whichmainly focused on drug–drug relations based on
similarity of whole-expression profiles (Iorio et al, 2009, 2010;
Perlman et al, 2011), we also characterized the biological roles
of the genes responding to drug perturbations. The biological
relevance of transcriptional modules was underlined by the
experimental validation of 10 genes as novel modulators of
cholesterol homeostasis. Moreover, we discover novel MOAs
for six drugs (two in conserved and four in cell-line-specific
drug-induced transcriptional modules). These results provide
initial evidence for the potential of the transcriptional modules
in drug repositioning and highlight the value of our approach
for improving our understanding of drug action.
With more fine-grained, large-scale chemogenomics data

sets becoming publicly available (e.g., Barretina et al, 2012;
Garnett et al, 2012), the presented framework should become
much more powerful, allowing a more accurate delineation of
transcriptional modules. We expect that the estimate of the
extent to which transcriptional responses are conserved
between cell types and tissues may considerably increase
due to higher resolution. Moreover, drug-induced transcrip-
tional modules that are significantly associated with specific
(off-) targets or side effects could be utilized as transcriptional
markers (Afshari et al, 2011; Iorio et al, 2012) to systematically
evaluate the efficacy and safety of new chemicals in early
stages of the drug development process. We believe that better
profiling and characterization of the responses in different cell
types, in turn, will lead to a more systematic understanding of
pharmacological and toxicological properties of chemicals.

Materials and methods

Microarray data source and preprocessing

The CMap (build 02, http://www.broadinstitute.org/cmap/) contains
6100 genome-wide expression profiles comprising the responses of
four human cancer cell lines to treatment with 1309 small molecules
(hereafter will be referred as ‘drugs’; Lamb et al, 2006). Filtering and
normalization of this data set was performed as reported previously
(Iskar et al, 2010), in order to obtain a comparable set of experiments
in each of the three major cell lines in CMap (HL60, human
promyelocytic leukemia cell line; MCF7, human breast adenocarci-
noma cell line; PC3, human prostate cancer cell line) and to reduce
batch effects by adjusting expression changes against a batch-specific
background. In cases where multiple replicate experiments for the

same drug in the same cell line were present, we selected one
representative per cell line, such that consistency across cell lines is
maximized based on Pearson’s correlation, and discarded the other
replicates. Further analysis was restricted to genes (probe sets)
expressed in at least one of the cancer cell lines. A probe set was
considered expressed if the ‘present’ call ratio exceeds 10% of
experiments in any of the cell lines (with gene- and experiment-wise
‘present’ callsmade as proposed earlier (Liu et al, 2002)). In the second
step of probe set removal, we chose a single probe set per gene at
random to avoid analysis bias towards genes represented by multiple
probe sets. As a result, expression response of 8964 distinct genes from
three human cancer cell lines to treatments with the same set of 990
distinct drugs were retained for this study.

In addition, a large-scale data set of gene expression changes in rat
liver of compound-treated rats were included in this study (DrugMa-
trix, GEO accession number GSE88583; Natsoulis et al, 2008). It
contains 5312 microarray experiments for multiple concentrations of
344 compounds (and diet restriction) profiled at different time points
after administration (in most instances 6 h and 1, 3 and 5 days) with
biological replicates. Microarray data was normalized and summar-
ized into drug-induced expression profiles in multiple steps similarly
as described (Huang et al, 2009c). Analysis was restricted to probe sets
that are in common between all microarray platforms used (GE
Healthcare/Amersham Biosciences CodeLink UniSet Rat I Bioarray,
EXP5280X2-584, EXP5280X2-613 and EXP5280X2-648). Subsequently,
to facilitate interexperimental comparisons, all experiments were
subjected to quantile normalization (Bolstad et al, 2003). Probe sets
with more than 10% missing values were excluded and the remaining
missing values were filled in by mean imputation, which is
replacement with the probe set-specific mean expression value. For
each gene, we only retained the single probe set with the highest
variance. Subsequently, gene expression values were first converted to
fold changes by subtracting the mean value of the corresponding
controls and then divided by the s.d. (added with 0.1 quantile of all
s.d.) across all samples to obtain expression z-scores relative to
background. These were subsequently averaged across replicates.
Lastly, we established an orthology relation between rat and human
genes based on NCBI Homologene (Sayers et al, 2011) and retained
only those probe sets with a one-to-one ortholog among the genes
represented in the processed CMap data set (see above). This
procedure retained 1743 drug-induced gene expression profiles of rat
liver tissue for 3618 genes in response to 344 compounds in multiple
doses and time points (for simplicity, different doses and time points
for the same drug were treated as independent experiments in the
subsequent module identification, Supplementary Figure 1).

Identifying transcriptional modules

A transcriptionalmodule is defined as a set of genes that are coherently
changing under a subset of conditions. To identify such modules, we
used an unsupervised biclustering approach, called the Iterative
Signature Algorithm (Bergmann et al, 2003; Ihmels et al, 2004; as
implemented in the R packages,‘isa2’ (version 0.3) and ‘eisa’ (version 1;
Csárdi et al, 2010) belonging to the R Bioconductor framework (Ihaka
and Gentleman, 1996; Gentleman et al, 2004)). In this study the four
matrices of drug-induced expression z-scores (three human cell lines
and rat liver, preprocessed as described above)were analyzed separately
using the same ISAworkflow.

As described in previous studies (Kutalik et al, 2008; Csárdi et al,
2010; Henrichsen et al, 2011), ISA proceeds in several steps. First,
transcriptional modules are detected for a wide variety of different
threshold values imposing a minimum on the number of included
genes (threshold varied from 5 to 2 in decrements of 0.2) and
conditions, i.e., drug treatments (threshold varied from 4 to 1 (2 in rat
liver) in decrements of 0.2); the ISA algorithm performed 20 000
(internal) re-runs with different random starting points for each
threshold. The resulting outputs are highly redundant (see
Supplementary Figure 2 for an exploration of redundancy among
and sensitivity to different parameter sets) and therefore require
additional redundancy removal steps (Csárdi et al, 2010). Here we
customized the standard ISA procedures as follows, First, we enriched
for drug-induced transcriptional modules over constitutive modules
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that were also apparent from untreated background experiments.
Although carried out on drug-treatment experiments only, themodules
identified by ISA may contain generic coexpression modules that
correspond to intrinsic, constitutive cellular processes rather than
specific responses to drug treatments. We therefore removed all ISA
biclusters if at least 10% of gene pairs within the module showed
strong coexpression in untreated samples as well (as defined by a
Pearson’s correlation40.6, see Supplementary Table 2 for robustness
analysis with respect to the actual parameters used). Second, we
discarded very small, likely spurious modules and retained only
biclusters with a minimum of 20 genes and 5 drugs (10 for rat liver).
Finally, we applied the standard ISA redundancy removal to reduce the
number of very similar biclusters that are the result of many randomly
initialized runs converging to highly similar result sets (Csárdi et al,
2010). Before this removal step, all transcriptional modules were sorted
by gene and drug thresholds aiming to preferentially retain medium-
sized modules (first prioritizing gene threshold values from 4 to 3 over
ones from 5 to 3.2 and finally 2.8 to 2 for cell line data, and prioritizing
values from 3 to 2 over ones from 5 to 3.2 for rat liver data; second,
prioritizing drug threshold values from 3 to 2 over 4 to 3.2 in both cell
line and rat liver data followed by values from 1.8 to 1 in cell line data).
On the basis of this prioritization, redundant modules were filtered in
sequential order following the developers’ recommendations (Csárdi
et al, 2010), using a correlation threshold of 0.3 to determine redundant
biclusters (see Supplementary Table 1 for a parameter robustness
analysis). Lastly, in addition to ISA redundancy removal, modules from
the same cell line showing significant gene overlap with a module of
higher priority (hypergeometric test, P-value o1E-5) were discarded
sequentially to further reduce redundancy in terms of gene overlap (see
Supplementary Table 1 for a parameter robustness analysis).

Comparison of transcriptional modules between
data sets

Drug-induced transcriptional modules were compared with each other
using a hypergeometric test to assess significance of overlap between
gene members (similarly done in Oldham et al (2008)). With a
reciprocal best-hit approach we identified associations—CODIMs—
between transcriptional modules across cell lines and species (with
P-valueo0.01 after a false discovery rate (FDR) correction for multiple
hypothesis testing; Figure 2B and Supplementary Figure 3). In
addition, we tested all associations between modules for overlap
between drugs inducing these modules (but not for rat liver, as the
number of drugs in commonwith this data set was too low to provide a
solid statistical basis for comparison of drug overlap). Significant
overlaps between drug sets (Fisher’s exact test, FDR-corrected P-value
o0.01) were indicated in Figure 2B, Supplementary Figure 3 and
Supplementary Table 3. Finally, CODIMswere obtained as the union of
gene and drug members of the corresponding transcriptional modules
from human cancer cell lines.

Assessing functional coherence of transcriptional
modules

In order to assess whether transcriptional modules were enriched for
functionally associated gene pairs, we comparedmodules fromhuman
cancer cell lines and rat liver to the comprehensive STRING database
of protein–protein associations for Homo sapiens and Rattus norvegi-
cus, respectively (Szklarczyk et al, 2011). In total, 126 622 reliable
associations between 6556 human proteins were extracted from the
STRING network considering only the experimental and database
evidence with intermediate to high confidence (the default STRING
evidence scores 40.4), while excluding methodologically analogous
coexpression associations (von Mering et al, 2005). Similarly, 11 988
reliable associations between 1869 rat proteins were retrieved from
STRING having a combined evidence score over 0.4 and again
excluding analogous coexpression associations. For each module, we
calculated the proportion of functionally associated gene pairs
(excluding self-relations) within the module and compared this
against the distribution obtained for the proportion of functionally
associated pairs in 1000 random gene sets of matched sizes.

Characterization of drug-induced transcriptional
modules

We characterized both individual transcriptional modules along with
their unified CODIMs in detail by mining information for both gene
and drug members using several annotation resources. We used the
Database for Annotation, Visualization and Integrated Discovery
(DAVID knowledgebase; Huang et al, 2009a, 2009b) to test for enriched
gene function and to identify biological themes among these. For each
module, the DAVID web service provided a ranked list (enrichment
score41.3) of functionally relevant annotation clusters that represent
a summary of several annotation categories, including GO (Ashburner
et al, 2000), KEGG (Kanehisa et al, 2012) and BioCarta pathways
(Nishimura, 2001). In this analysis, gene reference backgroundwas set
to all genes for CMap, and rat liver data set provided as an input to the
ISA algorithm.
The analysis of gene functions was complemented with a second

approach, exploiting drug annotation resources for module character-
ization. For this, we extracted the ATC classification code (Andersen
andHvidberg, 1981; Pahor et al, 1994) for 677 approved drugs from the
set of chemicals in CMap and 4331 chemical–protein interactions for
493 CMap compounds from the STITCH database (Kuhn et al, 2011),
considering only reliable database and experimental evidence with
high confidence (any of the two scores 40.7). In addition, 23 458
associations between 1106 side effects and 373 drugs contained in
CMap were obtained from the SIDER database (Kuhn et al, 2010).
Lastly, a library of chemical fragments (46 atoms) generated by
exhaustive molecular fragmentation of 892 CMap drugs (93%) (o41
bonds) was queried against chemical structures of 989 drugs from
CMap using substructure search (Steinbeck et al, 2003; Guha, 2007).
Chemical structural similarity was assessed with 2D Tanimoto
coefficients based on hashed fingerprints with a default length of
1024 bits (default path length 8) calculated using the CDK (Willett et al,
1998; Martin et al, 2002; Steinbeck et al, 2006). Drug annotation terms
linked with at least five drugs were retained for further analysis. In
total, enrichment of annotation terms of 160 drug targets, 56 ATC class
(second level), 571 side effects and 813 chemical fragments were tested
for all modules from cell lines, including CODIMs, using Fisher’s exact
test with FDR correction (within each data set using a P-value cutoff
of o0.1, except for chemical fragments with a P-value o0.01;
Supplementary Table 5).

Cell viability assays and cell cycle analysis

HL60 (CPQ-054) was cultured as suspension cells in RPMI-1640
containing 10% FCS and penicillin/streptomycin. MCF7 (CPQ-072)
cells were cultured as adherent cells in DMEMcontaining 10%FCS and
penicillin/streptomycin. Cells were cultured at 37 1C in an atmosphere
of 5% (HL60) or 10% (MCF7) CO2. For the assays, cells (5000 cells/
well) were seeded in 150ml medium on a 96-well cell culture plate and
incubated overnight at 37 1C. The next day, cells were treated with
different concentrations of selected chemicals from CMap. After 72 h,
the viability of treated cells was measured after incubation for 4 h with
the indicator dye Alamar Blue and fluorescence measurement at
590nm. The single concentration of mephentermine (50 mM) was
tested in quadruplicates. The IC50 curves for the predicted compounds
(sulconazole, vinburnine) and their corresponding negative controls
(butoconazole, moxisylyte hydrochloride) were prepared in eight
semilog dilutions starting at 1E-5M and tested in duplicates. The
reference compound staurosporine was prepared in eight decalog
dilutions starting at 1E-5M. Standard solvent controls were performed
using 0.1% DMSO. Treatment of cells with 0.1% DMSO and 1E-5M
staurosporine served as high control (100% viability) and low control
(0% viability), respectively. Raw data were converted into percent
viability relative to high controls (solvent 0.1% DMSO) and low
controls (1E-05M staurosporine), which were set to 100 and 0%,
respectively. IC50 values were calculated using R package ‘drc’ (Ritz
and Streibig, 2005) by fitting dose response data to a two-parametric
log-logistic function with 0% growth as bottom constraint and 100%
growth as top constraint. For cell cycle analysis, HL60 cells (ATCC CCL-
240) were grown for 6 h with an initial concentration of 0.4Mio/ml in
3ml of medium before sulconazole (25mM) and vinburnine (25mM)
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(nocodazole, 200ng/ml as reference) were added. For three time points
(24, 48 and 72h), (un)treated cells were collected, fixed in 80%
methanol for 24 h and further rehydrated in PBS/1%FCS at room
temperature for 30min before RNAse A (100 mg/ml) and PI (50mg/ml)
treatment. FACS (FACSCalibur, BD Biosciences) was employed to
determine cell cycle distribution based on B5000 events. The
Fluorescence detector FL3 was calibrated in a way that the first (FL3-
A) peak of untreated sample was set around 200 units representing G1
population. For each sample, the ratio of cells in each cell cycle stage
were determined based on their DNA content using ‘Flowing software’
(Supplementary Figure 9) atB200 units defined as G1, below G1 peak
(B200) as apoptotic cells (sub-G1), B400 units as G2/M cells and
those between G1 and G2 peak was considered as S phase. Events with
over 400 units was defined as endo-reduplicated cells.

In vitro binding assays

In vitro binding assays were performed by the company Cerep for a-2
adrenergic receptor (agonist, ref. 3443), estrogen receptor-a(ERa,
agonist, ref. 0484) and PPARg (agonist, ref. 0641). Similarly, Cerep
carried out the cellular assays of 2C-1 adrenergic receptor (a1B, agonist
effect, ref. 1901) and ERa (antagonistic effect, ref. 3495). All chemicals
were purchased from Sigma and were tested in the following assays:
Zaprinast (Z0878) and raubasine (41111) in PPARg; dilazep (D5294) in
ERa antagonistic assay; bendroflumethiazide (B5775), nitrendipine
(N144) and theobromine (T4500) in ERa-binding assay (agonist); and
hexetidine (259187), vigabatrin (V8261), podophyllotoxin (P4405) and
(þ )-chelidonine (54274) in a2B and a1B assays. The effect of
chemicals were initially evaluated at 50mM, and Ki values were further
determined for chemicals with more than 40% activity in initial
assessment. As explained above, R package ‘drc’ (Ritz and Streibig,
2005) was utilized to calculate IC50 values using a two-parametric log-
logistic function with 0% as minimum and 100% as maximum. Ki

values were generated from the IC50 values using Cheng–Prusoff
equation. Three predictionswere confirmed as hits withKi values lower
than 15mM and the binding activity of nitrendipine was considered
ambiguous as being between 25 and 50%at 30mM,while the rest of the
predictions were labeled as disproved (Lounkine et al, 2012).

Functional cholesterol assays using siRNA
knockdowns

Knockdown was performed by pre-designed 21 nt Silencer Select
siRNAs or 25 nt Stealth RNAit siRNAs from Life Technologies. Assays
for LDL uptake and free cholesterol (Filipin assay) and image
acquisition was performed as described in Bartz et al (2009). In short,
for both assays Hela Kyoto cells were transfected with siRNA for 48 h.
For the LDL-uptake assay, cells were starved in FCS-deficient medium
overnight and 1% (w/v) HPCD 45min before adding DiI-labeled (3,30,
dioctadecylindocarbocyanine) LDL for 20min. For the Filipin assay,
cells were fixed 48h post transfection and stained with fluorescent dye
filipin binding to free cholesterol. Fixed cells were imaged on an
Olympus ScanR system. All images were manually quality controlled
in order to exclude out-of-focus images and otherwise not analyzable
images (e.g., too many cells, dust particles etc.). Automated image
analysis was performed using the Open Source software Cellprofiler.
An additionalmodule (MorphoQuant) was programmed to specifically
detect dots using convolution with a mask previous to thresholding.
Structureswere detected by thresholding above background in the cell.
For these structures the total intensity was quantified. For the LDL-
uptake assay, column bias within plates was reduced by subtracting
column-wise estimated background based on controls using local
polynomial regression. The effect of siRNA knockdowns versus
controls were evaluated using linear mixed-effect models (as
implemented in the R package ‘nlme’ (version 3.1-103)), with siRNA
treatment as the fixed factor and plate as the random factor. For each
assay, P-values were adjusted by FDR correction. Experimentally
tested genes were considered as positive hits if two or more of its gene-
specific siRNAs had consistent and significant effect(s) on either LDL
uptake and/or free cholesterol (Filipin assay) in comparison with
controls (using a cutoff of absolute z-score 41 and FDR-corrected
P-value o0.01; Supplementary Table 6).

Data availability
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