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UGT51/52 glucosyltransferases are
essential for the biosynthesis of sterol
glucosides, which are membrane-bound
lipids present in many eukaryotes1. The
catalytic domain of yeast and
Dictyostelium discoideum enzymes is

preceded by an N-terminal extension that
is not found in plant homologues1.

PSI-BLAST (Ref. 2) searches against
NRDB with a conserved region (see Fig. 1)
of the N-terminal extension (residues
207–274) from Dictyostelium discoideum
reveal significant similarity (E 5 1024) to
other yeast glucosyltransferases. A
second iteration retrieves a region in TBC-
domain-containing proteins (E 5 2 3
1028), which are predicted to activate
Rab-like GTPases3, and has additional
matches in hypothetical proteins (E 5
3 3 1029) (see Fig. 2). In further iterative
searches we found a second copy of the
new domain in some putative Rab-like
GTPase activators (E 5 2 3 1027) and a
truncated duplication in yeast
glucosyltransferases (E 5 7 3 1024). This
truncated domain is directly followed by
a pleckstrin homology (PH) domain (see

Fig. 2). On the fifth iteration of searching,
the domain is also retrieved in C2-domain-
containing proteins (E 5 2 3 1025) and in
some small formin-binding and abscisic
acid (ABA)-responsive-element-binding
proteins (E 5 1 3 1024). These proteins
play a role in environmental stress
responses of higher plants4,5. The same
results were found with complementary
hidden Markov model searches6.

Further PSI-BLAST searches indicate
similarity just above the default threshold
to MTM1/MTMR1 myotubularins7,8

(E 5 0.064), a family of dual-specificity
phosphatases and to Sbf [for SET
(suvar3–9, enhancer-of-zeste, trithorax)-
domain-binding factor] proteins (E 5 1.4).
Sbf-family members are myotubularin-like
proteins that lack phosphatase activity9.
However, mutations in the newly detected
domain (and other sequence regions) of
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Figure 1
Multiple sequence alignment of GRAM domains of abscisic acid (ABA)-responsive-element-binding proteins (FIP1, T31B5_20, ARP,
AT4G01600), PH-domain-containing glucosyltransferases (L9470.23, UGT51B1, UGT51C1), FYVE-domain-containing glucosyltransferase
(UGT52), hypothetical proteins (F15K9.2, T16L24, C20F10.07, KIAA1201, YK26G5.5, YLR072W, YFE2_YEAST, YHO0_YEAST, D9798.13,
KIAA0767), TBC-domain-containing Rab-like GTPase activators (VRP, KIAA0676, Y45F10A.6, CG7324, MIC1_YEAST, C1259.11C), myotubu-
larin dual-specificity phosphatases (MTM1_HUMAN, MTMR1, MTM_DM, MTM_CE) and Sbf1-like dual-specificity phosphatases (SBF_DM,
SBF1, SBF_CE). First column: protein names (repeated domains in the same protein are labeled by a or b); second column: species names
(at: Arabidopsis thaliana; ca: Candida albicans; ce: Caenorhabditis elegans; dd: Dictyostelium discoideum; dm: Drosophila melanogaster; hs:
Homo sapiens; hv: Hordeum vulgare; pp: Pichia pastoris; sc: Saccharomyces cerevisiae; sp: Schizosaccharomyces pombe); third column:
start of the domain in the respective sequences; rightmost column: database accession numbers. Conserved charged residues are shown in
red; conserved hydrophobic residues are shown in blue; other conserved residues are shown in bold. Mutations in the GRAM domain of gene
MTM1 are labeled with red asterisks above the sequence MTM1_HUMAN. The consensus sequence (conserved in 80% of the sequences)
shown below; h, p, a, u, s, o and ‘-’ indicate hydrophobic, polar, aromatic, tiny, small, alcoholic and negatively charged residues, respectively.
The predicted secondary structure taken from the consensus of the alignment. H, helix predicted with expected average accuracy .82%; h,
helix predicted with expected average accuracy ,82%; E, b sheet predicted with expected average accuracy .82%; e, b sheet predicted with
expected average accuracy ,82%20.
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the human MTM1 gene (see Fig. 1) are
responsible for an X-linked congenital
myopathy characterized by hypotonia
and respiratory insufficiency10,11. The
significance of these latter homologies is
confirmed by MACAW alignment analysis
(P values between 10211 and 10250)12.

We named the newly discovered region
the GRAM domain (after the better-
characterized glucosyltransferases, 
Rab-like GTPase activators and
myotubularins). It should be noted that
the GRAM domain is present in only one
of six biochemically identified Rab-like
GTPase activators13, implying that the
new domain is not essential for GTPase
activation.

Interestingly, all noncatalytic domains
(PH domain14,15, TBC domain3, C2
domain16,17, FYVE domain18, C1 domain19

and others) that co-occur with GRAM in
the same proteins are predominantly
associated with membrane-coupled
processes.

The GRAM domain is generally ~70
amino acids (50 in the truncated version)
in length. Secondary-structure prediction

with PHD (Ref. 20) shows four β strands,
which suggests that the core of the
domain is a β sheet. Each predicted
strand contains a conserved aromatic
position. Other features include
conserved charged residues, but only one
glycine is invariable in the sequences
identified so far (Fig. 1). The C-terminal
α helix appears to be absent in the PH-
domain-associated, truncated GRAM
domain. Such a truncation is not unusual;
it occurs, for example, in members of the
ubiquitin-conjugating enzyme family21,22.

In summary, we predict that the GRAM
domain is likely to be an intracellular
protein-binding or lipid-binding signalling
domain, which has an important function
in membrane-associated processes. In
myotubularins, mutations in GRAM cause
a muscle disease, thus suggesting that
this domain is essential for the full
function of the enzyme.

Although it is present in a variety of
species, it only appears to be ubiquitious
in putative Rab-like GTPase activators,
myotubularins (MTM1/MTMR1), Sbf1
proteins and some hypothetical proteins.

However, it seems to be used also in
numerous taxon-specific proteins and
pathways. The delineation of the GRAM
domain and its borders allows the testing
of these hypotheses experimentally.
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Figure 2 
Domain architecture of proteins containing the GRAM domain. Only proteins with distinct
modular organizations are shown. The domain names are according to the Simple Modular
Architecture Research Tool23 (http://smart.embl-heidelberg.de). Abbreviations and expla-
nations: C1, protein kinase C conserved region 1; C2, protein kinase C conserved region 2
(CalB); EF, EF-hand, calcium-binding motif; FYVE, domain present in Fab1, YOTB, Vac1 and
EEA1; PH, pleckstrin-homology domain; DSPc, catalytic domain of dual-specificity phos-
phatases; TBC, domain in Tre-2, BUB2p and Cdc16p. The DSPc domain in Sbf1-proteins
lacks the catalytic function, marked by an X. The C1 domain is only present in Sbf1-like pro-
tein of Drosophila melanogaster. The DENN domain is defined by Pfam24, and the glucosyl-
transferase domain borders have been published1.



Fringe gives a
saccharine to Notch

Post-translational modifications like
phosphorylation, acetylation and fatty
acid acylation of proteins are well-known
strategies that cells use to regulate the
activity of enzymes and maintain the
binding properties of ligands and
receptors. By contrast, glycosylation,
where carbohydrates are attached to the
side chains of amino acids, is important
in the synthesis of many secreted and
cell-surface proteins.

Moloney et al.1 and Brückner et al.2 now
demonstrate that elongation of O-linked
fucose on glycosylated proteins can act
as an as-yet-unknown post-translational
regulatory mechanism for modulating
receptor–ligand interactions in signal
transduction. Both groups studied the
influence of glycosylation on the activity
of Notch-induced signalling, which is
important for the formation of tissue
boundaries during development. Notch
receptors are transmembrane proteins

with an extracellular domain of epidermal
growth factor (EGF)-like repeats and 
are activated by two conserved families
of ligand proteins, Jagged/Serrate 
and Delta.

Molony et al. show that Fringe, a
modulator of Notch, possess a fucose-
specific glycosyltransferase activity that
catalyses the elongation of carbohydrates
on the EGF repeats of the receptor
protein. Using tritium-labelled
saccharides they found that EGF–O-
fucose is a highly specific target for
Fringe. The elongation of the glycans on
Notch led to an inhibitory effect on the
activation of its ligand, Jagged1, as
monitored by a luciferase-reporter assay.
Brückner et al. demonstrate that Fringe
displays its ability to modify Notch within
the Golgi apparatus and that modulation
of the receptor increases the binding
activity to its ligand Delta. Both groups
show that the Notch–ligand interaction 
is not affected when replacing the DxD
motif (aa 236–238) in Fringe, required 
for the catalytic activity in many
glycosyltransferases, by either NNN or
DEE.

Condensing the
RNA world

The track record of X-rays in revealing
life’s inner secrets is the envy of other
photons. The most profound mysteries
that have been investigated with them
have been revealed first to the bravest
and the most persistent people on earth.
Few dared to purify a 1 500 000 Da
complex containing 30 or more
polypeptides and 990 000 Da of RNA.
Fewer succeeded in crystallizing the large
ribosomal subunit, and many turned to
more sensible projects when they
obtained poor crystals. By the time Ban et
al.1 obtained improved crystals of the
large subunit from Haloarcula marismortui
and found 132 heavy-atom positions for
an osmium pentamine derivative and 84
heavy-atom positions for an iridium
hexamine derivative, there was no turning
back. The absence of three of the 31
polypeptides from the SwissProt database
no longer elicited fear.

In the 20 years since Ada Yonath and
co-workers reported the first crystals of
the large subunit, new scientific and
engineering disciplines, such as whole-
genome sequencing, phylogenetic RNA
alignment and secondary-structure
prediction, and synchrotron X-ray
crystallography came into practice;
without these, a model of the large
subunit could not have been built.
Dominating the assembly is the 23S RNA
macromolecule, whose six subdomains
assemble into a large single domain. Of
the 27 protein structures solved in the
assembly, 21 were solved de novo; 13
have a nonglobular domain or are entirely
extended in their native conformation.
The nonglobular protein structures make
no sense apart from the large subunit
assembly and, in fact, resisted
crystallization on their own.

Although Francis Crick proposed as
early as 1968 that 23S RNA might catalyse
peptide-bond formation, a huge body of
genetic and biochemical work has been
devoted to testing this hypothesis.
Indeed, the notion that RNA once ‘did it
all’ depends more significantly on

determining which enzymes in modern
cells still ‘do it’ with RNA catalytic centers
than on evolutionary speculation and
reconstruction. Difference electron
density maps of the large subunit bound
to two substrate analogs now
demonstrate that the N3 nitrogen of
adenosine at position 2486 of 23S RNA is
positioned to abstract a proton from the
N terminus of the incoming aminoacyl
tRNA (Ref. 2). In these X-ray structures,
no amino acid side chain is within 15 Å of
the condensation. The lack of direct
involvement of protein in the reaction
underscores the first impression of the
large-subunit structure: that polypeptides
are largely there to stabilize 23S RNA.

There is an amusing turnabout in the
large-subunit story. Crystal structures of
substrate analogs for peptide transfer are
bound by RNA, proving that the ribosome
is a ribozyme. The proposed mechanism
(adenosine 2486 as a general base) is the

reverse of the mechanism for hydrolysis
of an acylenzyme by serine proteases
(histidine as a general base). Can the
history of protein enzyme evolution be
distilled to a counter attack of ribosomal
protein synthesis? Revolutionary
ribosomal RNAs make proteins, which
then deploy an enhanced set of side
chains as RNA mimics and function to
break the bonds condensed in the RNA
world.
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