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ABSTRACT

Human single nucleotide polymorphisms (SNPs)
represent the most frequent type of human popula-
tion DNA variation. One of the main goals of SNP
research is to understand the genetics of the human
phenotype variation and especially the genetic
basis of human complex diseases. Non-synonym-
ous coding SNPs (nsSNPs) comprise a group of
SNPs that, together with SNPs in regulatory regions,
are believed to have the highest impact on pheno-
type. Here we present a World Wide Web server to
predict the effect of an nsSNP on protein structure
and function. The prediction method enabled analy-
sis of the publicly available SNP database HGVbase,
which gave rise to a dataset of nsSNPs with pre-
dicted functionality. The dataset was further used to
compare the effect of various structural and func-
tional characteristics of amino acid substitutions
responsible for phenotypic display of hsSNPs. We
also studied the dependence of selective pressure
on the structural and functional properties of
proteins. We found that in our dataset the selection
pressure against deleterious SNPs depends on the
molecular function of the protein, although it is
insensitive to several other protein features con-
sidered. The strongest selective pressure was
detected for proteins involved in transcription
regulation.

INTRODUCTION

A considerable effort is underway to relate human phenotypes
to variation at the DNA level. Most human genetic variation is
represented by single nucleotide polymorphisms (SNPs) and
many of them are believed to cause phenotypic differences
between individuals. However, identifying SNPs responsible
for specific phenotypes appears to be a problem that is very
difficult to solve.

The concept of association studies has been proposed as an
experimental technique to identify SNPs underlying complex
phenotypes, mostly human multifactorial disorders (1). The
question of study design is, however, disputable. Linkage

disequilibrium-based whole genome scanning (2,3) has the
advantage of being a completely hypothesis-free approach,
though possibly too demanding because of the extraordinary
number of markers to be screened. Candidate gene studies
(2,4) try to reduce the number of SNPs to those from genes
most likely to constitute the genetic basis of the disease.
Although, even in the latter case, especially if large sets of
candidate genes are considered, multiple testing of hundreds
and even thousands of SNPs makes detection of the associ-
ation difficult.

A possible way to overcome the problem of testing
overwhelming numbers of SNPs, especially in the case of
candidate gene studies, would be to prioritise SNPs according
to their functional significance (4,5). As a priori biological
knowledge can be used to reduce the number of SNPs by
focusing on specific genomic regions or gene sets, bioinfor-
matics expertise may help to discriminate between neutral
SNPs, which constitute the majority of genetic variation, and
SNPs of likely functional importance. Below, we specifically
focus on non-synonymous SNPs (nsSNPs), i.e. SNPs located
in coding regions and resulting in amino acid variation in the
protein products of genes. It has been shown in several recent
studies (6—11) that the impact of amino acid allelic variants on
protein structure and function can be predicted by analysis of
multiple sequence alignments and protein 3D structures. As
we demonstrated in an earlier work, these predictions correlate
with the effect of natural selection seen as an excess of rare
alleles (7,12). Therefore, predictions at the molecular level
reveal SNPs affecting actual phenotypes.

Here we present: (i) a Web server for annotation
of functional nsSNPs (www.bork.embl-heidelberg.de/Poly
Phen); (ii) a dataset of nsSNPs extracted from a public SNP
database, HGVbase (13) (www.bork.embl-heidelberg.de/
PolyPhen/data); (iii) an analysis of these data with regard to
predicted effect on protein structure and function.

Prioritisation of SNPs in the candidate gene approach is not
the only suggested use of the PolyPhen (polymorphism
phenotyping) server and the collection of nsSNPs. The server
could also be useful to reveal the structural basis of disease
mutations and explain the molecular cause of a disease. This
might help in some cases to identify the causative allelic
variant (14) after a disease has been linked to a particular
locus.

On the other hand, since numerous disease associations
published recently could not be confirmed by subsequent
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independent studies (2,4), the independent evidence of
functionality of a nsSNP could be an additional argument to
discriminate true associations from false positives.

Analysis of the database of nsSNPs enabled us to test
whether certain characteristics of proteins are associated with
accumulation of nsSNPs (especially slightly deleterious
nsSNPs).

MATERIALS AND METHODS

PolyPhen is a World Wide Web server devoted to automated
functional annotation of coding nsSNPs. PolyPhen input is the
amino acid sequence of a protein or the SWALL database (14)
ID or accession number together with sequence position and
two amino acid variants characterising the polymorphism.
Given the input, PolyPhen starts a fully automated pipeline of
several programs described step by step in this section. The
pipeline is schematically presented in Figure 1. The server was
used to annotate all SNPs deposited in the HGVbase database
and the resulting dataset of annotated SNPs is available at
http://www.bork.embl-heidelberg.de/PolyPhen/data.

Identifying nsSNPs in known genes

The necessary first step in the analysis of nsSNPs is to identify
whether a given SNP is indeed non-synonymous. For this
purpose we map SNPs onto known proteins on the basis of
SNP DNA flanking sequences. Flanking genomic sequences
of SNPs from HGVbase (13) with length 25 bp each have been
translated in all six possible frames and searched for in the
proteins in the human proteins subset of the SWALL database
(15). Protein sequences and genomic fragments were pre-
processed with the SEG (16), XNU (17), RepeatMasker (18)
and DUST programs, which are used to filter out areas of low
compositional complexity, regions containing internal repeats
of short periodicity and known human genomic repeat
sequences. ALU subfamily proteins were also excluded from
the set. We required that at least one translated flanking
sequence should have an exact match with a database protein
sequence. If this match was detected, we further required that
the second flanking sequence had either an exact match with
the protein sequence or matched the protein sequence in all
positions until the end of the protein or a conventional exon/
intron border is observed. The resulting mapping of a SNP
onto a protein sequence is always unique.

The above procedure is available as a stand alone World
Wide Web-based program snp2prot. The link to this program
is provided from the main PolyPhen page. We also provide a
link to the SNP annotation tool HNP (Y.Yuan, unpublished
results).

After processing HGVbase v.12 (983 589 SNP entries), we
obtained a set of 20 462 coding SNPs. Of these, 11 152 were
non-synonymous, whereas 9310 were synonymous SNPs and
do not produce any change in the amino acid sequence. The
nsSNPs formed our dataset, which can be downloaded as one
text file or searched against with a straightforward World
Wide Web-based engine. The search results contain links to
the other databases that provide additional information, e.g.
chromosomal location of a nsSNP.
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PolyPhen analysis of nsSNPs

Sequence-based characterisation of the substitution site. The
substitution may occur at a specific site, e.g. active or binding,
or in a non-globular, e.g. transmembrane, region. A query
identifies the protein by its SWALL accession number or ID or
by the sequence itself. In the latter case, PolyPhen tries to find
the given sequence in the human subset of the SWALL
database and use the FT (feature table) section of the
corresponding entry. If the sequence cannot be found in the
human subset of SWALL, this step is skipped. PolyPhen
checks if the amino acid replacement occurs at a site that is
annotated in the SWALL database feature table as DISULFID,
THIOLEST or THIOETH bond, BINDING, ACT_SITE,
LIPID, METAL, SITE or MOD_RES site or as a site located
in a TRANSMEM, SIGNAL or PROPEP region.

PolyPhen also uses the TMHMM (19) algorithm to predict
transmembrane regions, the Coils2 (20) program to predict
coiled coil regions and the SignalP (21) program to predict
signal peptide regions of the protein sequences.

For a substitution in a transmembrane region, PolyPhen
uses the PHAT (22) transmembrane-specific matrix score to
evaluate possible functional effect of a nsSNP in the
transmembrane region.

At this step PolyPhen memorises all positions that are
annotated in the query protein as BINDING, ACT_SITE,
LIPID or METAL. At a later stage, if the search for a
homologous protein with known 3D structure is successful, it
is checked whether the substitution site is in spatial contact
with these critical residues.

Profile analysis of homologous sequences. The amino acid
replacement may be incompatible with the spectrum of
substitutions observed at that position in a family of
homologous proteins. PolyPhen identifies homologues of the
input sequences via a BLAST (23) search of the NRDB
database. The set of aligned sequences with sequence identity
to the input sequence in the range 30-94% (inclusive) is used
by the new version of the PSIC (position-specific independent
counts) software (24) to calculate the so-called profile matrix
(http://strand.imb.ac.ru/PSIC/). Elements of the matrix (pro-
file scores) are logarithmic ratios of the likelihood of a given
amino acid occurring at a particular site to the likelihood of
this amino acid occurring at any site (background frequency).
PolyPhen computes the absolute value of the difference
between profile scores of both allelic variants in the
polymorphic position. PolyPhen also shows the number of
aligned sequences at the query position; this may be used to
assess the reliability of profile score calculations.

Mapping of the substitution site to known protein 3-
dimensional structures. Mapping of an amino acid replace-
ment to a known 3D structure reveals whether the replacement
is likely to destroy the hydrophobic core of a protein,
electrostatic interactions, interactions with ligands or other
important features of a protein. If the spatial structure of a
query protein is unknown, one can use a homologous protein
of known structure.

PolyPhen carries out a BLAST query of a sequence against
a protein structure database [PDB (25) or PQS (26), see below]
and retains all hits that meet the given criteria. For instance,
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Figure 1. PolyPhen query processing flowchart. PolyPhen combines information on sequence features, multiple alignment with homologous proteins and
structural parameters and contacts to make a prediction of nsSNP effect on protein function. is_swall is the abbreviation for the Homo sapiens subset of the
SWALL database (also known as SPTR, i.e. SwissProt + TTEMBL). Varl,2, two amino acid variants; ACC/ID, SWALL accession number or ID.

the default sequence identity threshold is set to 50%, since this
value guarantees the conservation of basic structural charac-
teristics. Minimal hit length and maximal length of gaps are by
default set to 100 and 20, respectively. The position of the
substitution is then mapped onto the corresponding positions
in all retained hits. By default, a hit with 3D structure is
rejected if its amino acid at the position under study differs
from the amino acid in the input sequence. Hits are sorted
according to the sequence identity or E-value of the sequence
alignment with the input protein.

Structural parameters used to evaluate the effect of amino
acid substitution. Structural analysis performed by PolyPhen
is based on the use of several structural parameters, as
suggested previously (7-9). Importantly, although all par-
ameters are reported in the output, only some of them are used
in the final decision rules.

PolyPhen uses the DSSP (27) database to obtain the
following structural parameters for the mapped amino acid
residues: secondary structure (according to the DSSP nomen-
clature); solvent accessible surface area (absolute value in A2);
¢O—y dihedral angles.

The following values are also calculated by PolyPhen:
normalised accessible surface area [the absolute value divided
by the maximal area defined as the 99% quantile of surface
area distribution for this particular amino acid type in PDB
(25)]; change in accessible surface propensity (knowledge-
based hydrophobic ‘potentials’) resulting from the substitu-
tion; change in residue side chain volume (in A%); region of the
0—y map (Ramachandran map) derived from the dihedral
angles (9); normalised B factor (temperature factor) for the
residue [following Chasman and Adams (9)]; loss of a
hydrogen bond [following Wang and Moult (8)] according
to the HBplus program (28).

By default, the parameters above are calculated for the first
hit only.

Contacts with ‘critical sites’, ligands and other polypeptide
chains. The presence of specific spatial contacts of a residue

may reveal its role in protein function. PolyPhen checks three
types of contacts for a variable amino acid residue. First,
contacts with ligands (defined as all heteroatoms excluding
water and ‘non-biological’ crystallographic ligands). Second,
interactions between subunits of the protein molecule.
Technically these are defined as contacts of a polymorphic
residue with residues from other polypeptide chains present in
the PDB (PQS) file. For this particular type of interaction, it is
more advantageous to use the PQS (Protein Quaternary
Structure) database (26) rather than PDB, since PQS entries
are supposed to provide a more adequate picture of protein
quaternary structure architecture.

The third type of contact analysed by PolyPhen is repre-
sented by contacts with ‘critical’ residues, where the latter are
derived from the sequence annotation. The suggested default
threshold for all contacts to be displayed in the output is 6 A.
However, a value of 3 A is used in the decision rule. For
evaluation of a contact between two residues or between a
residue and a ligand molecule, PolyPhen finds the minimal
distance amongst all possible between atoms of two residues.
By default, contacts are calculated for all hits with structure.
This is essential for cases where several structures correspond
to one protein but carry different information about complexes
with other macromolecules and ligands (see for example
figure 2 in ref. 7).

Prediction rules. PolyPhen uses empirically derived rules
(Table 1) to predict that an nsSNP is damaging, i.e. is
supposed to affect protein function, or benign, i.e. most likely
lacking any phenotypic effect. The rule is based on the
analysis of the ability of various structural parameters and
profile scores to discriminate between disease mutations and
substitutions between human proteins and closely related
mammalian orthologues (7). We introduced two categories of
prediction: nsSNPs possibly damaging protein function/
structure and nsSNPs probably damaging protein function/
structure. The scheme presented in Table 1 successfully
predicts ~82% (~57% for the more stringent set of rules) of
disease-causing mutations annotated in SwissProt database 14
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Table 1. Rules used by PolyPhen to predict effect of nsSNPs on protein function and structure

Rules (connected with logical AND)
PSIC score difference A Substitution site properties

Prediction
Substitution type properties

Annotated as a functional® or
bond formation® site
In a region annotated or predicted as

Arbitrary

Not considered

transmembrane
A=<0.5 Arbitrary B
A>10 Atoms are closer than 3.0 A to atoms
of a ligand or residue annotated as
BINDING, ACT_SITE, LIPID, METAL
05<A=<15 Normed accessibility ACC < 15%
Normed accessibility ACC < 5%
1.5<A <20 Arbitrary
A>20 Arbitrary

Arbitrary Probably damaging
PHAT matrix difference resulting
from substitution is negative
Arbitrary
Arbitrary

Possibly damaging

Benign
Probably damaging

Absolute change of accessible

surface propensity is =0.75 or

absolute change of side chain volume is =60
Absolute change of accessible

surface propensity is =1.0 or

absolute change of side chain volume is =80
Arbitrary
Arbitrary

Possibly damaging

Probably damaging

Possibly damaging
Probably damaging

One row corresponds to one rule, which may consist of several parts connected by logical AND. For a given substitution, all rules are tried one by one,
resulting in prediction of functional effect: benign, possibly damaging or probably damaging. If no evidence for a damaging effect is seen, substitution is

considered benign.

aBINDING, ACT_SITE, SITE, MOD_RES, LIPID, METAL, SE_CYS (SwissProt feature table terms).

"DISULFID, THIOLEST, THIOETH (SwissProt feature table terms).

and produces ~8% (~3% for the more stringent set of rules)
false positives given the control set of between-species
substitutions. We note that many parameters, though com-
puted by the server, were excluded from the decision rule. Due
to correlation with other parameters they did not help to
increase sensitivity without significant loss of specificity of
predictions. Multiple alignment-based profile scores provided
the major contribution to the prediction. Therefore, even in the
case of proteins with no homologue with known 3D structure,
predictions remain reasonably reliable.

RESULTS
Retrieval of nsSNPs

HGVbase v.12 (13), a comprehensive public database with
extensive curation, was chosen as a source of SNP data. The
database had 983 589 SNP entries, which represented SNPs
from various sources. Importantly, SNPs in the database are
classified according to reliability. Namely, SNPs confirmed by
independent and solid experimental verification are marked as
‘Proven’, whereas other SNP candidates are marked as
‘Suspected’. Version 12 of the database contained 984 093
entries, 983 589 of these being SNPs, while the rest represent
other types of genetic variants. Only 14 986 SNPs, however,
appeared in the ‘Proven’ category. We mapped all available
SNPs onto known proteins and found 9310 of them to be
synonymous and 11 152 non-synonymous, causing amino acid
changes in protein sequences. 1276 of these identified nsSNPs
were ‘Proven’.

Only 1026 nsSNPs were mapped to proteins with at least
50% sequence identity to a protein with known 3D structure.
The analysis for the rest of the nsSNPs was performed on the
basis of multiple alignment information only.

The database of these nsSNPs and their analysis using
PolyPhen is available at http://www.bork.embl-heidelberg.de/
PolyPhen/data. PolyPhen analysis was only possible for 9165

(82%) of these nsSNPs, as the remainder have been mapped to
proteins with no applicable site annotation and no reasonably
close homologous sequences available in the SWALL data-
base for multiple alignment or structural analysis.

The results of the PolyPhen analysis are presented in
Figure 2.

Structural characterisation of nsSNPs

As has been noted by Wang and Moult (9), most disease
mutations and supposedly deleterious nsSNPs affect protein
stability rather than functionality. Various structural para-
meters have been proposed (6-9,11) to detect the effects of
amino acid substitutions. We selected a group of structural
parameters and evaluated their impact through a comparison
of disease mutations, nsSNPs and substitutions between
human proteins and closely related mammalian orthologues
[datasets from Sunyaev et al. (7)]. We also selected three
characteristics responsible for functionality: annotation of the
site as BINDING, ACT_SITE, LIPID or METAL (SwissProt
feature table terms); proximity to an annotated site; proximity
to a co-crystallised ligand. The data presented in Table 2
confirm that functionality parameters have a smaller impact on
the molecular origin of disease mutations and deleterious
nsSNPs than protein stability characteristics. Among the
structural characteristics presented in Table 2, hydrophobic
core stability parameters are the best predictors.
Interestingly, for all parameters analysed we observed the
same pattern in Table 2. The fraction of SNPs that affect a
structural parameter is always much lower than that of
disease-causing mutations. At the same time, it is always
higher than the corresponding number of substitutions
between species. This observation suggests that all effects
associated with these structural parameters are responsible for
the accumulation of deleterious alleles in the human genome.
Disease-causing mutations are subject to very strong selective
pressure and are eliminated from the population very quickly.
In contrast, slightly deleterious SNPs detected in panels of
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Figure 2. Results of the PolyPhen analysis of the HGVbase database v.12.
hs_swall denotes the Homo sapiens subset of the SWALL database.
snp2prot is an in-house command line tool to map HGVbase SNPs onto se-
quences of known human proteins. 11 152 nsSNPs were identified. 1591 of
them have been predicted as possibly damaging for protein structure and
function and an additional 1257 as probably damaging. The number of
structure-based predictions is much lower compared with the number of
sequence-based predictions because structural information was available in
only 1026 cases.

healthy individuals are supposedly under lower selective
pressure and therefore have a much longer persistence time in
the population. As suggested by Table 2, we did not observe
any structural feature responsible solely for strong or solely for
weak selection, as all parameters display the same pattern.

Although many structural parameters can serve as reason-
ably reliable predictors of the effect of a substitution, a strong
correlation within structural parameters and especially
between structural parameters and long-term selective pres-
sure signals seen from multiple sequence alignment made
exclusion of many parameters from the combined prediction
rule necessary. For the set of nsSNPs predicted to be
damaging, based on the combined set of rules that incorporate
both multiple alignment and structural information (available
for these cases), structural parameters worked as predictors in
40% of cases. However, the prediction cannot be made solely
at the sequence level in 22% of cases (28% if the ‘probably
damaging’ category only is considered).

Protein structural and functional characteristics and
selective constraints

As has been shown by systematic studies on cSNP (coding
SNPs) discovery (29-31), the distribution of nsSNP density
over human genes is highly non-uniform. Apart from differ-
ences in the coalescent history of loci, this notable difference
in the rate of nsSNPs is likely to be caused by variations in
selective pressure against deleterious variants. We expected
that the difference in selective pressure might be caused by
structural properties because the number of sites important for
stability or functionality might depend on the protein structure
type. Also, extracellular proteins can be expected to have
higher stability compared with intracellular ones and this may
affect selective constraints. On the other hand, selective
pressure may depend on the impact of the gene on the overall
fitness of the organism (32). In order to test whether the above
properties of proteins have an effect on the density of nsSNPs
(considered for genes with the same number of synonymous
SNPs to correct for various sources of bias), we subdivided
genes from our database into groups according to the SCOP
(33) and GO (34) classifications. Contrary to our expectations,
we did not detect a significant correlation of selective pressure
against deleterious nsSNPs with secondary structure class,
localisation or biological process. This might be because we
grouped genes into very large classes and the effect might be

Table 2. Structural characteristics of disease mutations, nsSNPs and amino acid substitutions between species

Disease mutations (%)

nsSNPs (%) Substitutions between species (%)

At a functional site

Closer than 4 A to a critical site

Closer than 3 A to a critical site

Closer than 4 A to a ligand

Closer than 3 A to a ligand

Normalised accessibility (ACC) < 5%

ACC =< 5% and change in hydrophobic propensity >0.75

ACC = 5% and change in volume >60 Af (overpacking)

ACC = 5% and change in volume >-60 A3 (cavity creation)
ACC = 5% and change in electrostatic charge

ACC < 25%

ACC < 25% and absolute change in hydrophobic propensity >0.75
ACC < 25% and change in volume >60 A (overpacking)

ACC < 25% and change in volume >-60 A3 (cavity)

ACC < 25% and change in electrostatic charge

Normalised crystallographic B-factor <-0.5

Loss of a hydrogen bond

Loss of a disulphide bridge

Proline in o-helix

Substitution of Gly with torsion angles forbidden for other amino acids

0 0

2 1

1 0

8 4

3 0.6
23 17

6 2

2 0

2 0.6

4 1
45 34
14 5

4 1

4 1

9 4
29 24

8 5

0.6 0

1.2 0.4

0.9 0.4




detected if a finer classification were considered.
Alternatively, we have to conclude that there is no strong
impact of these characteristics on the selective constraints.

In contrast, molecular function of the protein showed a
statistically significant association with the strength of select-
ive pressure (the P value of the x? test was 0.009). The
functional class showing the highest selective pressure against
deleterious nsSNPs is the class of transcription factors. This
class displays the greatest departure from the average level of
selective constraints. Enzymes are the class of proteins with
the lowest selective pressure. The fraction of nsSNPs
predicted as damaging by PolyPhen is also highest for
enzymes and lowest for transcription factors. This is expected
and shows that low selective constraints allow for accumu-
lation of slightly deleterious SNPs. We hypothesise that this
observation can be explained in terms of the molecular basis of
dominance (35). Mutations in enzymes are likely to be
recessive because the flux in a metabolic pathway undergoes
very minor change in response to a decrease in enzyme
activity (35). In contrast, changes in the activity of transcrip-
tion factors can have a high impact on the transcription level of
the regulated genes. Transcription factors listed in the OMIM
database (http://www.ncbi.nlm.nih.gov/Omim/) are reported
to be dominant genes much more frequently than enzymes.

However, we should note that the current SNP databases are
probably biased towards ‘popular’ genes, which could have
affected our results. More accurate selective pressure studies
will be possible in the future with larger datasets arising from
large-scale systematic studies.

DISCUSSION
Server

Ideally, the end point of disease gene identification should be
functional analysis of the disease-associated allele and an
understanding of the molecular mechanism of causation of the
disease phenotype. This functional characterisation can be
facilitated by the computational analysis provided by our tool.

Unlike fully penetrant mutations causing Mendelian dis-
eases, SNPs involved in complex human phenotypes are not a
necessary and sufficient condition defining the phenotype but
their effect depends on many other genetic and environmental
components. In other words, SNPs may comprise risk factors
of having a specific phenotype in the statistical sense.
Therefore, the effect of a particular SNP on phenotype
might be seen only as a frequency difference between
individuals that display the phenotype and unaffected controls.

Given the very high rate of false associations recently
reported, any independent evidence of the impact of the
suspected allelic variant should be valued. Sequence and
structure analysis of the suspected amino acid variant can
increase the confidence of the finding by revealing the
structural background of the disease. The PolyPhen server
can be used to evaluate whether the reported/identified
association can indeed have a functional meaning and
therefore is less likely to represent a false positive due to
statistical reasons or reasons of inappropriate study design and
population choice.

Consequently, even if an association of a genomic locus
with a particular phenotype is unambiguously demonstrated, it
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is not always clear that the identified DNA variant has a
causative relationship with the disease and that statistical
association is not a result of linkage disequilibrium with the
true functional variant (14). In this case the PolyPhen server
can be used to distinguish casual from non-casual relation-
ships between a nsSNP and the phenotype of interest.

The database of nsSNPs annotated by PolyPhen provides a
source of functionally annotated nsSNPs. The collection might
be a useful resource for selection of nsSNPs for candidate
gene-based association studies. The question of how to choose
the set of SNPs to be screened is critical to the success of a
study. The major hurdle in any model of association studies is
posed by the large number of these SNPs (4,36). One side of
the problem is the limitations of currently available genotyp-
ing technologies, which make studies on large SNP sets in
large panels of individuals impractical. The other side,
however, is of a purely statistical nature and is therefore
independent of the technological progress. Multiple test
correction in the case of many thousands of SNPs to be
analysed makes the detection of otherwise significant allele
frequency differences problematical. Possible allelic and non-
allelic heterogeneity, epistatic interactions between alleles,
low penetrance of the phenotype and complexity of environ-
mental factors involved make the SNP-based detection of
disease genes even more difficult (2). Without any careful pre-
selection of SNPs to be screened, unrealistically large panels
of individuals might be required to detect association at a
reasonable level of statistical significance. Therefore, compu-
tational prediction of functional importance can be considered
as one of the reasons to prioritise SNPs while looking for an
association.

Survey

PolyPhen analysis of the nsSNP database confirmed earlier
observations (6-9,12,37) that a significant number of human
nsSNPs is represented by slightly deleterious alleles. The
fraction of nsSNPs predicted to be damaging in the much
larger dataset of 9165 nsSNPs is similar to the earlier result.
Most predictions were computed based solely on the multiple
alignment information, since structural data are available for
only a very small fraction of cases.

It is important to note that the number of functional nsSNPs
predicted for the whole database is likely to be an overestimate
due to pollution of the database by erroneous SNP reports, on
the one hand, and possible bias of the database towards
disease-related allelic variants on the other. To test the impact
of these biases on the overall conclusion of the presence of
multiple slightly deleterious SNPs in individual human
genomes, we compared fractions of nsSNPs predicted to be
damaging (both possibly and probably) for HGVbase entries
annotated as ‘Proven’ and ‘Suspected’. Additionally, we
compared the prediction rate for ‘Proven’ nsSNPs originating
from systematic studies (29-31) with the overall prediction
rate. The overall prediction rate for the category ‘Suspected’
nsSNPs was 31.4%, for the category ‘Proven’ nsSNPs it was
28.9% and for ‘Proven’ nsSNPs from systematic studies on
healthy individuals (29-31) it was 27.6%. This shows that
inaccuracy and bias of the database data lead to overprediction
of the fraction of deleterious nsSNPs. However, the effect of
the prediction rate for nsSNPs compared with the species
divergence data on a much higher fraction is seen even from
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the cleanest possible dataset. Similarly, trends observed in
Table 2 are the same for any subset of nsSNP data.

Our analysis showed that various effects on protein stability
are responsible for accumulation of slightly deleterious
nsSNPs in human genes. The selection against these variants
is likely to depend on the molecular function of proteins rather
than on the type of structure or cellular localisation. This can
possibly be explained by the relationship between molecular
function and mutation dominance. Transcription factors
appear to be the group with the highest selective constraints.

With the growth of public SNP data and the improvement in
the quality of SNP databases, functional analysis of SNPs can
possibly play a role in our understanding of the inheritance of
complex human phenotypes.
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