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In the genomics era, the interactions between proteins are at the

center of attention. Genomic-context methods used to predict

these interactions have been put on a quantitative basis,

revealing that they are at least on an equal footing with genomics

experimental data. A survey of experimentally confirmed

predictions proves the applicability of these methods, and new

concepts to predict protein interactions in eukaryotes have been

described. Finally, the interaction networks that can be obtained

by combining the predicted pair-wise interactions have enough

internal structure to detect higher levels of organization, such as

‘functional modules’.
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Introduction
Genome sequencing provides us with an abundance of

genes whose functions are not determined experimen-

tally and have to be predicted by bioinformatics. The

classic tool to do so, homology detection, is mainly suited

to predict the molecular function of a protein. Because we

have complete genome sequences we would also like to

know proteins’ functions at a higher level [1], for example

the pathway or complex a protein belongs to.

Parallel with experimental developments to determine

protein–protein interactions (e.g. [2,3]), bioinformatics

supplies us with a growing number of so-called geno-

mic-context methods that exploit the genome sequences

themselves to predict such interactions. These methods

use the fact that the genes of functionally interacting

proteins tend to be associated with each other on gen-

omes. Originally gene fusion [4,5], the conservation of

gene order [6,7] and co-occurrence of genes among

sequenced genomes [8,9] were proposed (Figure 1),

and subsequently also methods that use sequence infor-

mation of the proteins themselves [10], or that include

information from shared regulatory elements [11,12�]
have been used. The principles of the above-mentioned

methods have been the subject of many reviews already

[13–16]. We will therefore focus on their practical applic-

ability. First, we will review how well they perform and

survey the predictions that have actually been experi-

mentally verified. Subsequently, we will review how

these extensive lists of protein–protein interactions give

rise to biological networks and what they mean for biol-

ogy. Finally, we discuss new principles for interaction

prediction from genomic contexts that are specifically

applicable to eukaryotes.

Performance and applications of context
methods
Accuracy

Recent, large-scale analyses confirm earlier results [17]

that the reliability of genomic-context methods to predict

functional interactions is high, specifically for gene fusion

(72%) [18,19] and gene-order conservation (80%) (Fig-

ure 2) [19,20]. One should keep in mind, however, that

the benchmarks that are used are often quite general, for

example having a similar set of SWISS-PROT keywords

[21], or falling on the same metabolic map in KEGG

(Kyoto Encyclopedia of Genes and Genomes; http://

genome.ad.jp/kegg) [22]. The availability of yeast two-

hybrid or identification of protein complexes by mass

spectrometry data should allow more-systematic bench-

marking of the genomic-context methods for the predic-

tion of physical interaction, were it not that these data

themselves are not always of high quality.

By comparing experimental genomics techniques,

mRNA-correlated expression, and genomic-context pre-

dictions to a classic set of ‘trusted’ physical interactions

that were obtained from YPD (Yeast Protein Database)

or MIPS (Munich Information Center for Protein

Sequences; http://mips.gsf.de/), it was shown that geno-

mic-context predictions actually had both a higher cover-

age (7.7%) and a higher accuracy (5.3%) not only than

mRNA co-expression, but also than direct experimental

techniques like yeast two-hybrid or high-throughput

mass spectrometric protein-complex identification (HMS-

PCI). As the combination of genomic-context data with

experimental data increases the fraction of true positives,

genomic context can also be used as a filter, to improve

the quality of the experimental data [23�,24], albeit at a

loss of coverage.
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Comparisons with homology detection and genomic

coverage

Classic, homology-based function prediction and geno-

mic-context-based function prediction are complemen-

tary, both in the type of functional information they

predict (molecular function, versus functional interaction)

as well as in the type of information they use (the protein

itself, versus its context in the genome).

We analyzed how their predictive potential has improved

with the increase of reported genomes and of experimen-

tally determined functions. For one reference genome,

Escherichia coli, we determined two aspects: firstly, for how

many of its proteins we can detect homologs with a known

molecular function in various releases of the SWISS-

PROT protein database [21]; and secondly, for how many

of its proteins we can find significant context information

(Figure 2). The plots show a clearly increasing but satur-

ating trend for homology detection, whereas the increase

in context detection is almost linear, albeit with a slight

saturation in the last year. On the basis of the extrapola-

tion of these curves, genomic context is expected to pass

homology detection in terms of coverage in 2003.

Presently we can predict with 80% confidence functional

links for the majority of the proteome of prokaryotes

Figure 1
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COG2948

Functional modules in a genomic-context network. Shown are orthologous groups linked via genomic context either directly or indirectly (via one other

orthologous group) to COG1681 (Archaeal flagellin). The three types of context evidence — gene order (green), gene fusion (red) and

co-occurrence (blue) — are illustrated in the inset and are indicated by separate lines in the network. The three subclusters (type IV secretory pathway,

Archaeal flagella and chemotaxis methylation) are only linked to each other through either one orthologous group (COG0630) or one link (between

COG2469 and COG1681), yet within each subcluster the orthologous groups are densely linked. The subclusters correspond to separate functional

systems. Automatic function prediction for orthologous groups falling within a cluster can be done by transferring the highest common denominator

within one cluster to that group; for example, the hypothetical orthologous group COG3373 is predicted to be part of the flagellum, whereas COG2469

is predicted to function in methylation in the regulation of chemotaxis.
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(64% in Mycoplasma genitalium and 60% in E. coli) and for

a substantial fraction of the proteome of the eukaryote

Saccharomyces cerevisiae (26%). It should be noted that

some hypothetical proteins with a significant genomic

context are only linked to other hypothetical proteins.

Links between hypothetical proteins cannot be used for

function prediction, but they are relevant because they

provide information about the topology of the network of

interactions in a cell (see below). Using genomic context

we can thus already obtain a view on the network of

interactions within a cell, even if we do not know or

cannot predict the functions of its individual elements.

Experimentally verified context predictions

Real applicability of genomic-context methods can, in the

long run, only be established by experiments based on

their predictions. We identified 13 cases where functional

interactions and function were predicted to a varying

level of specificity and either published before the experi-

mental verification or published with it (Table 1). In these

Figure 2
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Coverage of homology-based methods and of context-based methods for function prediction. Coverage of homology methods was determined by

comparing the proteins encoded in the reference genome, E. coli, with archived releases of SWISS-PROT dating back to 1988 from which the proteins

without functional information were removed (Smith-Waterman searches, e-value < 0:01). The coverage of genomic context methods is given at an

estimated average accuracy of 80%; the three types of evidence are indicated separately.

Table 1

Experimental verification of context predictions.

Protein/gene Context Type of interaction Function References

Mt-Ku Gene order Physical interaction Double-stranded-DNA repair [46]
GnlK Gene order Physical interaction Signal transduction for ammonium transport [57,58]

PH0272 Gene order Metabolic pathway Methylmalonyl-CoA racemase [45]

PrpD Gene order Metabolic pathway 2-Methylcitrate dehydratase [17,59]

arok Gene order Metabolic pathway Shikimate kinase [60]

ComB Gene order Metabolic pathway 2-Phosphosulfolactate phosphatase [61]

Yfh1 Co-occurrence Process Iron–sulfur protein maturation [27,28]

YchB Co-occurrence Metabolic pathway Terpenoid synthesis [62]

SmpB Co-occurrence Process Trans-translation [8,63]

ThyX Complement Enzymatic activity Thymidilate synthase� [14,64]

Prx Fusion Pathway Peroxiredoxin [65]

YgbB Fusion/gene order Metabolic pathway Terpenoid synthesis [66]

SelR Fusion/gene order/co-occurrence Enzymatic activity Methionine sulfoxide reductase [14,67,68]

In all cases genomic context was used to predict a functional interaction between proteins, and this interaction was subsequently experimentally

verified. In the cases where more than one reference is given, the functional link was published separately and before the experimental verification.
� In a variation of using the phylogenetic distribution of genes to predict functional interaction, a complementary distribution of two orthologous

groups was used to predict that they have the same enzymatic function.
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cases gene fusion, gene-order conservation, and gene co-

occurrence have been used successfully to predict new

functional interactions, with gene-order conservation con-

tributing the largest share.

Note that using genomic-context methods to design an

experiment is not that trivial because the leads are not

very specific. The methods do not predict what the type

of interaction between the proteins is: it could for exam-

ple be regulatory, physical or being part of the same

pathway or process (Table 1) [17]; nor do they tell you,

for example in the case of a metabolic pathway, where in

that pathway to place the hypothetical protein.

One way to increase the prediction specificity is to

include the degree to which the genomic context is

conserved. The stronger the evolutionary conservation

of a genomic-context pattern (e.g. the more often that the

genes are neighbors), the more likely not only that the

proteins functionally interact, but also that they interact

in the most direct way; that is, by being involved in the

same reaction and forming a protein complex [25]. Gen-

erally, however, it is left to the researcher to combine the

genomic-context information with data on homology

relations and with data on, for example, the phenotypic

effects of deletion of the protein or on missing steps in a

pathway, to make a specific, testable prediction about the

protein’s function.

A case story of a successful context-based prediction:

frataxin

An example of such a successful prediction about a

protein’s involvement in a biological process is that of

the well-known disease gene frataxin. The protein’s

function has remained elusive despite the fact that its

gene was identified in 1996 as being responsible for the

neurodegenerative disorder Friedreich’s ataxia [26]. The

main hypothesis, based on the observation of the accu-

mulation of iron in mitochondria in the protein’s absence,

was that it is directly involved in maintaining iron home-

ostasis. Genomic-context analysis indicated that frataxin

has the same evolutionary history, involving at least three

cases of parallel gene loss, as two chaperones involved in

the assembly of iron–sulfur clusters in proteobacteria and

mitochondria — HscA/Ssq1 and HscB/Jac1 (Figure 3)

[27]. This has lead to the hypothesis that frataxin is

involved in iron–sulfur cluster assembly on proteins as

well [27], for which there is now a rapidly increasing body

Figure 3
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Both genes are only present in the eukaryotes and in the a-, b- and g-proteobacteria. They probably originated at the onset of the a-, b- and

g-proteobacteria, as the genes are absent from other prokaryotes, here represented by Campylobacter jejuni. Subsequently, they have both been
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from the prokaryote Xylella fastidiosa, from a set of a-proteobacteria represented by Caulobacter crescentus, and from the eukaryote Plasmodium

falciparum.
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of experimental evidence [28–30]. The more specific

hypothesis, that it is involved in the same subprocess

as HscB/Jac1, awaits confirmation.

Interaction networks
From pair-wise interactions to networks

The many pair-wise interactions that are proposed on the

basis of genomic-context analyses, or that are present in

metabolic maps or experimental approaches to large-scale

identification of protein–protein interactions, present us

with networks of interactions in which the large majority

of proteins are linked to each other, either directly or

indirectly.

To study the intrinsic properties of these networks and to

be able to compare them, some general statistics are

measured, for example the average minimal path length

(the number of intermediate links) between any two

nodes, the clustering co-efficient (see below) and the

distribution of the number of connections per node. Com-

paring the number of connections per node with data on

the lethality of mutations indicates that the larger the

number of physical interactions a protein has, the higher

the probability that it is essential for survival [31�]. Com-

paring the number of connections per protein with its

evolutionary rate has also revealed that the more physical

interactions a protein has, the lower its rate of evolution,

not because it is relatively essential for the species, but

rather because a larger part of the protein is involved in

interactions with other proteins [32��]. Furthermore, and

consistent with this, proteins that physically interact with

each other tend to evolve at similar rates [32��].

Determination of metabolic-network statistics on the

basis of genome annotations also allows cross-species

comparisons of network topologies [33]. The topology

of networks puts constraints on the process by which they

could have evolved [33]. It has, however, not been shown

conclusively that the topology of the network is subject to

selection and therewith of value to the understanding of a

cell [34�]. Furthermore, apparently interesting patterns in

the networks [35], for example the tendency of highly

connected nodes not to be linked to each other, can reflect

systematic biases in the experimental technique used to

detected the links [36�], rather than patterns in the

underlying biology.

Functional modules

An interesting aspect of the network topologies that does

have biological relevance and that can be used for func-

tion prediction is the detection of higher levels of func-

tional organization, or ‘functional modules’ [37,38��,39�]
— sets of proteins that together function in a single

process (Figure 1). The presence of such modules can

be deduced when networks have a high clustering co-

efficient. This clustering coefficient is the fraction of

cases where, if a protein (A) is linked to two other proteins

(B and C), the latter two proteins also have a direct link to

each other.

In a genomic-context network, the clustering coefficient

was observed to be much higher (0.6) than that of a

random network with the same number of nodes and

connections (0.005) [38��]. Identifying the modules in a

network with a high clustering coefficient basically

involves ‘cutting-up’ the network in the less densely

clustered areas. The modules in a genomic-context net-

work tend to be functionally homogeneous; that is, they

contain proteins that are part of a single pathway [38��].
Delineating the cluster-structure thus also facilitates pro-

tein-function prediction, as the highest common denomi-

nator of the proteins with known function can

automatically be transferred to a hypothetical protein

in that cluster (Figure 1). Similarly, the network of

metabolites as extracted from the metabolic pathway

database WIT (What Is There; http://wit.mcs.anl.gov/

WIT2/) [40] can be shown to have a modular organization

[41]. Furthermore, functional modules have also been

extracted from gene-expression data, although without

explicitly deriving the network topology [42,43��].

The search for functional modules immediately raises

issues, not only with the objectivity of pathway databases

like KEGG and WIT, but also with our definitions of

biological processes and to what extent boundaries can

be drawn between them. On the one hand it holds the

promise to generate functional module definitions that

are independent of specific experimental conditions,

including the species being studied, but purely based on

comparative genome analysis. On the other hand it is

questionable to what extent a species-independent path-

way definition makes sense at all. It denies the variation and

evolution of pathways, one of the most interesting results to

come out of comparative genome analysis. A middle

ground here would be to compare sets of genomes from

a single taxon, to identify taxon-specific pathways [44].

Genomic context in eukaryotes
Gene-order conservation is the most powerful genomic

context technique in prokaryotes [17] (Table 1, Figure 2).

It can also be used for the functional characterization of

those genes in eukaryotes that have orthologs in bacteria,

as was shown for the human methylmalonyl-CoA race-

mase [45]. In S. cerevisiae, 1302 proteins (21% of its

proteome) have orthologs with conserved gene-order in

prokaryotes and for an increasing number of proteins that

were originally regarded as purely eukaryotic, homologs

with similar functions in prokaryotes are being detected

(e.g. [46]). Thus there is still a large potential in using

prokaryotic gene-order conservation for protein-function

prediction in eukaryotes.

Nevertheless, there are some observations that point

to the potential of using gene-order in eukaryotes
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themselves. One observation is the presence of polycis-

tronic RNA transcripts in nematodes which were recently

estimated to contain 15% of the genes [47�]. The evi-

dence for functional interactions between the proteins

encoded by such polycistronic transcripts is, however,

anecdotal. A second observation is the chromosomal clus-

tering of co-expressed genes in Caenorhabditis elegans at a

higher level than that of the polycistronic RNAs [48]. Also

in Homo sapiens highly expressed genes are clustered in the

genome [49]. This pattern, however, appears to be caused

by the clustering of housekeeping genes [50��], and there-

with to give only a very weak signal for function prediction.

Weak signals from genomics data can generally be

enhanced by exploiting evolutionary conservation. A

recent example concerns gene co-expression: whereas

for the co-expressed genes within yeast and worm the

fraction of physically interacting proteins was 22% and

32%, respectively, for conservedly co-expressed genes

the fraction rose to 89% [51�]. With expression data on

more species becoming available, conservation of co-

expression is a promising technique for function-predic-

tion in eukaryotes.

Finally, combining gene-order conservation with gene co-

expression points to the potential of divergently tran-

scribed, co-regulated genes. In S. cerevisiae, co-regulated,

divergently transcribed genes have a relatively high

chance of having conserved gene order in Candida albicans
compared with those that are not co-regulated [25,52�].
These conserved gene pairs include not only well-known

cases of functionally interacting genes such as the histone

gene pairs H2A–H2B and H3–H4, but also experimen-

tally uncharacterized ones like a hexose permease

(YJL219W) and an a glucosidase (YJL221C).

Conclusions and future challenges
Parallel to large-scale experimental efforts, genomic-con-

text methods are giving us a new view on function, one

that focuses on the functional interactions between pro-

teins and on the functional modules that they form.

Paradoxically, the challenges in increasing the coverage

and accuracy of these genomic-context prediction tools

are partly on the experimental side. We not only need

more experimental verification of the specific predictions

that have been made in various context papers [17,53], or

that can be retrieved from the web-servers (Box 1). We

also need more high-quality interaction data from geno-

mics to provide protein–protein interaction benchmarks

as well as more eukaryotic genome sequences and other

types of genomics data to fully apply the tools of com-

parative genomics. Further integration of genomic con-

text in experimental genomics is also invaluable to

increase the accuracy of the results [23�].

On the bioinformatics side we face major technical hur-

dles in developing a higher-resolution orthology predic-

tion than is currently available in the state-of-the-art

COG (Clusters of Orthologous Groups; http://www.

ncbi.nlm.nih.gov/COG/) database [54], specifically with

the rampant gene duplication in eukaryotes. On the

network side, taking a step further than functional mod-

ules, recent studies have started to delineate ‘network

motifs’ in experimentally determined regulatory net-

works [55,56]. If we can observe specific motifs in geno-

mic-context networks and are able to link them to specific

types of functions, functional modules are poised to be of

the same importance for our understanding of cellular

systems as protein domains have proven to be for our

understanding of proteins.
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