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The analysis of completely sequenced genomes uncovers an as-
tonishing variability between species in terms of gene content and
order. During genome history, the genes are frequently rear-
ranged, duplicated, lost, or transferred horizontally between ge-
nomes. These events appear to be stochastic, yet they are under
selective constraints resulting from the functional interactions
between genes. These genomic constraints form the basis for a
variety of techniques that employ systematic genome comparisons
to predict functional associations among genes. The most powerful
techniques to date are based on conserved gene neighborhood,
gene fusion events, and common phylogenetic distributions of
gene families. Here we show that these techniques, if integrated
quantitatively and applied to a sufficiently large number of ge-
nomes, have reached a resolution which allows the characteriza-
tion of function at a higher level than that of the individual gene:
global modularity becomes detectable in a functional protein
network. In Escherichia coli, the predicted modules can be bench-
marked by comparison to known metabolic pathways. We found
as many as 74% of the known metabolic enzymes clustering
together in modules, with an average pathway specificity of at
least 84%. The modules extend beyond metabolism, and have led
to hundreds of reliable functional predictions both at the protein
and pathway level. The results indicate that modularity in protein
networks is intrinsically encoded in present-day genomes.

The combined history of genomes provides a glimpse at past
evolutionary events, revealing selective forces that acted at all

levels of cellular and organismal function. Although the individual
gene and its immediate regulatory elements form the primary unit
of selection, evolution does not stop there (1). Instead, selection can
also act on entire groups of genes, leading to joint transfers of genes
between genomes (2, 3), concerted gene loss (4), gene fusion events
(5), coregulation of genes through common regulatory elements
(6), and the creation and maintenance of operons containing
nonhomologous but cotranscribed genes (7, 8).

All of the above genomic events define evolutionarily selected
(and thereby, functional) connections between genes, an invalu-
able resource in annotating gene function (9–11) and in under-
standing how gene products interact globally to support cellular
systems. Through systematic comparison of extant genomes,
many of the relevant genomic events can be inferred. This, in
turn, allows the objective and unbiased prediction of thousands
of functional associations among genes (or proteins) from ge-
nome sequences alone, albeit in some instances with consider-
able error rates (refs. 12–17, for reviews, see refs. 11 and 18–22).

Here, we apply a rigorously benchmarked and quantitatively
integrated combination of the three main prediction techniques
(12, 15, 16) to 89 completely sequenced genomes, and construct
a global network of functionally interacting proteins. We use this
network to quantitatively study functional modularity in protein
networks. We find that functional modules are detectable by
using unsupervised clustering, and without any use of prior
knowledge about protein function; however, the predicted mod-
ules agree remarkably well with previously annotated metabolic
pathways. Functional modularity is an important feature of the

topology of many real-world complex systems (23), and has
recently been suggested to exist in biological systems as well (24,
25). Here we show that functional modules correspond to well
characterized cellular systems, based on analysis of an objective,
unbiased, and highly specific interaction network. Importantly,
we find that the signal is quite robust, being detectable by using
a variety of prediction methods and parameters. Additionally, we
show that the predicted modules help in annotating previously
uncharacterized proteins and cellular systems.

Data Sources and Procedures
Input Data. Functional associations between orthologous groups of
proteins were predicted using STRING (ref. 26, version 3.0). We
considered only groups containing at least one protein from the
target organism (Escherichia coli K12), and we excluded groups
containing on average more than four distinct genes per species
(these fail to resolve orthology with sufficient detail). We addition-
ally processed a limited number of large groups manually, enhanc-
ing the orthology resolution by splitting the groups into two or more
smaller groups. The splitting was done before the analysis presented
in this study, and was guided solely by inherent sequence informa-
tion. In total, we split 28 groups; these were selected based on the
appearance of phylogenetic trees, the availability of operon infor-
mation, and their relevance to metabolism.

Clustering. The predicted functional associations define a net-
work with undirected, weighted edges connecting proteins. To
identify functional modules in this network, we used three
algorithmically distinct unsupervised clustering techniques: un-
weighted pair group method with arithmetic mean (UPGMA)
clustering, single-linkage clustering (both as implemented in
the OC package, www.compbio.dundee.ac.uk�manuals�oc�oc�
manual.txt) as well as Markov clustering (27). We explored
parameter space by testing several different cutoff values (for
single-linkage and mean clustering) or inflation values (for
Markov clustering).

Metabolic Pathways. For reference, we used pathways defined for
small-molecule metabolism of E. coli, as annotated in the
database EcoCyc (version 6.5) (28, 29). The pathways group 583
proteins (enzymes or enzyme subunits) into 144 partially over-
lapping metabolic units.

Benchmarking. Before benchmarking, we removed from the pre-
dicted modules all proteins not present in the EcoCyc pathways.
Modules remaining with zero or only one annotated enzyme
(singletons) were not considered further.

For each of the remaining modules, the best-matching meta-
bolic pathway was selected for comparison and the following
measures were computed: specificity, defined as Tp�(Tp�Fp);

‡C.v.M., E.M.Z., and S.T. contributed equally to this work.

¶To whom correspondence may be addressed. E-mail: bork@embl.de or ouzounis@
ebi.ac.uk.

© 2003 by The National Academy of Sciences of the USA

15428–15433 � PNAS � December 23, 2003 � vol. 100 � no. 26 www.pnas.org�cgi�doi�10.1073�pnas.2136809100



sensitivity, defined as Tp�(Tp�Fn); and overlap function, de-
fined as Tp�(Tp�Fp�Fn), where Tp denotes true positives, Fp
denotes false positives, and Fn denotes false negatives. Another
measure was ‘‘total coverage,’’ defined as the fraction of enzymes
found clustered in predicted modules together with at least one
other enzyme. For all measures, counting was done on the level of
proteins; i.e., orthologous groups containing several E. coli proteins
generated multiple counts. Enzyme subunits were counted as
separate entities. The choice as to which pathway a predicted
module should be compared to (‘‘best matching pathway’’), was by
selecting the pathway with maximal overlap function.

Random Background. We compared predicted modules with ran-
dom expectations at two different levels of randomization. One
very conservative random model was to (i) keep the module size
distribution as predicted, (ii) keep the number of enzymes within
each module fixed, and (iii) only swap enzyme identities across
those fixed modules. On average, this led to a 2.2-fold reduction
in observed specificity and to a 2.4-fold reduction in observed
overlap.

A more realistic comparison to random expectation was to ask
how many modules can be expected, by chance, to consist
entirely of enzymes only. Given the known numbers of enzymes
and nonenzymes in E. coli, this expectation was computed by
using the hypergeometric distribution (sampling without re-
placement). When comparing the actual predictions against the
expectation, we observed a strong deviation from randomness
(especially for the larger modules); the predicted modules
differed by more than one order of magnitude from the random
expectation for all module sizes larger than two (Table 2, which
is published as supporting information on the PNAS web site).

Functional Categories. To functionally classify proteins, we used
gene ontology (GO) categories (30), as assigned to proteins in E.
coli (31). We considered only the subcategory ‘‘biological pro-
cesses,’’ and further reduced the number of terms by grouping
related terms as follows: first, we checked the distribution of all
E. coli proteins over the whole GO hierarchy, by traversing from
assigned leaf terms through all possible paths up to the root term.
Throughout this procedure, we marked all nodes visited at least
100 times as terms of sufficiently high generality. For any protein

of interest, we then traversed from its assigned terms up the
hierarchy, and stopped at the first encountered ‘‘marked’’ node,
thereby objectively grouping functional assignments at a medium
level of detail. For Fig. 4, GO annotations proved impractical,
and we instead chose the high-level categories defined for
orthologous groups in the COG database (32).

Results
Delineation of Functional Modules. We integrated all three major
comparative genomics (genomic context) techniques currently
capable of inferring functional associations between proteins,
based on common phylogenetic distribution (16), conserved
gene neighborhood (14, 15), and gene fusions (12, 13). The
methods were quantitatively combined by using a benchmarked,
unified scoring scheme (26). Functional associations detected
this way may correspond to physically interacting proteins such
as those involved in protein complexes, biochemically related
proteins such as those involved in the same metabolic pathways,
or genetically interacting proteins such as transcriptional regu-
lators and their target genes (for review, see refs. 11 and 18–22).
All these binary associations can be seen as edges (with weights
provided by the score) that connect groups of orthologous
proteins (32) (nodes) in a network of functional associations.

We derived a complete network of associated genes for 89
species, connecting 19,473 orthologous groups (26, 32) corre-
sponding to 260,023 proteins participating in a total of 1,908,210
binary links. When projecting this network to the Escherichia coli
K12 genome with 4,290 annotated genes (33), 3,256 of these are
connected through 113,864 links.

In this E. coli K12 network, we were able to detect inherent
modularity in an objective and reproducible manner, by applying
three algorithmically different clustering approaches (34), namely
unweighted pair group method with arithmetic mean (UPGMA)
clustering, single linkage, and Markov clustering (27).

Validation of Predicted Functional Modules. To show that the
resulting tight clusters indeed correspond to functional modules,
we benchmarked the automatic analysis against manually cu-
rated annotations. The probably best-understood functional
subnetwork in E. coli is that of small molecule metabolism.
Hence, we compared the obtained clusters to the EcoCyc

Fig. 1. Correlation between metabolic pathways and genomic context predictions. Metabolic databases such as EcoCyc describe metabolites and enzymes, and
subjectively group them into metabolic ‘‘pathways.’’ In contrast, comparative genomics can reveal selective pressures shared by groups of enzymes, thereby
defining functional modularity objectively. Surprisingly, a good agreement between both is observed. Note that the purine biosynthesis pathway is covered by
two predicted modules, which are separated by a branching point in the pathway. The node marked by an asterisk consists of two enzymes (GuaC and ImdH),
which are too closely related to be resolved into separate orthologous groups (32). Both enzymes are involved in purine metabolism, but only ImdH is part of
the biosynthesis pathway, so GuaC is counted here as a false positive. [The schematic overview of metabolism is reproduced with permission from ref. 42
(Copyright 1994, Garland Publishing, New York).]
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knowledge base of metabolic pathways (28), which encompasses
the entire known metabolic complement of E. coli (Fig. 1).

We first explored the parameter space of the clustering
methods and their performance with respect to how well the
resulting clusters matched pathway definitions (Fig. 2; see Data
Sources and Procedures for the benchmarking procedure). As
expected, we observed a tradeoff between the accuracy in
reconstructing known pathways and the total coverage (the latter
being the fraction of pathway proteins which are found clustered
in groups of at least two). However, we observed some tolerance
to the parameter choice, suggesting an implicit signal toward
functional modularity (Fig. 2). When demanding a high speci-
ficity, all methods achieved a remarkably high total coverage,
�70% (Fig. 2 and Table 3, which is published as supporting
information on the PNAS web site).

Mean clustering demonstrated the best overall performance
(Fig. 2), grouping as many as 74% of the possible 583 proteins
into 119 clusters; these matched 89 EcoCyc pathway definitions
with 84% average specificity and 49% average sensitivity. In
other words, more than half of the metabolic network is recov-
ered with very high specificity, solely by objective, comparative
genome analysis. These measurements are several times higher
than expected when compared to random models (see Data
Sources and Procedures for details).

Deviations from Current Knowledge: Limitations and Biological Dis-
covery. Following parameter exploration, one representative set
of predicted modules (unweighted pair group method with

arithmetic mean clustering; score cutoff, 0.400; see Supporting
Text, which is published as supporting information on the PNAS
web site) was chosen for further analysis. Of particular interest
were any deviations from the current knowledge of metabolic
pathways, because such discrepancies might represent areas of
discovery and indicate key biological properties of the metabolic
web. For example, the relatively low average sensitivity of
predicted modules (49%) is partly due to coverage of a single
EcoCyc pathway by several distinct modules (e.g., Fig. 1). We

Fig. 3. Global properties of the predicted metabolic modules. (A) Functional
composition. In addition to the annotated enzymes, the predicted modules
often contain putative enzymes that are not yet assigned to pathways, as well
as proteins from other functional categories. (B) As expected, metabolic
modules are strongly enriched in enzymatic functions, but they also contain
other functions, most notably transport and transcription regulation. The
categories shown are a subset of the gene-ontology (30) subtree ‘‘biological
process’’ (see Data Sources and Procedures for details). (C) Pathway topology
and genomic context. The graph shows the scores of all genomic context
associations between enzymes that are direct neighbors in metabolism of E.
coli. The pathway topology is defined by the number of enzymes metabolizing
the same substrate (not considering frequent substrates such as water or ATP,
frequency cutoff is 8). Any substrate metabolized by more than two enzymes
constitutes a branching point.

Fig. 2. Clustering genomic context associations: parameter exploration and
benchmarking. Shown are graphs summarizing the benchmarking perfor-
mance of the clustering, considering only clusters containing at least two
enzymes. The achievable pathway specificity quickly reaches a plateau at a
high level of prediction accuracy, independent of the clustering algorithm
used. In contrast, the observed number of the predicted functional modules
and the fraction of total metabolism they cover are both somewhat more
sensitive to clustering algorithms and cutoffs. The data set marked with an
asterisk was chosen for detailed manual analysis and is the basis of all subse-
quent figures.
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often observed that such ‘‘submodules’’ are separated by branch-
ing points in the metabolic web, i.e., by metabolites participating
in several reactions and leading to distinct products. The branch-
ing points separate subpathways that may be used in different
contexts by serving different physiological roles, and may be
subject to distinct regulation, thereby justifying the representa-
tion as individual modules (e.g., Fig. 1). In support of this notion,
we globally observe that the quantitative strength of genomic
context associations correlates well with the structure of the
metabolic web: the average association scores are markedly
higher for nonbranching, linear sections of metabolism (Fig. 3B).

Despite the high overall specificity of 84%, there remains a
sizeable fraction of apparent ‘‘false positive’’ assignments (40 of
the predicted modules cannot fully be matched by a single
metabolic pathway). About 40% of these cases result from the
limited resolution of orthology assignments (32), i.e., two or
more very similar E. coli proteins belong to one orthologous
group, but have been assigned to different pathways in EcoCyc.
For such proteins, the comparative genomics methods used here
currently cannot resolve which protein participates in which
predicted association. This is clearly a current technical rather
than a fundamental limitation. Remarkably, about half of the
measured false positives may in fact represent genuine functional
connections: 33% of the assignments correspond to true meta-
bolic connections, because they are linking pathways known to
be connected through a common metabolite, and another 17%
correspond to pathways previously connected through various
types of experimental or genetic evidence, as reported in recent
literature. The remaining 10% of false positive assignments
predict pathway links that were discovered in this study (Table
1 and Supporting Text).

Taken together, the differences to the manually annotated
EcoCyc database generally cannot be seen as misassignments of an
automatic prediction method, but reflect a more fine-grained
functional clustering and the retrieval of known associations that
have not yet been annotated in the knowledge base. When including
the latter associations, the actual specificity of the automatic
approach is �90%. Thus, the predicted functional modules should
be a rich source for reliable biological discovery at the protein and
pathway-annotation level (see Table 1 for examples).

Prediction of Extensions to Known Pathways. Many of the predicted
metabolic modules contain proteins that are not annotated in

EcoCyc (Fig. 3A). These additional proteins (�300 in total) are
predicted to represent functional pathway extensions, and their
placement is expected to be as accurate as that of the annotated
proteins as the clustering procedure is based on objective
genome data. In the average metabolic module, annotated
pathway enzymes in EcoCyc constitute the largest fraction
(58%), whereas proteins identified as putative enzymes in other
databases (32, 35) contribute another 23% (Fig. 3A) and can thus
be associated at the pathway level. Only 19% of the proteins in
the modules appear to be hypothetical or noncatalytic.

The hypothetical proteins are excellent candidates for enzymes
that can ‘‘fill’’ gaps in our current pathway knowledge (10), and we
found several such examples in the predicted modules, some of
which have been proven correct by recent literature (Table 1 and
Supporting Text and Figs. 5–7, which are published as supporting
information on the PNAS web site). Although the predicted
metabolic modules are usually enriched in enzymes, they also
contain links to many other cellular processes. Of those, certain
functional categories such as transport and transcriptional regula-
tion are overrepresented (Fig. 3B). This is in accordance with
individual observations that such proteins are coregulated in met-
abolic operons. The modules recover several known links, such as
the transcriptional regulator HycA, which is coupled to formate
hydrogenlyase subunits (36), and also imply previously undescribed
associations. For example, the hypothetical transporter system
YliA�B�C�D can be tentatively linked to asparagine import be-
cause the genes encoding the transporter are in a predicted module
together with the asparaginase gene asgX.

Prediction of Functional Links Between Pathways. At the pathway
level, the modules also suggest previously undescribed connec-
tions. We identified 12 links between pathways that are not
connected in EcoCyc, and for which the links cannot be ex-
plained easily by shared metabolites or orthology assignment
artifacts. One such link is a previously unsuspected connection
between CoA biosynthesis and nucleotide metabolism. Two
distinct enzymes in CoA biosynthesis (PanC and CoaA�B) both
have independent links to nucleotide metabolism, with evidence
stemming from all three genomic context methods. Intriguingly,
mutants in CoaA�B have been reported to have defects in
DNA-synthesis (37). Conceivably, the two pathways could be
functionally coupled because the nucleotide adenine is function-
ing as a structural component in CoA or because the CoA�B

Table 1. Examples of predictions derived from the functional modules

Type of prediction Confirmed through literature Novel prediction

Extensions to existing
pathways (enzymatic)

IspG and IspH; two additional enzymes in the
nonmevalonate isoprenoid biosynthesis
pathway. Known, but not yet in EcoCyc

YqiA; an �–� hydrolase predicted to be
associated to ubiquinone metabolism

Extensions to existing
pathways (nonenzymatic)

NarU and NarK; two nitrate�nitrite
transporters linked with the nitrate
reductase complex

YbaD; a transcription factor possibly
regulating riboflavin biosynthesis enzymes

Functional links between
pathways

A predicted link between the metabolism of
selenocysteine, and formate
dehydrogenase; the latter is known to
contain selenocysteine

A predicted link between coenzyme A
biosynthesis and the metabolism of
nucleotides. Supported by multiple
observations

A functional link between nonmevalonate
isoprenoid biosynthesis and the subsequent
biosynthesis of polyisoprenoids

A predicted link between phospholipid
biosynthesis and thiamine biosynthesis:
conserved neighborhood between pgpA
and thiL

Entirely novel functional
systems�pathways

A large, conserved module consisting of
enzymes needed to use ethanolamine as a
carbon�nitrogen source. Not yet annotated
in EcoCyc

An uncharacterized, conserved functional
module, containing the domains integrin I
and AAA–ATPase. This combination of
domains is known to occur in metal
chelatases.
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enzyme uses the nucleotide CTP as an unusual energy source.
More speculatively, one of the enzymes in CoA biosynthesis
could have a second, additional function in nucleotide metab-
olism (Fig. 8, which is published as supporting information on the
PNAS web site).

Prediction of Pathways and Cellular Systems. Although the bench-
marking can only demonstrate high accuracy within metabolism,
numerous modules were also predicted for other functional
categories. Of the total of 508 modules predicted for E. coli, 375
are dominated by one of four broad categories as defined in the
COG database (32) (see also Fig. 4). Of these, 114 are metabolic
(in good agreement with the 119 modules matching metabolism
as defined in EcoCyc). About 60 modules are related to key
processes such as cell motility, division, and signaling; and
another 38 are related to translation, transcription, recombina-
tion, replication, and repair. Although hypothetical (uncharac-
terized) proteins are underrepresented in the metabolic modules
(Fig. 3A), there are as many as 167 modules containing 677
proteins that are dominated by hypothetical proteins, indicating
the existence of many undiscovered cellular processes or sys-
tems. In total, 1,636 proteins in E. coli were annotated as
‘‘hypothetical’’ at the time of analysis. Of those, 841 were
associated to at least one partner through the modules predicted

here (the remainder were either in modules of size one, or not
sufficiently conserved in other organisms; 235 and 560 proteins,
respectively). For 247 of those 841 hypothetical proteins, how-
ever, all predicted partners were hypothetical as well.

A typical example for a previously undescribed cellular system
is a predicted module with four proteins, of which only two have
vague annotations (Fig. 4). Three of these proteins form a very
well supported and evolutionarily widespread unit of unknown
function (Fig. 9, which is published as supporting information on
the PNAS web site), whereas the fourth protein is more loosely
connected and may be dispensable. Mutants in two of the
proteins have been described as having defects in endospore
formation in Bacillus subtilis (38, 39); however, the module occurs
also in many non-spore-forming organisms, suggesting a broader
functional role. Detailed homology analysis and structure predic-
tion reveals remote similarity of two of the proteins to subunits of
a Mg-chelatase (40), leading to the hypothesis that this module may
represent a chelatase with unknown metal specificity. Candidate
metals include calcium, because calcium is required in endospore
formation (41), and mutants lacking one of the proteins are
reported to have low levels of calcium-dipicolinate (38).

Discussion
The approach presented here relies only on genome sequences, thus
providing an objective and unbiased view on functional modularity

Fig. 4. A network of predicted functional modules in E. coli. Only modules of size four or larger are shown. Nodes represent single proteins or groups of highly
similar proteins as defined in the COG database. Genomic context links within predicted modules are shown in dark gray, and those across modules are shown
in light gray. For clarity, the latter links are limited to those with an association score of 0.650 or higher (on a scale from zero to one; ref. 26). Functional categories
are as defined in the COG database. (Inset) A typical example of a largely uncharacterized pathway.
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in a variety of organisms. The procedure is based on a combination
of methods to predict functional associations from whole genomes.
For full coverage and accuracy, this combination is crucial: an
analysis of the relative contributions of the methods (conserved
gene neighborhood, common phylogenetic distribution of genes,
and gene fusions) showed that only 56% of the pathways were
detected by all three methods, 20% of pathways were predicted by
any two of these methods, whereas 24% of pathways were identified
only on the basis of a single method (Table 4, which is published as
supporting information on the PNAS web site). Gene neighbor-
hood was found to be the major contributor, recovering the highest
number of pathways (89% of pathways detected by any methods).
Because each methodology relies on a different measure of the
driving forces in microbial evolution, the integration of all three
methods provides for a robust and extensive coverage of the events
that have shaped genome organization, revealing the underlying
functional modularity.

Our key observation is the surprisingly high accuracy with
which gene context analysis defines functional modules. The
rigorous testing of the approach with the small-molecule me-
tabolism from E. coli, the best characterized functional system to
date, reveals that using a large number of genomes and a
combination of techniques increases the amount of information
retrievable from whole genomes to the point where it can
probably rival that of large scale experimental approaches. We
have specifically tested the performance in relation to metabolic
pathways, but we expect a roughly similar performance for other
functional systems, because enzymes are only slightly above
average in terms of sequence conservation and species coverage,
when compared to other functional systems (Fig. 10, which is
published as supporting information on the PNAS web site). We
have also tested the performance in a separate organism, and
found it to be comparable (Fig. 11 and Table 5, which are
published as supporting information on the PNAS web site).

Nevertheless, although the accuracy seems high throughout, it is
not entirely uniform. When analyzing the predicted network and
the functional modules, we observed that several functional aspects
of metabolism influence the predictive power of genomic context
methods. For example, the observed coverage of biosynthesis
pathways is considerably higher than that of degradation pathways,
possibly because anabolic pathways tend to be more linear, con-
sume more energy, and are more tightly regulated, thus presumably
enforcing more constraints on genome evolution. We also found
that enzymes consisting of several subunits have an extraordinarily
high chance of having all subunits correctly represented in one
predicted module, showing that physical dependencies are partic-
ularly well reflected in genome context.

Because genome sequences are an objective and quickly
growing resource, automatic pathway definitions based on com-
parative analysis may become feasible. We show here that
genome structure and evolution are intricately intertwined
through biochemical function and interaction networks. We have
also proven functional modularity within these networks and
have developed a reliable tool for the prediction of these
modules. Further work will be needed to incorporate gene
expression, localization, and regulation information to increase
the resolution within the functional modules and to better
understand their interactions within cells.
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