
not exhibit large deviations from neutral predictions
(Figure 1). However, in species with higher rates of gene
conversion or larger effective population sizes, BGC could
significantly perturb allele-frequency distributions (and
thus statistics such as Tajima’s D) from neutral expec-
tations. This suggests that BGC should be incorporated
into realistic models of neutral evolution.
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Global analysis of bacterial transcription factors to
predict cellular target processes
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Whole-genome sequences are now available for >100

bacterial species, giving unprecedented power to com-

parative genomics approaches. We have applied gen-

ome-context methods to predict target processes that

are regulated by transcription factors (TFs). Of 128

orthologous groups of proteins annotated as TFs, to

date, 36 are functionally uncharacterized; in our analysis

we predict a probable cellular target process or bio-

chemical pathway for half of these functionally unchar-

acterized TFs.Corresponding author: Tobias Doerks (doerks@email.de).
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Homology-based function annotation is an established
approach and has set the standard for assigning function
to novel proteins during the past decades. Homology
searches often assign molecular features such as catalytic
or DNA-binding activity to novel proteins but often fail to
provide information about cellular processes involving the
proteins. To provide such information, several complemen-
tary methods have been developed recently; these predict
functional associations among protein-coding genes, based
on their genomic context [1–6]. These methods consider
the conservation of gene neighborhood, gene fusion events
or the significant co-occurrence of genes in different
species, and predict associations that comprise physical
interactions, related functional roles or similar pathway
memberships [7]. In our study, we systematically applied
these methods to regulators of gene expression; we ana-
lyzed their conservation in the genomic context (based
mainly on conserved gene neighborhood) to predict the
cellular process that they participate in (which they most
probably control transcriptionally). Recent research in
Escherichia coli has elucidated the design principles of
the transcription-regulatory network [8,9] and suggested
that transcriptional control is at the heart of organismal
complexity. Probabilistic methods for identifying genes

and their regulators from gene-expression data have
been used, for example, in yeast [10], but bacterial TFs
whose target processes are unknown are awaiting precise
annotation.

Identification of bacterial transcription factors

In this article, we describe the use of the conserved
genomic associations of genes that encode bacterial TFs to
predict the cellular and biological process that they
potentially regulate.

To define the starting set of TFs, we extracted clusters
of orthologous groups (COGs) from the COGs database
[11] (http://www.ncbi.nlm.nih.gov/COG/), which were
annotated directly as TFs (or regulators).

In addition, we considered COGs of which at least 30%
of the members were assigned to relevant Gene Ontology
(GO) terms [12,13] (GO:0006355, biological process:
‘regulation of transcription, DNA-dependent’; GO:0030528,
molecular function: ‘transcription regulator’; and sub-
categories of these).

Following this procedure we retrieved 278 COGs
believed to be involved in transcription regulation; from
these we removed RNA-polymerase subunits, trans-
posases, restriction enzymes and other DNA-modification

Table 1. Uncharacterized transcription factors and the cellular process that they are predicted to regulatea

COG

number

Representative

gene name

Distribution

(genes in species)b

Orthology

resolutionc

Molecular

characterizationd

Predicted regulated processe

COG1318 MJ1053 11/10 Good Predicted helix-turn-helix

(HTH) transcripion factor

DNA-modification processes and general

metabolism (COG0467 and COG1216)

COG1327 YBAD 50/50 Good Zinc ribbon and ATP-cone

transcription factor

Riboflavin biosynthesisf (COG0117, COG1985,

COG0054 and COG0307)

COG1329 YDEB 21/20 Good CarD-family transcription

factors

Terpenoid biosynthesisg (COG0245 and COG1211)

COG1386 YPUH 56/51 Good HTH-transcription factor Pseudouridylate synthesis and link to cell wall

formation (COG1187 and COG1686)

COG1395 MJ1164 16/16 Good HTH-transcription factor tRNA processing (COG1867)

COG1426 YFGA 41/39 Good HTH-transcription factor Terpenoid biosynthesis related (COG0821);

(phospholipid biosynthesish) (COG0558 and

COG0575)

COG1497 MJ0558 9/9 Good HTH-transcription factor Nucleotide synthesis (COG0856)

COG1725 YHCF 38/23 Medium HTH-transcription factor ABC-transporters (COG1131)

COG1813 MJ0586 28/24 Good HTH-transcription factor Basal transcritption regulation (COG1675)

COG1959 YFHP 113/47 Poor UPF0074-family putative

transcription factors

Amino acid metabolism and Fe-S-cluster redox

systems (COG1104, COG0822, COG0316,

COG0633 and COG0820)

COG2345 BH3429 19/13 Medium HTH-transcription factor Enzymes related to phenylacetic acid aerobic

catabolism (COG2151)

COG2378 YFJR 62/32 Medium HTH-transcription factor Glyoxal-like pathway (COG3324)

COG2462 AF1987 7/6 Good Transcription factor (COG-

prediction)

Helicase and/or hydrolase activity (COG2254 and

COG1203)

COG2522 AF0184 19/11 Medium HTH-transcription factor Thiamin biosynthesis (COG1992)

COG2740 YLXR 34/34 Good Transcription factor (COG-

prediction)

General processes (e.g. translation and/or

transcription) (COG0858, COG0195, COG0532,

COG1358, COG2176 and COG1185)

COG3226 YBJK 14/9 Medium HTH-transcription factor Transmembrane transporter proteins (COG2076)

COG3655 YOZG 16/12 Medium HTH-transcription factor Transmembrane transporter proteins (NOG08084

and NOG19957)

NOG09448 SP1115 10/6 Medium HTH-transcription factor PDZ-domain-containing proteins (COG3480)

aThe results can be reproduced at http://www.bork.embl-heidelberg.de/STRING_V3(COG database and STRING as of August 2003).
bGene distribution (number of genes / number of species in which genes are found).
cThe absence of paralogy, defined by the fraction: number of species / number of genes. Values: .0.8, good; .0.5, medium; ,0.5, poor.
dMolecular characterization is based on Smart [19,20] and/or Pfam [21] predictions.
ePathway, process or protein families that are predicted to be regulated by proteins of the corresponding cluster of orthologous group (COG). Associated COGs that are used to

make predictions are shown in parenthesis.
fObserved previously [22], but not yet annotated in any database.
gLow scoring of 0.366 (based on conserved gene neighborhood in a few species).
hThese proteins have lost their DNA-binding domain and are assumed not to be transcription factors.
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enzymes, in addition to proteins involved in DNA stability,
repair and replication. All groups contained orthologous
TFs derived from several genomes. Some groups also
included duplicated genes (paralogs); these sequences
could not be divided into separate COGs by the COG
annotators. The final list consisted of 128 COGs of
known and putative TFs. This list summarizes TFs from
a wide variety of bacterial species; when projected to the
K12-strain of E. coli, it covers 229 proteins (85%) of a
recently assembled list of 268 E. coli TFs [14]. Of the

remaining 39 E. coli proteins, eight represent non-
conserved TFs, which are not assigned to orthologous
groups, and the remaining 31 reflect differences in the
retrieval strategies. Of the 128 COGs, we then subtracted
34 ‘inclusive COGs’ (26.6%), which do not provide suffi-
cient orthology resolution for genomic-context methods
because of a prevalence of recent gene duplications. The
remaining 94 COGs consist of 58 COGs that are already
functionally described (45.3% of the dataset) and 36 COGs
of putative TFs with an unknown functional role (28.1%).

Figure 1. Conserved gene neighborhood in clusters of orthologous group (COG) 1327 [from Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) analysis].

The species tree with family representatives is shown on the left and corresponding operon architecture is shown on the right. Genes that are connected by black lines are

in the immediate neighborhood on the genome (i.e. within 300 bp on the same strand). Genes that have multiple colors are members of several orthologous groups, which

is indicative of putative fusion events. The genes depicted in white are neighbors, but do have not a sufficiently high score. The color scheme corresponds with the COGs

that are depicted in Figure 2: red unit, query gene that encodes a hypothetical transcription factor (COG1327); yellow unit, gene that encodes pyrimidine deaminase

(COG0117); green unit, gene that encodes pyrimidine reductase (COG1985); dark green unit, gene that encodes a transcription termination factor (COG0781); light blue unit,

gene that encodes an uncharacterized response regulator (COG0745); sky blue unit, gene that encodes the riboflavin synthase b chain (COG0054); dark blue unit, gene that

encodes the riboflavin synthase a chain (COG0307).
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We defined a COG as functionally characterized if it
contained one or more genes for which the cellular
context has been determined experimentally. Known and
unknown COGs were analyzed using the tool STRING
(Search Tool for the Retrieval of Interacting Genes/
Proteins; http://www.bork.embl-heidelberg.de/STRING/)
[6], applying a conservative score threshold of 0.5
(see Ref. [6] for a benchmark). STRING calculates this
‘confidence score’ on the basis of the three genomic-context
methods: conserved gene neighborhood, gene fusion
events and significant co-occurrence of the genes across
a specific subset of species. We calculated the number of
TFs for which genomic context is implemented in STRING,
and we reviewed the predicted associations.

Prediction of cellular target processes

Of the 58 orthologous groups of TFs with an experimen-
tally confirmed functional role, 34 retrieved significant
hints to their cellular target processes. In the majority of
these cases we could identify several genes that are known
to be regulated by a specific TF. This shows that the
method is suitable for confirming .59% of functionally
described TFs; in 24% of the cases we could not predict any
target process and only 10 (17%) of the predictions point to
misleading, mostly general, processes.

Of the 36 COGs that contain uncharacterized TFs, we
were able to suggest a cellular role or a target process for
18 groups (Table 1). The lists of associated COGs shown in
Table 1 represent the functional context and describe this
cellular process. The predictions are based on the genomic
associations of one or more TF and apply to their orthologs.
For species in which duplication events have led to
multiple genes in the same group (paralogy), some copies

of these genes might not be a part of the same target
process. (Orthology resolution is shown in Table 1.)

The specificity of the predictions varies, ranging from
exact operon matches, when, for example, the TFs in
COG1327 are a part of a well-defined operon of a known
biosynthesis pathway, to more general assignments, such
as COG1318, which is involved in the control of DNA-
modification processes and to broadly defined functions,
such as the expression control of transmembrane trans-
porters (COG3226 and COG3655) or PDZ-domain-contain-
ing proteins (NOG09448).

In some cases we observed that genes that were
assigned to a single COG were apparently involved in
the regulation of different processes. For example, some
genes of the group COG2378 appear to be associated with
an enzyme of glyoxal-like pathways in a small subset of
species, whereas other genes of the same group appear to
regulate the expression of a different set of target genes of
unknown function (Table 1).

An example of a specific prediction is COG1327, which
consists of uncharacterized TFs present in a variety of
eubacterial species. As shown in Figure 1 the genes that
encode these hypothetical TFs often occur (STRING scores
are in the significant range between 0.509 and 0.847) next
to the genes known to be part of the riboflavin biosynthesis
pathway [15,16]. The network view (Figure 2) illustrates
the functional association of COG1327 based on its
conserved neighborhood with well-annotated genes, and
the obvious connections between the other genes of this
operon, which have been confirmed by conserved neigh-
borhood, phylogenetic co-occurrence and a fusion event.

A second example represents a less-specific prediction;
genes of the same orthologous group seem to be involved in
different cellular processes and several associated genes

Figure 2. Network of predicted associations for a particular group of proteins [related to clusters of orthologous group (COG) 1327 (red)]. The network edges represent the

predicted functional associations. An edge can be drawn with up to three differently colored lines; these lines represent the existence of the three types of evidence used

in predicting the associations. A red line indicates fusion evidence; a green line indicates neighborhood evidence; a blue line indicates co-occurrence evidence. The line

thickness correlates linearly with Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) scores.
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are uncharacterized (Figure 3). In Gram-negative g-pro-
teobacteria only, putative TFs of COG1426 are function-
ally associated with a synthase of the terpenoid
biosynthesis pathway [17]. The association is defined by
a conserved operon, which also contains other proteins of
unknown or less specific function, suggesting a cross-link
to a novel undescribed pathway.

Furthermore, orthologs from COG1426 in Gram-posi-
tives and Thermotoga maritima are associated with genes
that are known to be involved in fatty-acid biosynthesis
[18]; in this example, the TFs have lost their helix-turn-
helix domain and thus probably their DNA-binding
capability and are instead predicted to be involved in
membrane-associated processes.

Concluding remarks

Our large-scale analysis of bacterial TFs provides predic-
tions of potentially related target processes for half of all
hitherto uncharacterized TFs, which is an increase of
functional knowledge of 14.1% for TFs classified in COGs.
By contrast, homology searches only provide molecular
characterization [e.g. evidence for a helix-turn-helix motif
(and thus DNA-binding function)]. We exemplify how
homology approaches can be complemented by genomic-
context searches to refine the functional characterization
of the protein at the cellular process level. These results
indicate that this type of analysis merits extension to other
protein families.
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Mutational patterns correlate with genome
organization in SARS and other coronaviruses

Andrei Grigoriev

GPC Biotech, Fraunhoferstr. 20, Martinsried 82152, Germany

Focused efforts by several international laboratories

have resulted in the sequencing of the genome of the

causative agent of severe acute respiratory syndrome

(SARS), novel coronavirus SARS-CoV, in record time.

Using cumulative skew diagrams, I found that muta-

tional patterns in the SARS-CoV genome were strik-

ingly different from other coronaviruses in terms of

mutation rates, although they were in general agree-

ment with the model of the coronavirus lifecycle. These

findings might be relevant for the development of

sequence-based diagnostics and the design of agents

to treat SARS.

Previously, cumulative skew diagrams have been
employed successfully to analyze mutational patterns in
various viral genomes. They have been used to: (i) link the
nucleotide content changes to the genome organization,
replication and transcription of double-stranded DNA
viruses [1]; (ii) correlate the transcriptional pattern of
a bacteriophage T7 with its nucleotide content [2]; and
(iii) associate the compositional biases with mutational
pressures in retroviruses [3]. (See Box 1 on how to
interpret cumulative diagrams.)

The severe acute respiratory syndrome coronavirus
(SARS-CoV) plus-strand genomic RNA (plus-gRNA) con-
sists of two distinct parts: one (comprising two thirds of the
genome) encodes the replicase polyprotein and the other
encodes structural and other proteins [4,5]. In this paper,
these parts are referred to as the long and short arm,
respectively. Strikingly, there is a change in behavior of the
cumulative skew diagram at the border of the arms in all
coronaviruses sequenced to date (six representatives are
shown in Figure 1), indicating a lower GC skew on the
short arm. This behavior suggests that biological processes
that distinguish the two arms (Box 2) are responsible for

the mutational pattern, rather than the fidelity of the
replication machinery; the latter not would result in a
constant slope of cumulative skew, as is the case in
retroviruses [3]. The mutation rates (as indicated by the
extent of the cumulative skew on the y-axis) do not appear
to depend on a host organism: skews are similar in murine,
avian and human 229E coronaviruses (Figure 1c,e,f) but
substantially lower in SARS-CoV (Figure 1a, Table 1).

The skew diagrams support the current model of
coronavirus replication and transcription (Box 2), and
GC skew is particularly illustrative in this regard because
in both of these processes one RNA strand is single
stranded. Deamination of cytosine to uracil is .100 times
faster in single-stranded DNA compared with double-
stranded DNA [6], and this ratio is probably similar in

Table 1. Mean excess of guanines versus cytosines in

coronavirus genomes

Virus genomea Extra guanines compared with

cytosines per 100 bp of genomic

sequenceb

Lc Sc L-Sc

SARS-CoV 1.8 21.7 3.5

BCoV 7.8 3.5 4.3

MHV 7.1 3.5 3.6

PEDV 4.4 1.4 3.0

HCoV 6.0 1.8 4.2

IBV 5.9 4.2 1.7

aAbbreviations: BCoV, enteric bovine coronavirus; IBV, avian infectious bronchitis

virus; HCoV, human coronavirus (229E); PEDV, porcine epidemic diarrhea virus;

SARS-CoV, severe acute respiratory syndrome coronavirus.
bThese averages represent the trends depicted in Figure 1 but without taking into

account G þ C content (which ranges from 37% to 42% in Coronaviridae). GC

content does not affect the trends observed in Figure 1.
cThe change in number of guanines compared with cytosines is probably due to

cytosine deamination in the minus strand on the short arm and reflects additional

mutational pressure on that arm. Notably, this change is comparable with SARS-

CoV and other coronaviruses, whereas the guanine excess on the long arm is much

smaller. Definitions: L, long arm; S, short arm; L-S, change on short arm.Corresponding author: Andrei Grigoriev (andrei.grigoriev@gpc-biotech.com).
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