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Abstract

Systematically annotating function of enzymes that belong to large protein families encoded in a single eukaryotic genome is a very challenging task.
We carried out such an exercise to annotate function for serine-protease family of the trypsin fold in Drosophila melanogaster, with an emphasis on
annotating serine-protease homologues (SPHs) that may have lost their catalytic function. Our approach involves data mining and data integration to
provide function annotations for 190Drosophila gene products containing serine-protease-like domains, of which 35 are SPHs. This was accomplished
by analysis of structure–function relationships, gene-expression profiles, large-scale protein–protein interaction data, literature mining and
bioinformatic tools. We introduce functional residue clustering (FRC), a method that performs hierarchical clustering of sequences using properties of
functionally important residues and utilizes correlation co-efficient as a quantitative similarity measure to transfer in vivo substrate specificities to
proteases. We show that the efficiency of transfer of substrate-specificity information using this method is generally high. FRC was also applied on
Drosophila proteases to assign putative competitive inhibitor relationships (CIRs). Microarray gene-expression data were utilized to uncover a
large-scale and dual involvement of proteases in development and in immune response.We found specific recruitment of SPHs and proteases with CLIP
domains in immune response, suggesting evolution of a new function for SPHs.We also suggest existence of separate downstream protease cascades for
immune response against bacterial/fungal infections and parasite/parasitoid infections. We verify quality of our annotations using information from
RNAi screens and other evidence types. Utilization of suchmulti-fold approaches results in 10-fold increase of function annotation forDrosophila serine
proteases and demonstrates value in increasing annotations in multiple genomes.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Accurate computational annotation of enzyme function and
in vivo substrate specificities is a difficult task (Rost, 2002).
The classical approaches, by homology detection, are mainly
suited for predicting approximate molecular function of a
protein and should be used in context with other methods (Bork
and Koonin, 1998). Many proteins (and domains) encoded in
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eukaryotic genomes are part of multi-member protein families;
they participate in variety of cellular processes and are located
in different part of cells. In recognition to this, the Gene Onto-
logy (GO) consortium annotates information about molecular
function, biological process and cellular component to describe
“function” of a protein product (Lewis, 2005).

In the wake of genomic era (Kanehisa and Bork, 2003) many
attempts at function annotation that employ multiple data types
and statistical frameworks for their integration are underway and
have proved to be highly successful in annotating prokaryotic
genomes (Date and Marcotte, 2005; von Mering et al., 2005).
These frameworks output profiles or clusters of genes and their
interpretation is largely dependent on expert knowledge.
Moreover, their potential in annotating large protein families in
eukryotic genomes has not been assessed. In the current study, we
have utilized knowledge from structure–function analysis of 3D-
structures and sequences, gene-expression profiling, text-mining,
protein–protein interaction and state-of-the art bioinformatic tools
to manually assign either of the three GO categories to the
members of serine-protease family of trypsin fold encoded in the
genome of D. melanogaster (Fig. 1a,b).

Analysis of whole metazoan genomes suggested that up to
15% members of all encoded enzymes families may have lost
their catalytic activity (Pils and Schultz, 2004) and function
annotations for them are very scarce. It is assumed that depending
upon the conservation of catalytic pocket, these enzyme homo-
logues may be able to bind specific substrate(s) and compete with
active enzymes for substrates (competitive inhibitors) or may
evolve newer functions (Pils and Schultz, 2004). However, no
computational methods for systematically assigning competitive
inhibitor relationships (CIRs) exist in the literature and only one
example of function evolution has been proposed before (Pils and
Schultz, 2004).

The family of eukaryotic serine proteases of the trypsin fold
(referred hereafter only as serine proteases or proteases; Fig. 1a) is
one of the largest enzyme families with wide species distribution
(Figures S1, S2) and participate in numerous cellular processes
(Barrett, 1994; Rawlings and Barrett, 1994; Zdobnov et al., 2002).
Despite decades of research, prediction of in vivo substrate
specificities of proteases remains difficult. D. melanogaster
genome is estimated to contain roughly half the number of protein
coding genes than the human genome (and other mammalian
genomes) but both genomes harbour similar numbers of genes
coding for serine-protease-like domains (Pugalenthi et al., 2005).
Despite experimental evidences for the importance of serine
proteases inDrosophila development, immune response and other
biological processes (Table S1); there is no availability of in vivo
substrate-specificity data or three dimensional (3D) structural
information for them in Protein Data Bank (PDB) (Deshpande
et al., 2005). A total of 28% of all serine-proteases-like domains
encoded in the Drosophila genome are believed to be non-
catalytic serine-protease homologues (SPHs) due to mutations in
one or more catalytic residues. Drosophila proteases and SPHs
remain poorly annotated in Flybase (Grumbling and Strelets,
2006) and Swiss–Prot (Apweiler et al., 2004;Bairoch et al., 2004).

Substrate-specificity (molecular function) annotations are
plentiful for mammalian serine proteases, but they cannot be
transferred reliably to Drosophila proteases as mammalian and
Drosophila proteases have diverged substantially in sequence
(see Supplementary material). Therefore transfer of substrate
specificities using whole domain similarity would lead to
annotation errors (Rost, 2002). To allow a reliable transfer of
substrate specificity we have devised a composite procedure
termed functional residue clustering (FRC). In its first step, FRC
identifies consensus active-site residues that interact with dif-
ferent natural and chemical inhibitors by structure–function
analysis of 3 different data sets of proteases. In its second step,
FRC performs hierarchical clustering of proteases based on
similarity at these residue positions and provides a quantitative
measure of similarity between proteases at their active sites,
thus allowing for more reliable transfer of molecular function.
We benchmark the performance of FRC by applying it to known
examples, and by comparing annotations provided by FRC to
those provided by Ross et al. (2003) and Swiss–Prot (Apweiler
et al., 2004; Bairoch et al., 2004) for Drosophila serine pro-
teases. Quantitative measure of similarity at the active site
between catalytically active proteases and SPHs provided by the
FRC was also utilized to postulate competitive inhibitor re-
lationships (CIRs) between pairs of proteases.

Information about cellular (biological) processes was obtained
from the analysis of gene-expression data of Drosophila dev-
elopment life cycle and various published studies on immune
response, using systematic analysis of functional modules in
STRING (vonMering et al., 2005), and high-throughput protein–
protein interaction data. We identify a large-scale and dual in-
volvement of proteases in development and immune response.
We also provide evidence that the SPH domains have evolved
new roles in immune response and that separate down stream
protease cascades may be involved in immune response against,
bacteria/yeast infection and against parasite/parasitoid infection.

We also predicted sub-cellular localization for the Droso-
phila proteases for providing the third GO category. The
verification of our annotations was carried out through literature
surveys, protein–protein interaction data and analysis of results
of RNAi screens. Finally, we quantitate the annotation increase
by comparing our annotations to those in Flybase (Grumbling
and Strelets, 2006), the community database for D. melanoga-
ster. Supplementary data are also available at http://caps.ncbs.
res.in/download/Enhanced_Func_SP/.

2. Methods

2.1. Sequence analysis of Drosophila serine proteases

We carried out domain architecture analysis of 201 proteins
with trypsin-like serine-protease domain derived using SMART
(Letunic et al., 2006). SMART suggested 144 domains as cata-
lytically active and the remaining 57 (28%) as SPHs due to
mutations in one or more catalytic triad residues (Figure S3). At
least 7 proteins contain membrane-spanning helices in addition to
protease-like domains. Four genes inDrosophila encode proteins
with two serine-protease-like domains (Additional file 1).

We utilized TargetP (Emanuelsson et al., 2000) and Pro-
teome analyst (Szafron et al., 2004) servers for sub-cellular
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Fig. 1. a) Schematic representation of trypsin fold serine-protease domain (showing bovine chymotrypsin 5ptp-). The catalytic triad residues along with the predicted
substrate-interacting residues (see text for details) and the loop regions spatially proximate to the catalytic residues are marked. The figure was prepared with Setor
(Evans, 1993). b) A flowchart providing a schematic description of various data sources, and evidence types employed for function annotation of serine-protease-like
proteins in Drosophila genome. We employed several methods for data analysis and identified molecular function, biological processes and sub-cellular location for
serine proteases and SPHs encoded in Drosophila genome. The annotations were verified through literature surveys and data from RNAi screens where possible.
References are quoted in the main text.
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Fig. 2. A flowchart describing the steps of Functional Residue Clustering (FRC) algorithm. In order to identify functionally important residues, the first step of FRC
utilizes three different type of information: 1) identification of substrate-interacting residues using 3-D structures from five protease sub-families bound to different
chemical/natural inhibitors, 2) representative protease structures to study position-specific properties and 3) protease sequences that are well-annotated by Swiss–Prot
(Apweiler et al., 2004; Bairoch et al., 2004) to check for conservation and sub-family specific substitutions. In the second step proteases are clustered according to
hydrophobicity and patterns of absence/presence of these amino acids.

202 P.K. Shah et al. / Gene 407 (2008) 199–215
location prediction and most proteases were predicted as
secreted enzymes (Additional file 1).

2.2. Description of FRC algorithm

FRC algorithm as applied to the serine proteases involves two
steps: 1) identification of protease active-site residues involved in
substrate binding and catalysis by structure–function analysis of
proteases and 2) clustering of proteases using similarities of these
residues for quantitative transfer of molecular function from
characterized proteases to uncharacterized proteases (Fig. 2).

2.2.1. Identifying protease residues involved in substrate
binding and conferring substrate specificity

In this study a list of serine-protease residues that are involved
in substrate binding and catalysis was derived using three
different datasets (Fig. 2). The first dataset consisted of 55 high-
quality 3D structures from five protease sub-families, viz. trypsin,
thrombin, elastase, coagulation factors and plasminogen activa-
tors, bound to different chemical/natural inhibitors. Here we
exploited the knowledge that protease inhibitors bind to proteases
at their active sites to inhibit catalytic activities of the proteases
and utilized this dataset to identify substrate-interacting residues.
Analysis of inhibitor-interacting properties of five different sub-
families was expected to provide us with a consensus list of
protease residues interacting with substrate/inhibitors. In crystal
structures the protease residues with Cα atoms at distance less
than 4 Å to inhibitor atoms were considered as substrate-inter-
acting residues. For an average length of 227 amino acid residues
in the serine-protease domain, each position was presumed as
independent and we looked for protease residues that do not
interactwith inhibitors purely by chance.We calculated frequency
with which each protease residue in each sub-family interacted
with inhibitors and utilized binomial probability distribution to
assign a p-value for each residue in each sub-family for interacting
with inhibitors (Figure S4).

The second dataset consisted of protease structures represen-
tative of different sub-families as classified by SCOP (Murzin
et al., 1995). We also utilized SCOP to provide sub-family
classification for protease structures in PDB that formed dataset 1.
Using structure based sequence alignment of protease structures
from dataset 2 we examined various structural properties (e.g.
solvent accessibility, hydrogen bonding, packing) of these
residues and adjoining secondary structures. While, the third
dataset consisted of aligned protease sequences from various
species that are well-annotated by Swiss–Prot (Apweiler et al.,
2004; Bairoch et al., 2004). The third dataset permitted us to
examine the conservation and sub-family specific substitutions in
substrate-interacting residues (Figures S5–S7; Additional file 2).

Using these datasets, we identified 29 inhibitor-interacting
residues residing on loops 3, 5, 7, 11, 12, and 14 that had p-
valueb1e−5, had conserved structural properties, were solvent
accessible (except D102) and were either absolutely conserved
or showed sub-family specific conservation (Figure S4; Table 1).
See supplementary material for more details on the structure–
function analysis.

2.2.2. Hierarchical clustering of functional residues
The substrate-interacting residues identified in the first step

and those residing on adjoining loops were extracted from



Table 1
Amino acid side chains that interact with inhibitors

Trypsin Thrombin Co-agulation factor Elastase Plasminogen activators

Loop 3 40, 41, 42 38, 40 41
Loop 5 57 57, 60A–F 57 57
Loop 7 97, 99 97A, 98, 99 97, 98, 99 99 99
Loop 11 175 174 174 174
Loop 12 189–195 189–195 189–195 190–195 189–195
Loop 14 213–217, 219, 220, 226 213–217, 219, 220 213, 215–217, 219, 220, 226 215–218, 220, 226 213–217, 219, 220, 226
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multiple sequence alignments and their hydrophobicity values
and patterns of absence/presence were employed as features to
perform hierarchical clustering of proteases. We employed
Kyte–Doolittle hydrophobicity scale (Kyte and Doolittle, 1982)
and absolute correlation co-efficient (R) as a similarity measure
(Eisen et al., 1998). Since this procedure considers only
substrate-interacting residues we can transfer molecular func-
tion from a well-characterized protease to an uncharacterized
protease with similar active site and utilize correlation co-
efficient as a quantitative measure of active-site similarity.

We carried out two clustering experiments. The first clustering
experiment included non-redundant set of protease structures
termed ‘structures set’ (Figure S8a) and the second clustering
experiment included ‘structures set’ merged with sequence
alignment of all serine proteases in D. melanogaster termed ‘all
proteases set’ (Figure S9). The ‘structures set’ contains proteases
with known 3D structures and known substrate specificities.
While, ‘all proteases set’ contains proteases that may or may not
have been characterized in terms of substrate specificities.

2.3. Evaluation of FRC algorithm performance

2.3.1. Validation of residues identified by the first step of FRC
and comparison to other methods

In the first step of FRC we identified 29 substrate-interacting
residues. We carried out an exhaustive literature survey to
validate participation of these residues in substrate binding and
in conferring specificity as described in various mutagenesis
studies. The literature survey validated all the residues
identified in our work (see Supplementary material).

We also compared our results to other computational
approaches that identify functionally important sites in proteins.
The Evolutionary Trace (ET) method (Lichtarge et al., 1996)
incorporates structural information,multiple sequence alignments
(MSA) and utilizes evolutionary cut-offs for defining sub-groups.
ET is closest to the first step of FRC in terms of methodology.
However, ET doesn't use sub-family information from SCOP and
Swiss–Prot annotations. ET identified 25 residues as the ‘surface
patch’ residues. Only 10 of these 25 residues are in agreement
with our results. ET failed to identify many residues identified in
our analysis (e.g., 60, 96, 97, 99, 213 and 217) whose roles are
verified from mutagenesis reports published in literature. Some
residues identified by ETare false positives (e.g. residues forming
disulfide bridges) for being classified as functional residues. The
procedure described by Hannenhalli and Russell (2000) utilizes
information from MSA to predict sequence determinants of
protease sub-family specificity. Their method was able to identify
only 4 residues, all present in the C-terminal half of the proteases.
Methods like TreeDet (Carro et al., 2006) and SPEL (Pei et al.,
2006) could not handle multiple sequence alignment of serine
proteases used by us.

2.3.2. Validation of the clustering procedure
We are unaware of any computational method analogous to the

second step of FRC that provides a quantitative index of similarity
between a pair of proteins at their functional site. We employed
knowledge of functional specificities in the ‘structures set’ and
Swiss–Prot annotations in the ‘all proteases’ set, to benchmark the
performance of FRC. ‘All proteases’ set was also employed to
determine the threshold value of correlation co-efficient R at
which molecular function can be reliably transferred.

First, using the ‘structures set’, we compared the clusters
obtained with FRC, with those obtained from whole domain
phylogenetic trees to see whether clusters proposed by FRC
proves to be more meaningful than whole domain phylogenetic
trees (Figure S8a, b). Whole domain phylogenetic trees were
constructed using neighbour-joining (Retief, 2000) and maxi-
mum likelihood (Guindon and Gascuel, 2003) methods and
compared to FRC clusters. Both FRC and whole domain phy-
logeny suggest closer relationships between trypsins, thrombins
and coagulation factors as compared to elastases and plasminogen
activators suggesting that functionally important residues of
serine-protease domains identified in the present study are
sufficient to group functionally similar proteases together.

On the other hand, FRC groups β-tryptase together with
trypsins, which is deep rooted in the whole domain phylogenetic
trees. It is known that beta tryptase, like trypsin, preferentially
cleaves peptide substrates carboxy-terminal to arginine and
lysine residues (Kam et al., 1995), though it forms tetrameric
structures and differs substantially from trypsins in sequence.

FRC also clusters caldecrin (1pytc) together with porcine
pancreatic elastase (1brup) but not with leukocyte elastase,
another elastase, as suggested by SCOP classification. Struc-
tural analysis in agreement with FRC results suggests that
caldecrin is closer to 1brup and α-chymotrypsinogen (Supple-
mentary material). In fact, it is known that caldecrin possesses
characteristics of both elastase and chymotrypsin sub-families;
it is closer to elastase sub-family in sequence but shares disul-
fide bridge pattern and catalytic specificity as in chymotrypsins
(Gomis-Ruth et al., 1995). It is not inhibited by classical
chymotrypsin inhibitors suggesting that it is different from
chymotrypsins (Yoshino-Yasuda et al., 1998). These examples
involving tryptase and caldecrin suggest that FRC can provide
better insights into similarities and divergence at the functional
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sites than the approaches that employ information at the whole
domain level.

2.3.3. Benchmarking of FRC annotation transfer
In order to calculate specificity and sensitivity of FRC, we

examined FRC clusters at different values of correlation co-
efficient R for homogeneity of annotation as provided by
Swiss–Prot. FRC clusters at RN0.3 for ‘all proteases’ set
yielded the best value for Mathew's correlation co-efficient
(MCC). At RN0.3 the FRC results included 27 clusters (140
proteins) with more than two proteins in each cluster. These
clusters include 87 proteases (true positives) out of total 89
proteases for which Swiss–Prot annotations of substrate spe-
cificity are available. A total 22 (98 proteins) of these 27
clusters are homogeneous, 2 clusters (17 proteins) contain 1
member of different molecular function (clusters 23 and 24) and
3 (25 proteins) clusters contained more than one member of
different molecular function (clusters 25, 26 and 27; Supple-
mentary tables S2, S3). In summary, at RN0.3 the results
include 87 true positives, 2 false negatives, and 9 false positives.
Considering a total of 144 active proteases in D. melanogaster;
FRC achieves a specificity of 0.86, sensitivity of 0.98 and MCC
of 0.87 (see Supplementary material for definitions of
specificity, sensitivity and MCC and Tables S2 and S3 for
details on clusters).

We also compared FRC based annotation transfer from
proteases in structures set and those annotated in Swiss–Prot to
three substrate-specificity class (trypsin, chymotrypsin and
elastase) annotations provided to 122 Drosophila proteases by
Ross et al. (2003). There are 106 identical and 9 differing anno-
tations between the two datasets (87% overlap). The 9 differently
annotated proteins were all found in non-homogeneous FRC
clusters that contain Drosophila gene products with differing
substrate specificities (Tables S2, S3). Moreover, FRC also
provided annotations for 20 proteases that were classified as
‘unassigned’ by Ross et al. (Tables S2, S3). Thus, FRC provides
manymore annotations of substrate specificity and supersedes the
analysis by Ross et al., which assigns substrate specificity on the
basis of only 3 C-terminal amino acid residues (Perona et al.,
1995).

A careful examination of the deviations from FRC annota-
tions provides some interesting observations. For instance, a
comparison of sequence alignment of trypsin, and chymotryp-
sin structures with 2 Drosophila members (CG17234/Q9VQ99
and CG11911/Q9VPN8) from non-homogeneous clusters
(clusters 22 and 24 respectively, Supplementary Tables S2,
S3), through visual inspection reveals a closer relationship with
trypsins, though annotated as chymotrypsins (Ross et al., 2003).
Similarly, CG8215, annotated as a trypsin by Ross et al. (2003)
is actually a SPH due to mutation in His-57. The co-clustering
of chymotrypsins and elastases (clusters 25 and 26) may be
explained due to observed similarities in their active sites.

2.4. Analysis of gene-expression data

Gene-expression data for 30 time points taken at regular
intervals during the embryogenesis for ∼13,000 Drosophila
genes (Hooper et al., 2007) and from Arbeitman et al. (2002)
were analysed. The dataset included 191 genes whose products
contain serine-protease-like domains. The procedure of micro-
array construction and data acquisition has been described
elsewhere in detail (Hooper et al., 2007). The expression data
were normalized using non-linear normalization protocol with
cubic splines (Workman et al., 2002). Peak-finding procedure is
as described by Arbeitman et al. (2002). For each gene the
dynamic range of gene expression was defined as the third
highest ratio minus the third lowest ratio of expression. A gene
was considered activated if the ratios at two successive time
points fall into upper half of the dynamic range of the gene
expression. The two highest and lowest ratios were discarded to
avoid counting artifactual extremes.

A similarity matrix based on absolute correlation and hie-
rarchical clustering algorithm was used to cluster genes (Eisen
et al., 1998). We utilized RN0.8 for examining gene-expression
clusters (von Mering et al., 2005). Genes that share correlated
expression patterns with SPHs during Drosophila embryogen-
esis were examined systematically for physical associations
curated in BIND (Gilbert, 2005) and functional associations
using STRING (von Mering et al., 2005). The co-expressed
genes were further mapped to their putative functional categories
in GO, which provides a unified gene function classification
system across genomes (Additional file 3).

2.5. Analysis of other data types

The high-throughput interaction data of Giot et al. (2003)
provided 144 putative interactions for Drosophila proteases.
Only 33 out of 144 interactions have been rated as high-
confidence interactions and the rest as low-confidence interac-
tions by BIND curators (Giot et al., 2003; Gilbert, 2005). We
filtered interaction data using predicted sub-cellular location of
interaction partners and expert judgement (Additional file 1).
Literature surveys were performed using iHOP server (Hoff-
mann and Valencia, 2004) and PubMed (Fig. 1b).

3. Results

3.1. Analysis of domain architectures

Domain architecture analysis of all 201 proteins with trypsin-
like serine-protease domain derived using SMART (Letunic
et al., 2006) suggested 144 domains as catalytically active and
the remaining 57 (28%) as SPHs due to mutations in one or
more catalytic triad residues. Most of the catalytically active
proteases and SPHs occur as single domain proteins while a few
are present in multi-domain proteins. Protease domain resides at
the C-terminal end in a majority of these multi-domain proteins
(Figure S3; Additional file 1). Four genes in Drosophila encode
proteins with two serine-protease-like domains. Interestingly,
each of them is a combination of an active protease-like and a
SPH domain (Additional file 1).

At least 7 proteins contain membrane-spanning helices in
addition to protease-like domains. Most proteases are secreted
enzymes and therefore these domains may be cleaved from



Fig. 3. a) Alignment of N-terminal chitin binding repeats in masquerade
(Murugasu-Oei et al., 1995) with those in GRAAL gene product of Drosophila
melanogaster and Sp22D protein of Anophilis gambiae are shown with those
identified from plants and other invertebrates (Suetake et al., 2000) (see
Supplementary material for details). Presence of sequence repeats are indicated
by English uppercase letters (A to E). Proposed chitin binding residues are
boxed and conserved cysteines are indicated with an asterisk (see Supplemen-
tary material for details). b) Restricted alignment of serine-protease domain of
masquerade and homologues with other proteins involved in patterning in
Drosophila and closest known structural homologues (bovine trypsin [5ptp-]
and human thrombin [1c1uh]) of masquerade. Residues conserved in
masquerade like sequences are boxed and functional residues identified are
marked with an asterisk. Secondary structures are shown according to bovine
trypsin (5ptp-). The loop regions are marked. Loop nomenclature was adopted
from Peisach et al. (1999).
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mature protein products to perform its role but otherwise be
resident in membrane. For example, CG8464 encodes a gene
product with a transmembrane helix, an active protease domain,
and a C-terminal PDZ domain and is predicted to localize to
mitochondria (Additional file 1). Its human orthologue HtrA2/
Omi is also a mitochondrial protein and is involved in cyto-
chrome c dependent apoptosis after autocatalytic processing
(Hegde et al., 2002). Thus, CG8464 may also serve the same
role and it is the first mitochondrial protease identified in D.
melanogaster.

Drosophila masquerade (mas) gene codes for a 1047 amino
acids long protein that contains an N-terminal domain containing
disulfide knotted motifs and a C-terminal SPH domain (Murugasu-
Oei et al., 1995). The sequence similarity between mas and its
homologues such as GRAAL and Sp22D, extended to regions
beyond the C-terminal protease domain. Several conserved Cys-
rich motifs were observed in the N-terminal region (Fig. 3a).
Masquerade also contains poly-threonine stretches like GRAAL
and Sp22D (data not shown). We propose the possibility of chitin
binding function at the N-terminal region ofDrosophilamas and its
homologues based on similarities with known chitin bindingmotifs
(Suetake et al., 2000). An alignment including trypsin, thrombin,
some active serine-proteases and mas-like sequences (Fig. 3b)
suggested that the functional residues over the entire catalytic
pocket have undergone mutations, suggesting that these proteins
are unlikely to be active proteases or act as a competitive inhibitor
of Easter (Moussian and Roth, 2005), as originally suggested
(Murugasu-Oei et al., 1995). Patterns of disulfide bridges also
suggested mas to be an intermediate sequence to both trypsin and
thrombin sub-families.

Analysis of domain co-occurrences revealed that proteins
containing CLIP domain invariably contain a serine-protease-like
domain for all such genes in Drosophila genome. The consistent
co-existence of these two domains suggests synergistic function
for them in immune response (see below).

3.2. Identifying the determinants of substrate specificity

By performing structure–function analysis on 3 datasets of
proteases; we identified 29 protease residues involved in catalysis
and substrate specificity (Table 1). These residues include well-
known catalytic triad residues (H57, D102 and S195) and others
that line the catalytic pocket (Fig. 1a). Patterns of solvent
accessibility, hydrogen bonding and side-chain packing sug-
gested that residues of the catalytic triad are rigidly held by the
adjacent secondary structures to maintain the geometry (Figures
S5–S7). Loop12 and Loop14 contributed 16 out of 29 substrate-
interacting residues contributing 7 and 9 residues, corresponding
to the classical view that the C-terminal of proteases contains
determinants of catalysis and substrate specificity. However, we
also identified substrate-interacting residues reside in loops 3, 5, 7
and 11. Exhaustive survey of mutagenesis results reported in the
literature supports our claims (see Supplementary material). We
utilized these residues in the second step of FRC to efficiently
transfer annotations of substrate specificity from well-character-
ized mammalian and other proteases to uncharacterized Droso-
phila proteases.
3.3. FRC is an efficient method for transfer of substrate
specificity

Substrate specificity for a majority of the serine proteases in
Drosophila genome is unknown. In the clustering experiments
described in the Methods section FRC achieved a specificity of
0.86, sensitivity of 0.98 and MCC of 0.87 at RN0.3. Therefore,
we explored the possibility of transferring substrate specificities
to Drosophila proteases from structurally characterized but
distantly related mammalian proteases and existing Swiss–Prot
annotations based on more reliable FRC approach.

FRC assigned diverse functions to Drosophila proteases. For
example, Drosophila Corin was assigned plasminogen activity
and CG10472 and CG8329 (with CG18180 and CG18179)
were identified as collagenases (Table 2). FRC also permitted us
to annotate substrate-specificity information for additional 38
active proteases in comparison with existing Swiss–Prot



Fig. 3 (continued ).
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Table 2
Transferring function based on functional site similarities

PDB structure Function Drosophila SP Correlation
co-efficient (R)

Specific comments

1aola (Homo sapiens) Beta-tryptase CG16998 0.59 CG16998 implicated in immune
response ( Tables S5–S7)

1ekbb (Bos taurus) Enteropeptidase CG14760 0.59
1a5ia (Desmodus rotundus);

1a5ha (Homo sapiens)
Single-chain
plasminogen activator

Corin (CG2105) 0.56 CG2105 implicated in immune
response (Tables S5–S7)

1ddja (Homo sapiens) Plasminogen CG11664 (SPH) 0.55
1agja (Staphylococus aureus) Epidermetolytic toxin CG4815 0.53
1pytd (Bos taurus) Chymotrypsin CG5240

(CG31267; SPH)
0.53

4chaa (Bos taurus) Chymotrypsinogen CG8528 (CG32374) 0.53
1azza (Uca pugilator) Collagenase CG7542, CG10472 0.52 CG18180 implicated in

immune response (Tables S5–S7)2hlca (Hypoderma lineatum) HL Collagenase CG18180, CG18179,
CG8329

0.5

1elt (Salmo salar), 1qnj (Sus sucrofa),
1brup (Sus sucrofa)

Elastase CG1497 (CG32523),
Ser6 (CG2071), CG1304,
CG9676, CG9675

0.49 All implicated in immune
response ( Tables S5–S7)

1aut (Homo sapiens), 1fxy (Homo sapiens),
1kig (Bos taurus), 1hcg (Homo sapiens),
1ucy (Bos taurus), 1clu (Homo sapiens)

Activated protein C;
coagulation proteases

CG11530 (CG32270),
CG17239

0.45

1ton (Rattus rattus) Tonin CG6069 (SPH) 0.44 CG6069 implicated in immune
response and chitin metabolism
( Tables S5–S7)

1ddja (Homo sapiens) Plasminogen CG8528 (CG32374) 0.4
1ppf (Homo sapiens), 1a7s (Homo sapiens), 1fuj Leukocyte elastase; heparin

binding protein (thrombin);
myeloblastin (PR3; thrombin)

CG11529 0.38

1aola (Homo sapiens) Beta-tryptase Ranbp11(CG33139);
CG10764

0.37

Some of the examples discussed in the text are highlighted in bold.
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annotations (Fig. 4; Table S3). This represents more than 50%
increase in function annotation.

3.4. Putative competitive inhibitors of active proteases can be
recognised

Competitive inhibitors bind to substrates of actual proteases,
thus preventing proteolysis (Jackson, 1999; Tesch et al., 2005).
It is thus imperative for them to have catalytic pocket very
similar to the active proteases. Since, FRC was applied to all the
proteases and SPHs in the Drosophila genome, it is possible to
assign CIRs to protease-SPH groups that share significant
similarities at the catalytic pocket. Some examples of CIRs
include relationships between CG5246 and mas, Easter and
CG3505, and Tequila and CG12388 (Table 3).

Interestingly, functional sites of two pairs of SPHs (CG5390,
CG4998 and CG4653, CG9673) were found to be most similar
to each other. This perhaps indicates some functional redun-
dancy in SPHs (Table 3). Further evidences supporting anno-
tations from FRC and CIRs are discussed below.

3.5. Mining for functional interactions

STRING (vonMering et al., 2005) provides protein functional
association derived from high-throughput experimental data,
from the mining of other databases, literature, and from predic-
tions based on genomic context analysis. We systematically
searched STRING to retrieve high-confidence functional associa-
tions (STRING score N0.7) to assign molecular functions or
biological processes to serine proteases. Out of 201 Drosophila
serine proteases, STRING provides functional associations
(clusters) for only 25 proteases (21 catalytically active proteases
and 4 SPH) with high confidence (Additional file 3). These
included serine proteases Gd, Snake, Easter and Nudel; members
of the well-known protease cascade in Toll pathway involved in
development and in immune response (LeMosy et al., 1999; Han
et al., 2000; Dissing et al., 2001; Rose et al., 2003).

We found SPH CG6069, clustered with CG7663 (STRING
score 0.788). CG7663 is a structural component of cuticle and
contains Pfam (Finn et al., 2006) domain ‘Chitin_bind_4’
(PF00379), which is suggestive of its function as a chitin binding
protein (Additional file 3). Thus, association of CG6069 with
CG7663 indicates that it may function during chitin metabolism,
possibly by recruiting substrate(s) for active proteases. It is also
implicated in immune response, which may also be possible due
to its role in chitin metabolism (Table S5).

Manual examination of the STRING clusters revealed
correlated expression of genes with cytochrome P450 domains
in 8 out of 24 clusters. A recent microarray analysis of immune
challenged Drosophila hemocytes, reported presence of cyto-
chrome P450 family members (Johansson et al., 2005) in high-
confidence clusters indicating that these proteases may be
involved in detoxification pathways. One cytochrome P450
enzyme (shade) is known to carry out the hydroxylation of



Fig. 4. Clustering of all Drosophila serine-protease-like proteins based on active-site similarities. The inset shows similarities at the active sites measured in terms of
correlation co-efficient R between Drosophila serine-protease-like gene products masquerade and CG5246, and Easter, CG3505 and CG3066.
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ecdysone to the 20-hydroxyecdysone mediating the develop-
mental transition (Petryk et al., 2003) which triggers cascades of
serine proteases (see below).

3.6. Large-scale protease expression during Drosophila
embryogenesis

In order to gain further insight into the possible functional
associations of Drosophila serine proteases, we examined the
gene-expression profiles of 191 proteases (Hooper et al., 2007)
during embryogenesis and profiles of 41 proteases reported in
the literature (Arbeitman et al., 2002). We found 191 proteases
expressed during embryogenesis, most of them at the end of the
stage (Fig. 5a). While, gene expression itself may not quantify
functional contribution, clearly visible cis-regulation of gene-
expression clusters points to the involvement of proteases
during development. Out of 30 time points taken during the
embryogenesis, no protease is expressed continuously in even
half of them (Fig. 5b; left panel) and there is a clear surge in
protease expression visible towards the end of embryogenesis
(Fig. 5b; right panel).

The proteases show regulated expression at various stages of
embryogenesis. For example, expression of genes involved in
early dorso-ventral patterning (e.g., Easter, Snake and gastrula-
tion-defective) can be seen in the beginning of the em-
bryogenesis. Drosophila gene Stubble (Bayer et al., 2003) can



Table 3
Competitive inhibitor relationship based on functional site similarities

Drosophila SPH Drosophila SP Correlation-co-
efficient (R)

Specific comments

CG4998 CG5390 (SPH)⁎ 0.74 Both implicated in immune response ( Tables S5–S7)
CG8586 AAG22434.1 (CG18478)⁎ 0.73 Both implicated in immune response ( Tables S5–S8)
CG17477 CG17475 0.72 CG17477 co-expresses with genes possibly involved in metabolism and defense response

( Additional file 3)
CG12388 EtaTry (CG12386) 0.71
CG6639 CG8586, AAG22434.1

(CG18478)⁎
0.68 All implicated in immune response ( Tables S5–S7)

CG3505 Easter (CG4920) 0.62 CG3505 functions in the same immune response pathway as Easter (see text)
CG4653 CG9673 (SPH)⁎ 0.58 CG9673, possibly associated with drug metabolism ( Tables S5–S7)
CG13527 CG15873 (SPH)⁎ 0.58
CG4259 CG11531, CG11532 0.56 CG4259 and CG11532 implicated in immune response ( Tables S5–S7)
CG9897 Ser89E (CG31217) 0.56 CG31217 implicated in immune response ( Tables S5–S7)
CG8738 CG10586 0.55 CG8738 co-expresses with genes possibly involved in signal transduction

(Additional file 3)
CG12388 Tequila (CG4821) 0.54 CG12388 co-expresses with synapsin, a neuronal phosphoprotein implicated in

associative learning (see text)
mas (CG15002) CG5246 0.54 See text
CG3088 Ser99Da (CG7877), CG2229,

CG18030
0.52 All implicated in immune response ( Tables S5–S7)

CG9377 CG10469 0.51 CG9377 implicated in immune response ( Tables S5–S7); CG10469 interacts with pip,
which is implicated in immune response (Additional file 3)

CG3117 CG9898 (CG32834; SPH)⁎ 0.49 CG3117 implicated in immune response, co-expresses with several genes implicated in
metabolism and signaling ( Additional file 3)

CG1632 CG4259 (SPH)⁎ 0.47 Predicted to have low-density lipoprotein receptor activity ( Additional file 1)
CG4271 CG9897 (SPH)⁎, Ser89E

(CG31217)
0.47 CG31217 implicated in immune response ( Tables S5–S7)

CG18563 AAG22436.1 (CG4793; SPH);
AAG22433.1 (CG18477; SPH)⁎

0.46 CG18563 implicated in immune response ( Tables S5–S7)

CG18557 CG6048 0.46 Both implicated in immune response ( Tables S5–S7)
CG10450 (C-term;

CG30286)
CG16749; CG4998 (SPH)⁎; Ser4
(CG8867; Jon25Bi)

0.44 All implicated in immune response; Ser4 also implicated in digestion ( Tables S5–S7)

mas (CG15002) CG12949 0.44
CG13527 CG15873 (SPH); CG17837

(SPH); CG3795 (EG:9D2.4)
0.4 CG17837 implicated in immune response ( Tables S5–S7)

CG11664 CG8528 (CG32374) 0.4
Gd (CG1505) CG9649, CG9645 (CG31326;

CG33109; SPH)⁎
0.37 CG1505 implicated in immune response ( Tables S5–S7)

CG9672 CG17572 (SPH)⁎ 0.36 CG9672 implicated in immune response ( Tables S5–S7)
CG4650 CG16918 (SPH)⁎ 0.36 CG4650 implicated in immune response ( Tables S5–S7)
CG17242 CG8170, CG13744 0.34
CG8555

(CG32382)
CG16731 (C-term; CG31219) 0.34

CG14990 CG9631 0.32 Both implicated in immune response ( Tables S5–S7)

The examples discussed in the text are highlighted in bold. SPH pairs are indicated with asterisk (⁎).
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be observed in the first half of the embryogenesis. We could see
protease cascade including genes of Jonah and Trypsin sub-
groups at the end of the embryogenesis (Fig. 5a) suggesting that
they participate in the large-scale tissue re-modelling at the end
of embryogenesis. We found conserved motifs in 5′-regions of
trypsin and Jonah gene clusters using Meta-MEME (Grundy
et al., 1997) and CIS-ANALYST (Berman et al., 2004) (data not
shown). Thus, cis-regulation visible in the time-series data is
biologically meaningful. Ecdysone-dependent regulation of
Jonah genes at pupariation was also reported recently
(Beckstead et al., 2005).

Time-series data suggest that expression of CG3066 is
correlated with Easter and Snake (R=0.69; Fig. 5a,b). CG3066
is a monophenol monooxygenase activator involved in activa-
tion of melanization chiefly in response to fungal infection. It is
also believed to be involved in a possible cross-talk between
melanization and Toll pathway (Tang et al., 2006). The FRC
(R=0.62) also suggests it to be the closest active-site homologue
of Easter (Fig. 4; Figure S9; Table S3). Thus, the expression and
function site profiles permit us to postulate an important role for
this gene in early embryogenesis too.

A search on LIFECYCLE database (Arbeitman et al., 2002)
for genes whose expression patterns are best correlated with
mas resulted in the identification of gene products whose func-
tions are implicated either in skeletal development (CG5656) or
in defense response (CG5772) or both (CG15151).
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3.7. Dual roles of proteases in development and immune response

D. melanogaster is a good model for studying mechanisms
of immune response. Induction of serine proteases has been
noticed in many classical as well as genome-wide studies of
Drosophila immunity. Flybase currently annotates only 22
genes with GO terms ‘serine-type endopeptidase and defense
response’. Therefore, the extent of involvement of serine pro-
teases in immunity has been under-appreciated. We carried out a
survey of Drosophila genes implicated in immunity by
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literature searches and in four published genome-wide studies
of Drosophila immunity in a search for serine-protease genes
that display significant change in expression levels (De
Gregorio et al., 2001; Irving et al., 2001; Roxstrom-Lindquist
et al., 2004; Wertheim et al., 2005). We found a total of 94 (out
of 201; 47%) trypsin-like serine proteases involved in immune
response in Drosophila (Table S5).

These four genome-wide surveys involve two studies of
Drosophila innate immunity against bacteria and fungi and the
remaining two assess immune response against parasites/
parasitoids. There are 21 genes (termed as the core set) com-
mon between these two different types of immune responses
(Table S6). These genes contain 11 members of Jonah gene
family, and proPO-activating enzymes among others. As shown
Jonah genes have been known to express coordinately in
response to the steroid hormone ecdysone during the end of
embryogenesis. Genes in core set as well as those involved in
innate immune response contain many well-characterized genes
belonging to protease cascade involved in Drosophila devel-
opment and Toll pathway. On the other hand, proteases im-
plicated in parasite response alone are not well-characterized.

Flybase annotates 560 genes (out of 14888 Drosophila
genes) with the GO term ‘defense response’ but that includes
only one SPH. Moreover, in most genome-wide studies, pre-
sence of SPHs was not distinguished from the catalytically
active proteases. We found significant change in expression for
27 out of 57 SPH coding genes (47%) in those studies. This
suggests specific recruitment of SPH domain in immune
response (p-value 6.4×10−18; Fishers exact test) and perhaps
evolution of a new function for SPHs.

Similarly, we also found all 17 genes encoding for proteins
with CLIP domains that are always accompanied by serine-
protease-like domains in Drosophila genome, induced during
the immune response. It also suggests specific recruitment of
CLIP domain containing proteases in immune response (p-
value 1.14×10−24; Fisher's exact test).

3.8. Functional inferences on the basis of co-expression and
physical interactions

We identified gene clusters (Bansal et al., 2007) with highly
correlated expression patterns across 30 time points and
containing Drosophila proteases and SPHs (correlation co-
efficient N0.8; Additional file 3; Figure S10). Drosophila SPHs
appear to co-express and in some cases physically interact, with
gene products involved in diverse physiological processes, but
overall, the analysis showed no enrichment in protein–protein
interactions (Additional file 3). We found a single cluster (see
Supplementary material) with an over-representation of a single
Fig. 5. a) Illustrative gene-expression patterns for 191Drosophila SP-like proteins dur
assignments were taken from Ross et al. (2003). The columns from left to right show:
(yellow — activated, green — not activated); Chromosomal localization (5 colours,
LDLR, SR, C, PC and SP, SPH. SPH domains are shaded greenwhile SP domains are s
1) Proteolysis and peptidolysis, 2) Immune response, 3) Development and patterning,
protease expression duringDrosophila embryogenesis. The graphs show the number o
Drosophila embryogenesis (left panel) and the number of serine proteases expresse
regulated gene expression. (For interpretation of the references to colour in this figur
GO annotation (diazepam binding/valium binding activity; p-
value 6.5×10−05). Thus, SPH CG9673 is likely to be associated
with the cluster that is involved in the drug metabolism process.

Gene expression may or may not be related to functional
specificity. Some of the reasons may be 1) incomplete gene-
expression data 2) differences between mRNA and protein
expression levels 3) noise in the existing data and 4) lack of
information about physiological cleavage sites in substrates for
the enzymes. While we have tried to predict in vivo substrate
specificity, it is beyond the scope of current analysis to study the
presence of cleavage sites in proteins that belong to these gene-
expression clusters.

3.9. Verification of function annotations

We utilized results from a recent in vivo RNAi screen for
37.5% (75) of all serine proteases for studying regulation and
activation of Toll pathway by gram-positive bacteria/fungi in
Drosophila (Kambris et al., 2006), as an independent source
of information for verifying our annotations. A total of 29 out of
75 genes tested with RNAi showed significant changes in
induction level or increased susceptibility to bacterial/fungal
infection (p-value 4.4×10−13; Fisher's exact test). This study
screened for 13 of the 21 genes belonging to the core set (see
above) of immune response and found 11 of them responding to
the bacterial/fungal infection (high rate of true positives). An
additional 5 genes annotated for immune response against
bacteria/fungi only were also found responsive in RNAi studies
(Table S7). The RNAi study also included 21 SPHs, of which 10
showed response against bacterial/fungal infection (p-value
3.4×10−13; Fisher's exact test). Moreover, none of the eight
genes annotated as responsive against parasite/parasitoid in-
fection using gene-expression data and tested in RNAi screen
for response to bacterial/fungal RNAi screen, showed any
response in those screens (no false positives). Thus, the RNAi
screen not only provides further evidence for our hypothesis of
large-scale utilization of active proteases and SPHs in Droso-
phila immune response but also reflects on high quality of
annotations provided in current analysis (Tables S5–S7).

3.10. Evidences supporting annotation of substrate specificity
and CIRs

We performed literature surveys and scanned various
databases to verify some annotations of substrate specificity
using FRC. CG8329 (with CG18180 and CG18179) annotated
as a collagenase (Table 2) is encoded by the furry locus which is
important for maintaining integrity of cellular extensions during
morphogenesis (Cong et al., 2001). Moreover, CG8329 interacts
ingDrosophila embryogenesis. Gene names, chromosomal locations and domain
serine gene names; Expression profile at different time points of embryogenesis
each representing a single chromosome); Domain composition (three columns,
hadedmagenta in the third column); GO annotation (Lewis, 2005) in six columns:
4) Toll pathway signalling, 5) Transport, and 6) Digestion). b) Patterns of serine-
f serine proteases versus the continuity in gene expression over different stages of
d at any given time point in Drosophila embryogenesis (right panel) indicating
e legend, the reader is referred to the web version of this article.)
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with esn gene which is assigned the GO term of ‘structural
constituent of cytoskeleton’ (Giot et al., 2003) (Additional
file 3). RNAi knockdown for CG18180 results in cuticular
tumors; a phenotype that is compatible with it being collagenase
involved in cytoskeleton re-modelling (Table S7). Thus,
CG8329, CG18180 and CG18179 may function in pathways
for the re-modelling of cytoskeleton and could be collagenases.

CG10472 was also annotated as a collagenase (Table 2).
Large-scale interaction data for Drosophila genome suggested
interaction between CG10472 and CG31120, a dioxygenase
(Additional file 3). A dioxygenase enzyme carries out hydro-
xylation of proline and lysine side chains in collagen and other
animal glycoproteins (Aravind and Koonin, 2001). Thus,
CG10472 may be a putative collagenase. Drosophila Corin
(Table 2) whose human orthologue has known fibrinolysis
activity (plasminogen activator) (Knappe et al., 2003) clustered
with plasminogen activators.

Similarly, evidences supporting CIRs were also found. For
example, FRC suggested SPHmas (a muscle attachment protein)
to be competitive inhibitor of CG5246 (Fig. 4; Figure S9;
Table 3). The protease CG5246 interacts with CG9319; an alpha-
methylacyl-CoA racemase involved in fatty acid metabolism
(Additional file 3). This is in agreement with original observations
that a total loss of mas function causes defective muscle attach-
ment (Murugasu-Oei et al., 1995). Thus, mas functions in
stabilizing cell–matrix interaction and is a limiting component in
the adhesion process. SPH CG12388 is considered to be a com-
petitive inhibitor of Tequila (Table 3), a neurotrypsin implicated in
long termmemory formation inDrosophila (Didelot et al., 2006).
Interestingly, during Drosophila embryogenesis, CG12388 was
found to be co-expressed (Additional file 3) with CG3985
(Synapsin), a neuronal phosphoprotein implicated in associative
learning in Drosophila (Michels et al., 2005). This suggests that
CG12388 may be associated with cellular pathways associated
with learning and memory in Drosophila. SPH CG3505 (CIR
with Easter; Fig. 4; Figure S9; Table 3) is already known to have a
function in immune response, a pathway in which Easter also
functions (De Gregorio et al., 2002).

3.11. Annotating Drosophila serine proteases

Flybase (Grumbling and Strelets, 2006) is the reference
database for the biological community that pursues research
using Drosophila as a model organism. Serine proteases have
been assigned the GO terms suitable for proteolysis and
peptidolysis by transferring molecular function based on
whole domain similarity. In some cases, SPHs are assigned
GO terms that suggests its participation in proteolysis. Proteases
like CG10232 (active) and CG3088 (SPH) have been assigned
wrong GO terms based on dubious domain predictions. Only 43
proteases carry meaningful GO terms (Fig. 6a). By employing
multi-fold approaches including literature searches, functional
information could be obtained for 190 gene products containing
serine-protease-like domains. Moreover, it includes putative
functional associations to 35 of the 57 gene products containing
SPH domains in Drosophila genome (Tables S8, S9). These
annotations represent a ten-fold increase in annotation for serine
proteases inD. melanogaster genome (Fig. 6a,b; Tables S8, S9),
albeit with the help of new data, with substantial manual
intervention and biological knowledge of these systems.
Moreover for 30 genes all 3 GO categories were assigned, 26
of which were not present in the Flybase. Literature curation
supports 10 of them, while the other 20 are completely supported
by analysis reported in this work (Table S8).

FRC approach was ∼10 times more powerful in function
annotation than transferring information based on domains
(Fig. 6b). Gene-expression data during development and immune
response provided information far greater than that available from
studies on individual genes. However, information provided by
different approaches is mutually exclusive and therefore
necessitates data-integration approaches (Jensen and Steinmetz,
2005) such as STRING. However, STRING identifies a
functional module for only 25 proteases suggesting that data-
integration tools for eukaryotic genomes are still evolving.

4. Discussion

Function annotation of proteins by computational
approaches has remained difficult for a large set of proteins
belonging to a family encoded in a single genome. There is no
previous effort on systematic in silico annotation of all three GO
terms for proteins belonging to a large multi-member family
encoded in a single eukaryotic genome. Similarly, there are not
many attempts to systematically identify function(s) for
catalytically inactive enzyme sequences. Our analysis on Dro-
sophila serine proteases describes such an approach with
significant implications in genome annotation.

We establish FRC as a powerful tool for transferring in vivo
substrate specificity (molecular function) in a quantitative manner
and with high values of sensitivity and specificity. A number of
computational methods have been developed to identify function-
ally important sites within protein families. These include app-
roaches that employ parameters such as sequence and
phylogenetic patterns (Lichtarge et al., 1996; Pei et al., 2006),
3D structures (Jones and Thornton, 2004; Jambon et al., 2005;
Brylinski et al., 2007) and residue physical properties (Elcock,
2001). But none of these approaches explicitly utilize structural
classification and function annotation present in sequence data-
bases. Results from thesemethods could be used instead of the first
step of FRC to provide a set of functionally important residues.

Another innovation of FRC lies in the clustering step, which
provides a quantitative similarity measure between given proteins
at their functional sites. In case of Drosophila serine proteases,
FRC was found to be ∼10-times more sensitive for transfer of
annotation using similarities of functional residues than the whole
domain similarities, from distantly related (and well-character-
ized) but divergent mammalian proteases to uncharacterized
Drosophila serine proteases. It was also possible to postulate
CIRs from the active-site similarity between pairs of active
protease and SPHs using FRC. FRC results could be sensitive to
availability of structural information and alignment errors.

FRC could potentially be employed to recognise CIRs with
pathogenic proteases that are believed to have a bearing in host–
pathogen interactions. To the best of our knowledge, this is the



Fig. 6. a) A comparative representation of functional annotations forDrosophila serine-protease-like proteins corresponding to GO functional categories (Lewis, 2005)
gathered through multi-fold approaches employed in our analysis and those provided for in Flybase (Grumbling and Strelets, 2006). Functional categories are
represented in abbreviated form as follows: M — GO molecular function; C — GO cellular process (biological process); C — GO sub-cellular localization. The
serine-protease-like gene products for which functional annotation was derived through either of the GO categories are indicated numerically in circles corresponding
to each GO category. The figures in parentheses indicate the number of gene products for which function annotation was derived exclusively by the corresponding GO
category. The numbers in intersects indicate gene products for which functional annotation was derived under more than one GO category (see Tables S8, S9). b)
Multifold approaches employed for obtaining functional information resulted in function annotation for 190 serine-protease-like gene products in Drosophila
melanogaster. The numbers in parentheses below the different approaches indicate the number of gene products for which possible functional information was
obtained (see Table S8).
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first computational method for identifying CIRs using structural
data at a genome-wide level. The annotations are of high quality
and are accompanied by evidences supporting our transfer of
substrate specificities and CIRs from literature and other data
types. However, there are no in vivo competitive inhibition data
available for Drosophila proteases and the difficulties in
identification of in vivo substrates for proteases at genomic
scale (Hashimoto C, personal communication) makes it difficult
to experimentally validate our results (on CIR) at present.

We observed large-scale and dual involvement of several
active proteases and SPHs in Drosophila development and
immune response. This large-scale involvement in immune
response may explain rapid divergences of Drosophila
proteases from their mammalian counterparts as compared to
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other proteins in Drosophila genome. Moreover, analysis of
gene-expression data provided evidences supporting evolution
of new functions for SPHs in immune response. These results
were further validated by results obtained from genome-wide in
vivo RNAi screens of serine proteases for immune response
(Kambris et al., 2006). To the best of our knowledge, this is the
first report that identifies evolution of a new function for
enzyme homologues (and SPHs) by utilizing high-throughput
data. This finding is also significant as SPHs have wide-spread
species distribution including in mosquito and humans
(Zdobnov et al., 2002). Integration of gene-expression profiling
data for multiple immune response experiments allowed
identification of a shared core set as well as separate set of
proteases with high confidence suggesting separate downstream
cascades for specific immune response. However, unlike
proteases involved in bacterial and fungal response, proteases
participating only in parasite/parasitoid response are un-
characterized.

Different datasets may often provide overlapping or com-
plementary information (Jensen and Steinmetz, 2005) due to
hierarchy in definition of function of a gene. It is evident that
structure–function analysis and gene-expression profiling data
provide complementary information for function annotation.
On the other hand, gene-expression profiling and RNAi screens
may provide overlapping information, which could be used to
increase confidence levels of function annotation. Our analysis
also suggests that results from expression profiling can also be
utilized for selecting targets for RNAi screening. Our efforts
resulted in a ten-fold increase in function annotation for Dro-
sophila proteases compared to Flybase at very fine-grained
level (e.g. Drosophila Masquerade) by integration of multiple
sources of data and manual intervention. We also provide
annotations for more than half the SPHs identified in the Dro-
sophila genome, which represents a significant progress in
annotating function for enzyme homologues.

Finally, our results have established how knowledge-based
computational tools can be reliably exploited in systematic an-
notation of function of gene products belonging to multi-mem-
ber families in eukaryotic genomes. The efforts described here
are limited only by the availability of suitable type of data and
errors in annotation introduced by different databases and bio-
informatics tools. Similar approaches may prove useful for
attempting systematic function annotation of other large multi-
member gene families such as protein kinases and G-Protein
coupled receptors. Our results emphasize significance and use-
fulness of still evolving data-integration tools for large-scale
function annotation, since enormous amounts of data from
multiple sources are likely to become available in the near future.
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