
Over the past decade, the advent of 
robotics has enabled a paradigm shift in 
molecular biology: a change of emphasis 
from reductionistic approaches and ‘sin-
gle-protein’ studies to global investigations 
of increasingly more complex systems of 
molecules and their interrelationships. 
These ‘systems approaches’ are used to 
investigate processes as a whole and enable 
models to be built to predict the behaviour 
of a system in response to various external 
cues, disturbances or modifications of 
its composition1. After ground-breaking 
work on the properties of small networks 
that consisted of a few genes, the wiring 
of complete cells and microbial organisms 
is now being investigated and modelled2,3. 
However, as free-living organisms 
constantly interact with each other and 
the environment, systems biologists are 
already looking towards the next big chal-
lenge — unravelling the complexity of 
complete ecosystems.

A microbial ecosystem can be defined 
as a system that consists of all the microor-
ganisms that live in a certain area or niche 
and that function together in the context 
of the other biotic (plants and animals) 
and abiotic (temperature, chemical com-

position and structure of the surround-
ings) factors of that niche. Communities 
range from being simple (for example, 
one- or two-species-dominated bioreac-
tors and biofilms that are growing on 
ore-mine effluents or medical implants) to 
complex (for example, symbiotic human 
gut flora, plant rhizospheres, soil commu-
nities and ocean dwelling or even airborne 
microorganisms, such as those present in 
clouds). The complexity of the interactions 
in ecosystems depends on the number 
of species and the population structure, 
variation in food and energy supply and 
the geography of the habitat4. Eco-systems 
biology seeks to understand, as a whole, 
the immensely complex set of molecular 
processes and interactions that contribute 
to ecosystem functioning — the total 
sum of ecosystem-level processes, such as 
matter, nutrient and energy cycling5. This 
understanding should ultimately lead to 
predictive modelling of ecosystems, allow-
ing the in silico investigation of ecosystem 
properties. Important issues that could 
be addressed by an ecosystems approach 
include estimating the relative importance 
of ecosystem members in ecosystem 
functioning and productivity, the effect of 

nutrient availability on species composi-
tion or the resilience of the ecosystem to 
disturbances.

To be successful, however, any sys-
tems-biology study requires data on three 
important aspects of the system: the ‘parts 
list’; the connectivity between the parts; 
and the placement of connectivity in 
the context of time and space6,7. FIGURE 1 
shows the current status of these three 
data levels at various system scales. In 
single-organism systems biology, the 
parts list is generally established; almost 
700 complete bacterial and archaeal 
genomes are available and some functional 
knowledge is available for approximately 
70–80% of the encoded genes8,9. For several 
model organisms, large-scale efforts have 
determined the connectivity among the 
parts (the physical and genetic interac-
tions between genes)2. This, together with 
an ever increasing amount of temporal, 
spatial and structural data, means that 
model microorganism systems biology is 
ready to enter the third phase and progress 
towards its final goal — the modelling and 
manipulation of complete organisms. The 
recent advent of several new large-scale 
technologies in microbial ecology, which 
have allowed high-throughput monitoring 
of genes (metagenomics), transcript and 
protein levels (meta-transcriptomics and 
meta-proteomics) and metabolites (meta-
metabolomics) (FIG. 1), are paving the way 
to an expansion of systems biology to the 
ecosystem level and are promising insights 
into these systems parts lists, connectivity 
and their temporal and spatial context at 
previously unforeseen scales. Here, we 
review these developments and assess how 
close we are to modelling complete microbial 
ecosystems.

Metagenomes provide the parts list
For several decades, ribosomal RNA stud-
ies have charted the species-level parts 
lists of environments10. However, unless 
the microorganisms that are identified can 
be cultured, their functional roles remain 
largely unknown. Functional assays of 
samples (for example, using BIOLOG 
plates to measure ecosystem substrate-
usage phenotypes) can provide insights 
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into some of the processes that occur in 
communities, but do not provide informa-
tion on which community members are 
involved. Techniques such as RNA-based 
stable-isotope probing11,12, fluorescence 
in situ hybridization (FISH)–microau-
toradiography13, isotope arrays14 and 
FISH–secondary-ion mass spectrometry15 

and its variants16 allow substrate usage and 
specific processes to be linked to species, 
but are limited to particular substrates, are 
subject to cross-feeding, are not applicable 
in all environments and do not generally 
provide molecular details on the genes 
that are involved17. Environmental DNA 
cloning and screening enable specific eco-

system functions to be linked to genes18, 
but such linking to bacterial or archaeal 
species is rare, and when successful, neces-
sitates the co-cloning of a phylogenetic 
marker19. Novel techniques that are based 
on single-cell isolation and simultaneous 
PCR of a phylogenetic marker with a 
functional gene of interest show prom-
ise20,21, but have not yet been scaled up to 
high-throughput simultaneous analysis of 
a large number of genes or functions and 
still have sensitivity issues22.

Environmental shotgun sequenc-
ing23–27 has recently provided ecosystems 
biology with a possible global ‘one-does-
all’ method. The random sampling of 
sequence data from the combined commu-
nity members (the metagenome) provided 
a first unbiased and large-scale glimpse 
into the total molecular parts list of com-
munities, and allowed the researchers 
(in theory) to simultaneously investigate 
genes, their functions and the individuals 
that exert them23. This promise has led 
researchers from all over the world to 
initiate metagenomic sequencing projects 
— more than 100 projects have been 
completed or are currently underway28. In 
addition, novel sequencing technologies 
with increasingly longer read lengths and 
the rapidly falling cost of sequencing will 
only expedite this process.

Metagenomic sequencing has so far 
added more than 10 billion bp to sequence 
databases9,28. The larger projects usually 
sequence approximately 50–100 Mb per 
environment, which should provide a 
firm foundation to start investigating the 
functioning of the underlying communi-
ties. However, this process is far from easy. 
Deriving ecosystem functioning from 
metagenomes requires careful sampling 
and DNA-extraction designs, followed by 
a considerable amount of far-from-trivial 
sequence-data processing (assembly and 
gene prediction on short reads), including 
the prior determination of a set of metage-
nome descriptors that describe the basic 
functional and phylogenetic composition 
of a sample29 (BOX 1; FIG. 2). Unfortunately, 
these descriptors are also interlinked and 
are influenced by various biological and 
technical factors, and therefore yield a rich 
spectrum of pitfalls (for example, observed 
phylogenetic composition is dependent on 
sampling strategy and observed functional 
composition is dependent on sequence cov-
erage and read length29 (FIG. 2)). In addition, 
the phylogenetic assignment of sequence 
reads, which is of paramount importance to 
the linking of molecular functions to spe-

Figure 1 | Systems biology: from proteins to environments. a | Different spatial scales at which 
systems biology can be performed (based on the ‘dimension’ definitions in REF. 6). The columns 
show data availability for each scale and the rows indicate the aspect of the system that is targeted 
by the data (+++, ample data available and good knowledge of the system aspect; ++, a number of 
high-throughput data sets available and fair knowledge of the system aspect, but more data are 
still needed to build comprehensive models; +, a few scattered non-high-throughput data sets 
available and model building is restricted to case studies; x, almost no data available). b |  At the 
ecosystem scale, read outs are available at different levels: molecules (ranging from trace elements 
to small signalling compounds to metabolism intermediates), genes or proteins, and cells or indi-
viduals. Here, we show some of the more promising high-throughput approaches to the generation 
of data that would facilitate eco-systems biology. No high-throughput tools are currently available 
that can map interactions, and this information will need to be inferred from other data sources 
(see the main text).
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cies, remains a serious challenge in complex 
samples23,29. However, for most metagen-
omic samples, up to 75% of genes can be 
functionally characterized using targeted 
computational methodologies that combine 
homology and gene neighbourhood8,9, 
and in simple communities, genes can be 
assigned to species (as complete genomes 
can be assembled), which means a parts 
list — the proteins, their function and their 
host organism — can be established. Given 
that more and more bioinformatics tools 
are being developed to analyse metagen-
omes and the standardization of data and 
analysis is being discussed (indispensable 
for comparison of independent studies29), 
it is likely that in the near future, metage-
nomic sequencing will provide a workable 
parts list for a large number of different 
ecosystems.

Part lists to ecosystem properties
If a parts list has been generated using 
sufficient sequence coverage and in a rea-
sonably unbiased way (BOX 1), several basic 
ecosystem properties can be derived that 
should help to characterize the microbial 
community in the sample. Here, we deline-
ate some standard properties that are used 
in (microbial) ecology and propose possible 
metrics that are easily obtainable from the 
raw sequences.

Community structure: species richness, 
evenness and diversity. Calculations can 
be made using rarefaction approaches that 
are based on 16S sampling in conjunction 
with metagenomic sequencing. Alternatively, 
if an average genome size is known or pre-
dicted30, these metrics can be predicted from 
assembly statistics31.

Functional potential or breadth of the com-
munity: COG richness. Calculations can 
be made by rarefaction of COG (clusters 
of orthologous group) counts on randomly 
sampled reads from the 
environment.

Global functional complementarity between 
community members: COG richness per 
genome equivalent. Can be calculated using 
COG richness and effective genome size30, 

and should be a measure that correlates with 
the amount of within-community functional 
overlap.

Adding connectivity to parts lists
The measurements discussed above, 
which are based on the parts lists, allow 
a first glimpse into ecosystem function-
ing and structure. However, for a full 
systems approach, the more detailed 
wiring between the parts list needs to be 
deduced. Assuming we have a reasonable 
molecular parts list for an ecosystem, can 
we investigate the connectivity between its 
members? In cellular systems, connectivity 
refers to protein–protein interactions and 
modifications (such as phosphorylation), 
substrate and end-product transfer and 
regulatory interactions. In ecosystems, this 
concept encompasses an even wider range 
of interactions at various levels. These 
include ecological interactions between 
the carriers of function (organisms), such 
as competition, predation and structural 
interactions (such as mat formation). 
Many of these processes also have a 
molecular basis; for example, through 
direct cell–cell attachment32 or though 
communication using various signalling 
molecules that bind specific receptors and 
therefore activate signalling pathways and 
instigate various forms of behaviour33,34. 
Also included is metabolic cooperation, 
in which the interaction is based on a 
sometimes mutual exchange of metabo-
lites, such as the biogeochemical cycling 
of elements, nutrients and electrons 
or coordinated breakdown of complex 
polymers by multiple organisms. At the 
molecular level, this refers to the presence 
of complementary pathways in differ-
ent organisms and the active or passive 
transport of metabolites in and out of the 
cell. As many of these processes are also 
linked to the abundance of organisms (for 
example, quorum sensing33) the nature 
and presence of these molecular interac-
tions are highly dependent on population 
structure, which might vary over time 
(discussed in the next section). In addi-

 Box 1 | Generating representative metagenomics data

To maximize the information content of environmental sequencing projects and allow effective 
post-analysis comparisons, the guidelines provided here could prove helpful. It should be noted, 
however, that these ideal-case-scenario guidelines might be subject to project (for example, 
financial and logistical) constraints.

Detailed sampling-methodology description and meta-data recording
To correctly interpret and compare metagenomics projects, an exact description of how the 
sample was taken is paramount (for example, filtering, enrichment procedures and DNA 
extraction). As much additional data about the sample as possible should also be recorded. This 
could range from the exact geographical location (for example, longitude, latitude, depth, 
height, time or date) to biochemical habitat measurements (for example, pH, levels of oxygen, 
phosphate or nitrate, and salinity) to patient information (for example, gender, age and disease or 
nutritional state)29,80. The ‘Minimum Information about a Metagenome Sequence’ specification 
should allow this information to be captured81.

Sufficient coverage
A pilot study of the environment using rarefaction approaches should allow an estimation of its 
phylogenetic and functional complexity29. This could then be used to estimate the amount of 
sequencing that is required for the dataset to be representative.

Variability assessment
Ideally, multiple samples should be taken at the same site, at different time points or under 
different conditions to allow the biological variation at the site to be determined. Experimental 
variability should also be investigated80.

Transparent and complete description of data treatment
Full details of computational data treatment should be provided for reproducibility, to assess the 
presence of data-treatment artefacts in functional conclusions and enable comparative 
metagenomics (for example, on assembly, gene calling and functional annotation)29.

Reporting of a minimal set of metagenomic analyses and descriptors
To allow proper interpretation, post-analysis and comparison of independent samples and 
projects, a standardized set of minimal metagenome analyses and descriptors was proposed 
(MINIMESS29). Providing these data together with the raw data should allow those researchers 
who do not have access to bioinformatics resources to make optimal use of results.

Public availability
As for any sequencing project, data should be released to the general public. In addition to 
depositing assembled contigs in GenBank, the European Molecular Biology Laboratory (EMBL) 
and the DNA Data Bank of Japan (DBJ), the raw reads should also be made available through the 
National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute 
(EBI) trace archive. Other resources, such as CAMERA and IMG/M82,83, allow further meta-data 
and analyses to be linked to deposited sequences.
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tion, in many environments, the physical 
and geographical heterogeneity of the local 
habitat can determine the interactions that 
are possible35.

Given this complexity of cellular inter-
actions, which are analogous to those of 
multicellular organisms36, the reconstruction 
of ecosystem-wide molecular networks will 
be far from trivial. However, as more relevant 
data have become available, some aspects of 
cooperative molecular networks can already 
be derived.

Data sources to probe connectivity
Metabolic cooperation. Metabolic coop-
eration has historically been studied 
using co-culture experiments, in which 
synergistic relationships between differ-
ent strains are observed. This synergy has 
been found to occur by the transfer of 
intermediate metabolites (for example, the 

degradation of glucose through acetate to 
methane by Acetobacterium woodii and 
Methanosarcina barkeri), the transfer of 
electron carriers (for example, hydrogen 
and formate) or the removal of limiting 
by-products (for example, methanol and 
oxygen; reviewed in REF. 37). However, to 
understand and model cooperation in com-
plex, natural communities, the co-culture 
approach needs to be replaced by a more 
high-throughput and systematic approach 
that will allow chemical and microscopic 
monitoring of the various players in an eco-
system under a range of perturbations.

Alternatively, genome-content analysis 
of ecosystem members could be used 
to infer metabolic cooperation. When 
the complexity of the ecosystem is low, 
metagenomic sequencing can yield enough 
coverage to complete the genomes of the 
most dominant members of the com-

munity. Having complete genomes enables 
the examination of patterns of metabolic 
complementarity between organisms and 
the proposal of hypotheses of cooperation 
between community members. For exam-
ple, the reconstruction of several members 
of an acid-mine drainage sample allowed 
the authors to propose that one member, 
Leptospirillum sp. group III, could be a 
cornerstone species that carries out the 
fixation of nitrogen for the other commu-
nity members that lack these pathways26. 
In an analysis of four gut symbionts in 
a gutless worm, evidence was found for 
syntrophic cycling of sulphate and sul-
phide (or other intermediate sulphur com-
pounds) between gammaproteobacterial 
and deltaproteobacterial symbionts and 
for the existence of additional hydrogen 
syntrophy38. Finally, metabolic network 
reconstruction from the genome analysis 
of two endosymbionts (Candidatus 
Baumannia cicadellinicola and Candidatus 
Sulcia muelleri) in a sharpshooter revealed 
not only their role in providing nutrients, 
vitamins and cofactors to the host, but 
also their extensive metabolic cooperation 
— for example, in amino acid biosynthesis 
and complementing genome reduction 
between the two bacteria39,40. Using 
computational techniques, such as flux-
balance analysis, simple in silico models 
of metabolic cooperation can be built that 
are based on genomic data. These models 
can be predictive of growth and metabolic 
fluxes and allow insights into synergistic 
reactions41.

When ecosystem complexity is high, 
however, current coverage of metagenomic 
sequencing is inadequate. For example, to 
obtain eight times the coverage of only the 
most dominant member in the Minnesota 
soil metagenome, approximately 2–5 Gbp 
would need to be sequenced (in the pilot 
study, only 120 Mb were generated25). 
Such a sequencing effort is not impossible 
(for example, 6.3 Gbp were sequenced 
in the Global Ocean Sampling survey42), 
but has not been achieved as of yet for a 
single sample. With the rapidly dropping 
sequencing costs, metagenomic sequenc-
ing could remain a hypothesis-generating 
tool for ecosystem-wide network recon-
struction. However, current developments 
in cultivation methodologies43 and DNA 
amplification from single cells44, combined 
with high-throughput cell sorting, will 
probably push single-genome sequencing 
to environmental scales and will allow 
us to avoid some of the weaknesses of 
metagenomics data45. Single-genome 

Figure 2 | From metagenomes to ecosystem functioning: influencing factors and hidden 
dependencies. An overview of the factors that are required to analyse metagenomes and under-
stand the molecular basis of ecosystem functioning (the total sum of ecosystem-level processes, 
such as matter, nutrient and energy cycling). Lines between factors indicate interdependencies 
(for example, perceived ecosystem functional composition depends on the functional annotation 
of genes and sampling protocol influences the observed phylogenetic composition; reviewed in 
REF. 29). All these factors must be assessed when analysing a particular metagenome and it should 
be noted that all the factors are interrelated, which is important to our understanding of ecosys-
tem functioning.
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sequencing is therefore likely to be the 
input data source of choice for this type of 
analysis in the near future46–49.

Many examples of the collaboration and 
cooperation of microorganisms, including 
the formation of complex consortia or 
biofilms and cell–cell communication, seem 
to occur at micrometre-range distances in 
open systems50. Therefore, analogous to pro-
tein complexes in cellular systems biology, 
the observation of physical cell–cell interac-
tions between organisms provides strong 
indications of functional interactions in the 
ecosystem network. This is especially true 
when evidence for interactions, for example, 
from FISH microscopy, is combined with 
chemical measurements of metabolized 
compounds51. Although microscopy 
data is scattered and no high-throughput 
approaches to detect cell–cell interactions 
(an ‘ecosystems yeast two hybrid’ at the 
cellular level) have yet been described, 
ongoing advances in high-throughput and 
three-dimensional microscopy, combined 
with automated image-analysis techniques 
should allow data to be gathered on a larger 
scale52. Until then, indirect measures might 

provide a solution. For example, investigat-
ing taxon occurrence patterns could provide 
signs of metabolic cooperation. Indeed, 
studies of both macroorganisms and micro-
organisms have indicated clear non-random 
distribution patterns53,54. However, as other 
factors, such as competition, niche (species-
composition cycles and biogeography can 
be predicted from habitat parameters55 or 
organismal physiological traits56) and sam-
pling, might also contribute to the patterns 
observed, further studies will need to show 
what information can be extracted from 
such data.

Cell–cell signalling — communication and 
quorum sensing. Evidence is accumulating 
that microorganisms do not live as isolated 
individuals, but as populations of cells 
that are continuously producing, sensing 
and responding to chemical signals, which 
allows them to communicate and cooper-
ate. The best studied of these processes 
is quorum sensing, a process in which 
bacteria can ‘measure’ the cell density of 
their population to initiate processes such 
as bioluminescence, biofilm formation, 

sporulation and virulence33,34. Inter-spe-
cies communication is less understood, 
although the discovery of more examples 
of this phenomenon has strengthened 
the general notion that these processes 
are more ubiquitous than previously 
thought33,57. These observations herald the 
exciting prospect of reconstructing the 
various inter-species small-molecule-based 
signalling cascades that drive social behav-
iour in environments. Although the data 
are currently too fragmented to be used in 
a global systems approach, the modelling 
of specific processes could constitute a 
proof-of-principle case study. To include 
this aspect of microbial interactions in 
global ecosystems biology, an integrated 
effort is needed to detect both the produc-
tion of, and the response to, the plethora of 
small molecules that are produced by these 
organisms. Environmental metabolomics 
approaches, combined with metagenomic, 
meta-transcriptomic58 and meta-pro-
teomic59,60 data, should eventually allow the 
reconstruction of ecosystem-wide com-
bined protein small-molecule networks, 
similar to those that have been achieved for 
single organisms (see Further information 
for a link to the STITCH chemical–protein 
interactions resource61). This approach 
could ultimately result in the molecular 
modelling of community multicellular 
behaviour types other than quorum sens-
ing, such as dispersal, nutrient acquisition 
and biofilm formation62.

Spatial and temporal variation
Previous studies have detected variation 
in species composition in various habitats, 
both spatially (reviewed, for example, in 
REFS 35,63–65) and temporally (for example, 
REFS 66,67). Spatio–temporal variation has 
been linked to variation in environmental 
conditions35,68, even to the point at which 
environmental parameters can be predictive 
of species composition55. Similar spatio–
temporal variation has been observed from 
a functional point of view69. Comparative 
metagenomics approaches24,25,29 recently 
charted the molecular basis of spatial func-
tional variation of environments from the 
kilometre25,42,70 to centimetre38 and even mil-
limetre scale71 (FIG. 3), and with time-series 
metagenomics studies underway28, studying 
temporal (and spatio–temporal72) aspects 
should become possible at the molecular 
level. The recent development of phylo-
chips, metagenome-based microarrays and 
high-throughput sequencing-based moni-
toring will further expedite the amount of 
dynamic data that is available (for example, 

Figure 3 | Visualizing complex environmental patterns. Novel visualization techniques will be 
needed to describe complex data and patterns. The example shown here is a summary of the meta-
bolic variation along a longitudinal transect of ocean surface water samples (data from REF. 42; the 
samples used (red) were selected for similarity in habitat type). Colour intensity shows the contribu-
tion to the overall variance for different KEGG84 maps that are involved in central metabolism (for 
example, red indicates maps with low contribution and therefore low variability over sites, whereas 
yellow indicates maps with high contribution) and grey indicates no significant KEGG mapping for 
these samples. The inset shows the large contribution of photosynthesis to the overall functional 
variation among samples.

P e r s p e c t i v e s

nature reviews | microbiology	  volume 6 | september 2008 | �

http://stitch.embl.de/
http://stitch.embl.de/


REFS 73–77; reviewed in REFS 78,79). By 
providing a quick and cheap read out of 
variation in species content and molecular 
function in environments, these techniques 
will allow the simultaneous discovery of 
new genes and species that are involved in 
specific processes (for example, from eco-
system perturbation experiments) or linked 
to environmental conditions (for example, 
from seasonal time series). Therefore, these 
advances lay the foundations to investigate 
the dynamic nature of molecular ecosystem 
networks in time and space.

Conclusions
Many datasets that will facilitate ecosys-
tems biology are now being gathered. 
Metagenomics studies are collating the 
parts lists from which some general ecosys-
tem properties, as well as first insights into 
metabolic cooperation, can be extracted. 
Other technologies that will gather addi-
tional, complementary data types, such as 
the environmental counterpart of high-
throughput functional genomics (a cor-
nerstone of cellular systems biology), are 
still in their infancy. However, technologies 
such as large-scale automated monitoring 
of chemicals and meta-metabolomics are 
developing rapidly. The interpretation and 
integration of these data will be challeng-
ing and will necessitate the development 
of novel computational approaches29, but 
these challenges will be overcome. Thus, 
the reconstruction of larger ecological net-
works at the molecular level will become 
feasible. Integration of these molecular 
networks into the vast body of macro-
ecological theory should lead to a more 
thorough understanding of the wiring of 
the main biological systems on the Earth.
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		  Molecular eco-systems biology: towards an 
understanding of community function
Jeroen Raes and Peer Bork
Metagenomics has enabled researchers to compile 
inventories of viruses, bacteria and archaea that 
inhabit specific niches. Here, the authors discuss 
the tools that are needed for us to progress to an 
integrated understanding of microbial ecosystems 
biology.
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