
Since the end of the 1990s, there has been a flood of inter-
action data for proteins and other biomolecules (FIG. 1a). 
Network representations of these data have allowed the 
application of graph theory to the biological data1. Hence, 
the proteins (the molecular ‘parts lists’) can be seen as 
network nodes and their interactions as network links 
(also called edges). Whereas information about the pro-
teins themselves started to pour into databases in the last 
decade, with each completed genome sequencing project, 
large-scale data sets on protein interactions are being  
generated only in this decade. 

In 2000, two groups independently published large-scale 
analyses of yeast protein–protein interactions (PPIs) using 
yeast two-hybrid methods2,3, resulting in large networks 
of yeast proteins and providing new data for the emerging 
field of protein network analysis. Since then, PPI networks 
have been generated using two-hybrid approaches in 
Helicobacter pylori4, Caenorhabditis elegans5, Drosophila 
melanogaster6 and humans7,8. Large-scale tandem affin-
ity purification coupled to mass spectrometry (TAP–MS) 
came as a complementary technology and was applied on 
a large scale to Escherichia coli9,10 and yeast11–14, and other 
techniques such as the protein fragment complementation 
assay have also been scaled up for interaction detection 
in Saccharomyces cerevisiae15.

Before it was used to describe PPIs in general, the con-
cept of networks was used to describe metabolic reactions. 
For several species, meticulously curated high-quality net-
works were used for metabolic control analysis16, which 

was only much later performed computationally17. In 
metabolic networks, the interactions are between enzymes 
catalysing consecutive reactions (called reaction maps or 
enzyme-centric networks; FIG.1a) or between metabo-
lites (substrates and products; called compound-centric 
maps)18–20. The genome sequencing projects have pro-
vided a boost towards completing the metabolic networks 
in several species. Detailed metabolic networks in E. coli, 
yeast and humans have been constructed on a genome-
wide scale21–23 and are accessible through several resources, 
for example BioCyc24, KEGG25 and Reactome26.

The amount of PPI and metabolic network data is con-
stantly increasing (FIG. 1b), and the availability of these data 
in several species enables comparative analysis to further 
our functional and evolutionary understanding of molec-
ular and cellular processes. However, a proper comparison 
of these networks between different species also requires 
an understanding of the completeness and accuracy of the 
data included in the network, which are very difficult to 
estimate. Although the data on nodes (proteins) seem rea-
sonably complete and correct, as deduced from genome 
projects (limits such as improper gene prediction, copy 
number variation or alternative splicing aside), the links 
(interactions) are still a matter of debate.

Currently, the best studied PPI networks come from 
S. cerevisiae (for example, there are 4,975 proteins and 
17,612 interactions in the Database of Interacting Proteins 
(DIP)27; see Supplementary information S1 (box)). 
These networks include interactions between proteins 
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Evolution of biomolecular networks — 
lessons from metabolic and protein 
interactions
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Abstract | Despite only becoming popular at the beginning of this decade, 
biomolecular networks are now frameworks that facilitate many discoveries in 
molecular biology. The nodes of these networks are usually proteins (specifically 
enzymes in metabolic networks), whereas the links (or edges) are their interactions 

with other molecules. These networks are made up of protein–protein interactions or 
enzyme–enzyme interactions through shared metabolites in the case of metabolic networks. 
Evolutionary analysis has revealed that changes in the nodes and links in protein–protein 
interaction and metabolic networks are subject to different selection pressures owing to 
distinct topological features. However, many evolutionary constraints can be uncovered only  
if temporal and spatial aspects are included in the network analysis.
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Protein fragment 
complementation assay
A method used to measure 
protein–protein physical 
interactions. Protein 
interactions are coupled to the 
refolding of β-lactamase, which 
is fragmented and each of  
the two fragments is fused  
to the two proteins of interest. 
The reconstitution of 
β-lactamase activity acts as  
an interaction detector.

that function in stable protein complexes and more tran-
sient interactions that function, for example, in signal-
ling pathways (some detection methods will not identify 
transient interactions). When integrating PPI networks 
with the currently available high-confidence data from 
various sources (see, for example, STRING, which is 
a database dedicated to protein–protein functional 
interactions28), the node coverage in yeast is above 80% 
(interaction partners have been reported for more than 
5,000 yeast proteins), whereas the estimates on the total 
number of inter actions (links) vary between 18,000 and 
30,000 (ReFS 29,30) (see Supplementary information S1 
(box)). The number of links is therefore likely to be 
much larger than the current data suggest. The estimates 
of quality also vary, but it is noteworthy that a false posi-
tive rate for newly identified interactions of only a few 
percent was recently reported15, which is considerably 
lower than in many other reports31,32.

Although PPI and metabolic networks overlap to some 
extent, they can be distinguished by their distinct history 
(the purpose and use of the data and the way the networks 
were generated), how much is known about them and their 
accuracy. In contrast to PPI networks, metabolic networks 
do not come from a single large-scale project33. Instead, 
they are derived from numerous experiments carried 

out using different techniques and parameters in various 
laboratories. Thus, potential errors are of a fundamentally 
different nature and are less systematic than those of PPI 
networks (such as the under-representation of membrane 
proteins29). Curated metabolic networks are frequently 
taken as correct reference data sets, but they can also 
contain errors. For example, extensive experimental and 
computational studies of the small bacterium Mycoplasma 
pneumoniae (E. Yus, T. maier, K. michalodimitrakis, 
v. van Noort, T.Y., W.H. Chen, J.A.H. Wodke, m. 
Güell, S. martínez, R. Bourgeois, S. Kühner, E. Raineri, 
I. Letunic, o.v. Kalinina, m. Rode, R. Herrmann, R. 
Gutiérrez-Gallego, R.B. Russell, A.C. Gavin, P.B and 
L. Serrano, unpublished observations) indicate a false 
positive rate of approximately 40% in databases such as 
KEGG (T.Y. and P.B., unpublished observations).

Despite different technical issues regarding data 
coverage and quality (see also Supplementary inform-
ation S1 (box)) and despite the different nature of PPI and 
metabolic networks, we apply here comparative network 
analysis to discuss mechanisms of network evolution. 
For PPI we consider only physical interactions of pro-
teins and for metabolic networks we include only curated 
data (as derived from the KEGG and Biocyc databases, 
which store manually curated metabolic networks and 

Figure 1 | components of biomolecular networks and their accumulation over time. a | Basic components of 
molecular networks. Proteins are currently thought of as major nodes and their interactions are the links (also called 
edges). These protein–protein interactions (PPIs; orange ellipse) can be physical or indirectly derived — for example,  
by genetic means. The fraction of proteins that are enzymes and the interaction of these enzymes with other enzymes 
through shared metabolites represent metabolic networks (grey ellipse), which we compare here to PPI networks. Some 
proteins are involved in both PPI and metabolic networks (denoted by the merging of the two ellipses). The two network 
types discussed here have to be considered in the context of many other biomolecular network types. For example, 
regulatory networks deal with transcription factors and their interactions with DNA, and drug target networks refer to 
interactions between target proteins and chemicals. b | The number of parts lists (proteins) and links (physical interactions 
or enzymatic interactions) that have become available for different organisms during the past 10 years. Data on PPI and 
metabolic networks have been obtained from the DIP and KEGG databases25,27,28,108.
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reactions). We do not consider a higher resolution of 
these networks. For example, some inter actions can be 
attributed to particular amino acid residues and others 
to protein domains that form a more refined inter action 
network. To provide a basis for comparison, we first 
introduce general features of biological networks and 
describe elementary hypotheses for the evolution of PPI 
and metabolic networks. Then we discuss the evolution of 
network components (nodes and links) and their impact 
on network topology. Finally, we touch on attempts to go 
beyond two-dimensional networks by including spatial 
and temporal data that are becoming readily available.

General principles of network evolution
Networks have been studied for many years in different 
research fields, and the basic principles can be applied to 
biomolecular networks. In this section, we present basic 
features of and theories about biomolecular networks, 
with a focus on evolutionary aspects.

Topological descriptions of networks. A prerequisite for 
the study of network evolution is the quantification of 
their topological features. This can be carried out for the 
components, such as node degree (see below), and also 
for higher-order structures, such as scale-free structures. 
Topology is a concept from graph theory that is used to 
characterize the status of a network. Several measures are 
based on the components (BOX 1). For example, the degree 
(or connectivity; k) of a node — the number of links a 
node makes with other nodes — is the most elemen-
tary index (BOX 1). In networks, nodes with high degrees 
are called hubs. There are several other indices used to 
characterize network components (BOX 1). From these 
measurements the generic properties of a network can 
be derived; these, in turn, are the basis for distinguishing 
various network types (BOX 2).

Because it has been revealed that the topology of the 
metabolic network cannot be explained by random graph 
theory34, many network types have been proposed to 
describe the global structure of biomolecular networks 
(BOX 2). Although many biological networks are described 
as being scale free (that is, their degree distribution 
approximates a power law), networks with hierarchical 
structures35 that allow hubs and module structures within 
the network currently seem best suited for capturing  
most of the features of biological networks36.

With these measures, the impact of the changes of 
network components can be quantified as they occur 
in molecular networks. Genetic changes can affect both 
the nodes (proteins) and the links (interactions) and 
networks can thereby evolve by addition or deletion of 
nodes and/or links. Taking this into account, several 
evolutionary models have been proposed for PPI and 
metabolic networks.

Network evolution by addition and loss of nodes and links.  
Current evolutionary models for network evolution are 
based on two types of genetic events. The first is essen-
tially gene duplication and gene loss, which are probably 
the most important drivers of network evolution. Gene 
duplication implies the addition of a network node and 

 Box 1 | Network measures

Based on network components (nodes), local topologies of networks are characterized 
by several indices. In this box, we introduce the principal indices. Each network in the 
figure corresponds to red, yellow and blue nodes. Indices below each network are 
calculated for red nodes. Blue nodes represent the nearest neighbours of node A in the 
network for assortativity. Yellow nodes are the rest of the network components.

Degree (k). The number of neighbours of a node (also referred to as connectivity).  
For example, in the network shown in the figure, hypothetical node A has a degree of 4 
(k

A
 = 4). The average degree of nodes for the whole network (<k>) is used as an index to 

describe the ‘density’ of a network. In networks in which each link has a selected 
direction, incoming (k in) and outgoing (k out) degrees need to be considered.  
The degree distribution (p(k)) gives the probability that a selected node has exactly  
k links.

Clustering coefficient (C). A measure of the degree of interconnectivity in the 
neighbourhood of a node35. In the network shown in the figure, the clustering 
coefficient for node A (C

A
) is described as 2n

A
 / k

A
(k

A
 – 1), where n

A
 is the number of  

links connecting the neighbours of node A to each other.

Assortativity (NC). The average degree of the nearest neighbours of a node80 (see the 
figure). A negative correlation of assortativity with degree suggests that nodes that 
have a high connectivity (those in hubs, for example) tend to interact with nodes  
that have a relatively low connectivity. By contrast, a positive correlation suggests that 
the hubs tend to be located in highly connected topological modules.

Shortest path (SP). The path between two nodes in a network with a smaller number  
of steps than the many alternative paths between the two nodes. For example, in the 
figure, the shortest path from node F to node H (SP

fh
) is composed of four steps.

Betweenness (B). A quantitative measure for describing the centrality of nodes in a 
network, provided as the frequency with which a node is located on the shortest  
path between all other nodes78. Nodes with high betweenness control the flow of 
information across a network. In the figure, the diameters of the nodes correlate  
with betweenness.
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A statistical model that 
describes that one quantity is 
proportional to the power of 
another quantity. 

Triosephosphate isomerase 
(TIM)-barrel fold
The most frequent and 
conserved protein fold, 
comprising eight α-helices and 
eight β-sheets.

also the addition of links (BOX 3). With the loss of a gene, 
not only the node but also all associated links are lost. The 
second class of events are those that do not modify a gene 
as a whole, but modify a gene or its regulation in a way 
that results in link addition or loss. These genetic changes 
can be point mutations, insertions or deletions, or muta-
tions that affect the regulation of the gene37. For exam-
ple, non-synonymous nucleotide substitutions can easily 
modify the interaction interface of the encoded protein, 
leading to link addition or loss. The addition or deletion of 
a link then affects the connectivity of the network (BOX 3). 
As a result of a combination of these processes we can 
observe extensive network re wiring when comparing the 
inter actions of homologous proteins38 (BOX 3).

Metabolism-specific models for network evolution. 
As research in metabolism has been ongoing for many 
years, evolutionary models for metabolic networks have 
a much longer history than those for PPI networks39–41. 
Two models have been most influential: the retrograde 
model42 and the patchwork model20,43 (BOX 3).

In the retrograde model, pathways evolve backwards 
from a key metabolite. The principal concept of this model 
is that the environment is rich in metabolites that become 
initial key metabolites or intermediates. This assumption 
makes it difficult to explain the network evolution that 
occurs when organic molecules are depleted from the 
environment42,44. To overcome this limit of the retrograde 
model, the patchwork model was proposed. The patch-
work model assumes an initial existence of broad specifi-
city enzymes that become specialized after successive gene 
duplication events20,43 (BOX 3).

Current data are more in support of the patchwork 
model. For example, enzymes containing triosephosphate 
isomerase (TIM)-barrel folds have been found in many differ-
ent pathways, including carbohydrate metabolism, amino 
acid metabolism and nucleotide metabolism45, and homol-
ogues are twice as likely to be found in different pathways 
than in the same pathway in E. coli46. Nevertheless, a high 
duplication rate of genes encoding enzymes catalysing 
consecutive reactions has been found19,47, in concordance 
with the retrograde model. Taken together, these findings  

 Box 2 | Network topology types

As well as local network measures based on components 
(see BOX 1), global structures of networks are also 
distinguished by several topological models. In this box, 
we introduce three representative models.

Random networks. Each pair of nodes is connected with 
probability p, which creates a network with randomly 
placed links106 (see the figure). The node degrees follow  
a Poisson distribution, which indicates that most nodes 
have approximately the same number of links. The 
clustering coefficient (C) is independent of a node’s 
degree (k), which means C(k) appears as a horizontal line 
if plotted as a function of k. In this network, the values  
for the shortest paths for most node pairs are relatively 
small, therefore a network with this feature is called  
a small-world network36.

Scale-free networks. Networks that are characterized by 
a power law-like degree distribution107 (see the figure).  
In a scale-free network, the probability that a node has  
k links follows p(k) ~ k–γ, where γ is the degree exponent. 
Such distributions are seen as a straight line on a log–log 
plot. A relatively small number of highly connected  
nodes are known as hubs, and the probability of those 
hubs is statistically more significant than in a random  
network. In this model, the probability of an addional 
node connecting to an existing node depends on  
its degree36.

Hierarchical networks. Networks with this structure allow 
hubs and modular structures to be inside the networks35 

(see the figure). To generate these networks, a densely 
linked starting module first has to be defined and 
replicated. The replicas of the module are then connected 
to the starting module. The replicas and starting modules 
are then used as the next starting modules, and so forth. 
The most important signature of hierarchical modularity is 
the scaling of the clustering coefficient, which follows 
C(k) ~ k–1 and results in a straight line of slope –1 on a 
log–log plot. This structure seems to most closely reflect 
that of biological networks35.
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imply that the models are not mutually exclusive but, 
instead, complementary. In any case, the selection pressure 
leading to network evolution is caused by external factors, 
in particular by environmental meta bolites48, which have 
to be considered together with population and community  
effects when discussing networks in organisms.

External factors in network evolution. Biological systems 
are not isolated, and therefore evolutionary processes must 
be affected by environmental conditions, such as nutrition, 
geochemical burdens, environmental stability and commu-
nity effects. Current thinking in the scientific community  
is species-centric, but community effects that affect the 
influx and efflux of metabolites must influence muta-
tional load and selection, which causes genetic changes. 
The metabolic network of an organism directly connects to 
the chemical universe of the external environment (which 
is often influenced by other organisms) and this must also 

have an impact on the evolution of the functional reper-
toire (the network parts lists)49. This is supported by the 
facts that essential sets of small molecules taken up from 
the environment differ among species49 and that the func-
tional repertoire of microbial communities as a whole 
adapts to varying geochemical conditions50. For example,  
the adaptation of metabolic networks to oxygen revealed the  
effect of this environmental variable on the architecture of 
the network: it seemed to be most effective to expand the 
enzymatic reactions that required oxygen48.

Taken together, the network topology itself, as quan-
tifiable by various measures, should be able to reveal at 
least some of the external selection pressures that cause 
network evolution, although currently relevant data are 
still sparse. Particular evolutionary constraints can be 
identified only when taking into account the background 
of the general principles of node and link evolution that 
we describe below.

 Box 3 | Evolutionary models for PPI and metabolic networks

The evolution of biomolecular networks is coupled to 
several genetic events. Node addition or loss in PPI  
and metabolic networks (see the figure, part a) usually 
implies that a gene duplication or loss has occurred and, 
implicitly, that the addition or loss of links has occurred, 
because each gene duplicate should keep all of its existing 
interactions. Horizontal transfer is another means of  
node addition, in which the impact on links can vary. Link 
addition or loss usually implies that genetic changes, such 
as point mutations, domain accretion or loss, alternative 
splicing, insertions or deletions, have occurred in genes  
or their regulatory regions. These genetic changes can 
destroy or create links. Link rewiring is usually a mixture  
of consequences from link addition or loss, often also 
involving secondary effects from node addition or loss.  
For the evolution of metabolic networks (see the figure, 
part b), environmental chemical conditions have to be 
considered. The following two models are the 
representative models that are specific to metabolism.  
The enzyme colours in the figure represent the order of 
recruitment: first yellow, second blue and third red.

Retrograde model. This model assumes that pathways  
are evolving backwards from a key metabolite. First, an 
organism that is heterotrophic for key metabolite A uses  
up all of the environmental supply of A. Second, the 
recruitment of an enzyme capable of synthesizing A from 
precursor B brings a selective advantage to the organism. 
In turn, environmental concentrations of B drop and this is 
compensated for by the recruitment of enzymes capable of 
synthesizing B from C.

Patchwork model. This model assumes that enzymes refine 
their substrate specificity after duplication. Initially, most  
of the enzymes have broad substrate specificities, which 
can catalyse multiple reactions. These broad substrate 
specificities of enzymes enable the generation of many 
metabolic pathways for the synthesis of the same  
key metabolites. The duplications of genes in such 
metabolic pathways bring selective advantage to the 
pathways because an increased level of the enzyme will 
generate more of the key metabolites. Finally, enzyme 
specialization following the gene duplication events  
will lead to the specialization of the different pathways.
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Orthologue
A gene present in different 
species that evolved from a 
common ancestral gene by 
speciation.

Evolution of nodes (parts lists)
The evolution of network nodes (here proteins, specifically  
enzymes in metabolic networks) is coupled to the genetic 
material of a cell. In this section, we discuss the dynamics  
of network nodes, highlight some constraints on node 
evolution and elaborate on the impact of node addition 
or loss on network topology.

Evolutionary dynamics of nodes. Approximately 30% 
(1,312 out of 4,133) of genes in E. coli have a human 
orthologue and less than 5% (190) are conserved in more 
than 90% of completely sequenced species across the 
bacteria, archaea and eukaryota domains29. This reveals 
on the one hand that there is considerable conservation 
in organisms that have diverged more than four billion 
years ago, and on the other hand that node addition and  
loss are heavily contributing to network evolution  
and the core group of unchanged nodes is very small 
(that is, almost all nodes of the protein network are 
dispensable).

Whereas the loss of nodes (proteins) seems to be clock-
like (it happens at a certain rate even in lineages in which 
genes are added to the genome of an organism), the rate 
of node addition varies a lot over time51. Several processes 
can contribute to the addition of nodes. The most frequent 
genetic event leading to node addition is gene duplication, 
which results from different genetic events such as whole-
genome duplication, locally confined gene duplication 
and retrotransposition. Gene duplication probably influ-
ences PPI and metabolic network structures, with a major 
impact on organism phenotypes38,52.

In organisms without a germ line (all organisms 
except higher eukaryotes), horizontal gene transfer can 
also contribute considerably to node addition and to the 
extent that entire genomes of organisms can be merged 
or acquired (as occured, for example, with mitochondria 
and chloroplasts) and the respective sub-networks be 
united. There are several other minor processes, such as 
domestication of phage or virus genes (for example, retro-
virus genes becoming an integral part of the host genome 
through the deletion of flanking transposon sequences). 
Domestication of virus genes has contributed up to 1% 
of metazoan genes53.

Constraints of node addition and loss. Although there are 
various node-specific constraints on gene loss (for example,  
essentiality) or gene duplication (for example, dosage 
effects of tightly controlled protein complex subunits that 
would impair the balance of links between nodes54,55), 
there seem to be network-associated laws with respect to 
the functional composition of genes in a network.

Depending on the network size (approximated by  
the number of genes in the genome of an organism), the 
fraction of genes from different functional categories is 
different56,57, implying that there are constraints on the 
duplicability of genes. Genes in metabolism occupy a 
roughly constant fraction of a genome. However, many 
other categories show significant deviations. Whereas 
many genes associated with translation remain as a single  
copy regardless of the genome size, transcription factors,  
for example, increase exponentially with genome size 

such that their fraction is higher in larger genomes. 
These principles have implications for regulatory design 
in bacteria, but could also be used to predict the average 
genome size of samples from incomplete metagenomic 
data sets58. Despite selection against some kinds of node 
addition, most genes can be duplicated or horizontally 
transferred59. However, the effects can be different for 
rare whole-genome duplications or for horizontal trans-
fers of many genes at once, owing to different topo logical 
structures of the networks (BOX 2; see below). The  
addition of individual nodes has different topological 
implications for PPI and metabolic networks.

Effects of node addition on PPI networks. using a yeast 
PPI network, it has been shown that there is a negative 
correlation between protein connectivity and duplica-
bility; that is, there is a direct relationship between the 
duplication rate of a gene (evolution of parts lists) and 
the network context of its encoded protein60. Highly con-
nected proteins (hubs) therefore have a low duplicability. 
The stability of network structure mainly relies on these 
hubs; therefore, lethality increases threefold if a hub is 
deleted61,62. This is consistent with a slow evolutionary 
rate, implying that orthologues of hub proteins are highly 
conserved63–65. The duplication of a hub is therefore often 
deleterious because it affects a large number of proteins. 
However, although intuitive, this conclusion is not 
undisputed as some studies do not find any corre lation 
between connectivity and duplicability66 and others even 
find a positive one54. measurements of evolutionary rates 
of proteins are also still controversial and the effects of 
protein connectivity seem to depend on the PPI network 
studied as well as on data coverage and quality. These 
topics therefore need further investigation.

By contrast, there is agreement that proteins interact-
ing with the environment have a higher average dupli-
cability than those that are localized within intracellular 
compartments. For example, the duplicability of proteins 
localized to the cell periphery, such as transporters, is 
higher than that of those localized in intracellular com-
partments, but their connectivity is lower. Conversely, 
proteins localized in the nucleus, such as enzymes for 
RNA and DNA metabolism, have a high connectivity 
and a low duplicability60.

Effects of node addition on metabolic networks. As for 
PPI networks, the duplication rate of hubs in metabolic 
networks is relatively low67, underpinning their central 
role. Not unexpectedly, duplication of genes (parts lists) 
seems to have mostly local effects in the network. Indeed, 
an over-representation of homologous enzymes in con-
secutive reactions has been shown and can be explained 
by a preferential biochemical coupling of these reac-
tions. In addition, a high retention of duplicates between 
chemically similar reactions and in closely connected 
functional modules was observed19. The local connectiv-
ity effect of duplications could not be found in interaction 
networks of non-enzymatic proteins or gene transcrip-
tional regulatory networks, suggesting that the retention 
of duplicates results from biochemical rules that govern 
substrate–enzyme–product relationships19.

R E V I E W S

796 | NovEmBER 2009 | voLumE 10  www.nature.com/reviews/molcellbio

© 2009 Macmillan Publishers Limited. All rights reserved



H2A

Histone

Nature Reviews | Molecular Cell Biology

PPI
GI

Gim3

Pfd1

Yke2
Gim5

Pac10

Gim4

Nhp10

Msc1

Pht1

Ies2

Nap1

Arp8

Ecm5

Htz1

Nhp10

Ies2

Nap1

Arp8

Gim3

Pfd1

Yke2
Gim5

Pac10

Gim4

a S. cerevisiae S. pombe

b

H2A

Histone

?

Evolution of links (topology)
The evolution of network links is coupled to that of 
nodes but is much more fine-tuned as links can change 
over time even if nodes are unaffected. The nature of 
the links determines the topology of a network and in 
this section we discuss the evolutionary dynamics of 
the links, highlight some constraints on link evolution 
and discuss some fundamental differences between  
PPI and metabolic networks in terms of topology and 
link evolution.

Evolutionary dynamics of links. Whereas network nodes 
(proteins) can be studied just by genome comparisons, 
the change of links and general topology requires suf-
ficient network data in several species — data which 
are only slowly emerging. Based on incomplete yeast 
two-hybrid data it has been suggested that the rewir-
ing of links can occur without gene duplication and 
that link changes might occur more frequently than 
node changes38,52, although the limited accuracy and 
coverage of the networks hampers proper analysis  
(see Supplementary information S2 (box)).

Athough quantification of link changes remains diffi-
cult, there are plenty of genetic mechanisms that can easily  
lead to a link addition or deletion. Apart from point 
mutations, alternative splicing and domain accretion, 
inversion, shuffling and duplication are other means 
for the fast acquisition or loss of links. Combinations 
of these can even occur, whereby binding sites (forming 
the links) are under positive selection68. In fact, positive 
selection on proteins that are located peripherally in the 
interaction network has been reported69, which is a more 
global indication of changing links.

We illustrate here the rewiring of links without node 
changes using large-scale data (FIG. 2). unfortunately, to 
date there is limited data of sufficient quality to quantify 
these changes, but based on genetic interaction (GI) net-
works in S. cerevisiae and Schizosaccharomyces pombe, 
generated by double mutation, examples of rewiring of 
conserved functional modules have been described70. 
The respective data sets can also be used to project the 
rewiring to the node and link level, considering only those 
links that are confirmed by both GIs and PPIs and only 
those nodes that have a clear 1:1 orthologous relationship 
between the two species. These restrictions are needed 
to overcome sensitivity and selectivity issues in both net-
works, which could inflate the results. Although only a few 
in number, some rewiring events could be identified.

For example, the prefoldin complex is a highly con-
nected protein cluster that is supported by GIs and PPIs 
in S. cerevisiae, whereas almost none of the respective 
interactions have been found between the orthologous 
proteins in S. pombe (FIG. 2a). The proteins shown in 
FIG. 2a form part of a multi-subunit chaperone com-
plex that delivers unfolded proteins to a cytosolic 
chaperonin, which assists in their correct folding (see 
the Saccharomyces Genome Database). The functional 
characterization of the proteins constituting the prefol-
din complex has been carried out in S. cerevisiae, and 
the functions of the orthologous proteins in S. pombe 
have been assumed based on these results. Given the 
lack of interactions in S. pombe, it is likely that some of 
the functionality of these proteins has changed after the 
divergence of the two yeasts.

A more complex example is the rewiring of the 
S. cerevisiae histone H2A variant Htz1 (the orthologue 
of S. pombe Pht1). Histone variants replace the canonical 
histone subunits and thereby change chromatin struc-
ture71–73. Histone replacement requires an interaction with 
chromatin remodelling complexes such as the inositol 
requiring protein 80 (INo80) complex, which facilitates 
the replacement of the canonical histone with the histone 

Figure 2 | Network rewiring in S. pombe and S. cerevisiae. A set of 234 single-copy 
orthologues70,109, all of the links between which (from both genetic interactions (GIs) 
and protein–protein interactions (PPIs)) have been reported in the literature, was 
selected and changes in their interactions were considered as rewiring. Here, two 
examples are extracted from this network. The requirement for both PPIs and GIs was 
necessary to avoid misinterpretation due to limited coverage and accuracy of either 
network alone (for accuracy estimates see Supplementary information S2 (box)).  
a | Possible link losses within a network module in Saccharomyces cerevisiae (in which 
blue nodes represent proteins) and in Schizosaccharomyces pombe (in which yellow 
nodes represent proteins). The chaperone complex prefoldin is composed of the 
subunits genes involved in microtubule biogenesis 3 (Gim3), Gim4, Gim5, protein 
required in the absence of chromosome instability 10 (Pac10), prefoldin 1 (Pfd1) and 
yeast orthologue of mouse K-region expressed gene 2 (Yke2)110. This complex is 
conserved in eukaryotes and archaea, but none of the interactions between the 
subunits could be retrieved in the large-scale screen70, nor is there other experimental 
support for interactions among the subunits in S. pombe. b | A rewiring example around 
the S. cerevisiae histone H2A variant Htz1 (the orthologue of S. pombe Pht1). Htz1 (or 
Pht1) can be exchanged with canonical histones (depicted as quarters of a circle) by 
the chromatin remodelling complexes inositol requiring protein 80 (INO80, which 
includes non-histone protein 10 (Nhp10), actin-related protein 8 (Arp8) and INO80 
subunit 1 (Ies1)) and SWR1 (which includes the subunit extracellular matrix protein 5 
(Ecm5) in S. cerevisiae and its orthologue, multicopy suppressor of Chk1 protein 1 
(Msc1), in S. pombe). Htz1 also interacts with the chaperone nucleosome assembly 
protein 1 (Nap1) exclusively in S. cerevisiae. Nap1 also enables the exchange of Htz1 
with canonical histone variants.
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variant Pht1 in S. pombe through INo80 subunit 2  
(Ies2) and actin-related protein 8 (Arp8). In S. cerevisiae,  
the INo80 complex replaces the canonical histone with 
a different histone variant71, therefore this part of the 
rewiring scenario in FIG. 2b has been known already. 
Furthermore, in both S. pombe and S. cereviseae, Htz1 
also interacts with another chromatin remodelling com-
plex, SWR1. Whereas in S. pombe this interaction seems 
to be mediated by multicopy suppressor of Chk1 pro-
tein 1 (msc1), in S. cerevisiae this does not seem to be the 
case. Finally, another link addition or loss contributes 
to the rewiring observed in FIG. 2b: the interaction of 
Htz1 with the histone chaperone nucleosome assembly 
protein 1 (Nap1) in S. cereviseae, but not in S. pombe. 
Nap1 enables the replacement of Htz1 with canonical 
histone variants and vice versa by sliding the nucleo-
some74–76. Nap1 seems to have a different histone speci-
ficity in S. pombe77. This complex rewiring scenario is 
consistent with diverse remodelling and modification 
mechanisms for chromatin structures across different 
organisms72.

The examples above illustrate that link rewiring can 
occur without node changes; the loss or gain of inter-
actions (link loss or addition) might be a frequent event 
leading to the diversification of networks and can some-
times result in rewiring. A proper quantification of these 
events would require highly accurate and more complete 
networks. Even in the best studied PPI networks of yeast, 
there should be at least 1.5 times as many PPIs than are 
currently available50. Although network comparison 
only identifies rewiring events, it is likely that any link 
addition will be followed by a link loss, or vice versa, 
which means that rewiring is a result of two subsequent 
link-modifying steps.

Constraints on link addition and loss. As node addi-
tion and loss seem to have the largest impact on net-
work top ology, many constraints on links are coupled 
to constraints on the nodes. For example, in the yeast 
PPI network, central nodes (that is, nodes that are 
located in the central part of the network as defined by 
‘betweenness’; BOX 2) are encoded by essential genes62. 
This positive correlation between the essentiality and 
centrality of proteins is conserved in many species78, 
suggesting that network features constrain the evolution 
of both proteins and their links. The node degree is also 
positively correlated with centrality, consistent with the  
classic proposal that more central proteins in PPI net-
works have more pleiotropic effects on cellular functions 
and, therefore, might be more constrained during evolu-
tion79. These constraints equally apply to links between 
central nodes, which tend to be essential. Constraints on 
link evolution are considerably different between PPI 
and metabolic networks. To understand these, their 
topological differences have to be discussed.

Different topologies in PPI and metabolic networks. 
Although PPI and metabolic networks overlap, a direct 
comparison is not simple and only a few studies have 
looked for topological differences between them (as 
quantifiable by the measures in BOX 1).

In the yeast PPI network, links between highly con-
nected proteins are systematically suppressed, whereas 
those between highly connected and loosely connected 
pairs of proteins are favoured80. In metabolic networks 
the opposite has been observed81: interactors do have a 
similar degree (k) — the affected nodes have a similar 
number of links (FIG. 3). A recent report also shows that 
hub-like nodes tend to link low-degree nodes in PPI net-
works, whereas in metabolic networks interacting nodes 
have similar degrees18 (FIG. 3). Together these data imply 
that PPI and metabolic networks have a fundamentally 
different network topology.

In addition, the assortativity of nodes, which is defined 
as the average connectivity of the nearest neighbours of a 
node (BOX 2) and which describes the density of the net-
work module around the node, shows different trends 
in PPI and metabolic networks18,80,81. Connectivity and 
assortativity have a negative correlation in PPI networks 
but not in metabolic networks (FIG. 3). These observations 
reflect the nature of the networks. In PPI networks there 
are a few so-called super-hubs (for example, proteins 
such as chaperones that bind almost all other proteins) 
but the majority of proteins in PPI networks have only  
a few interaction partners, which means that they have a  
low degree. In metabolic networks most of the interacting 
proteins have similar degrees (FIG. 3). As a result, although 
there are also hubs in metabolic networks, these are not 
indiscriminate (they are not linked to nodes with low 
degrees). Instead, the interactors of hubs tend to also 
interact with each other. These tendencies in metabolic 
networks were observed in enzyme-centric networks  
(in which nodes are the proteins) and metabolite-centric 
networks (in which nodes are small molecules)18.

PPI networks are less modular than metabolic networks. 
In general, a module of a biological network consists of a 
set of nodes that form a highly connected, coherent struc-
tural subsystem (for example, a protein complex) with a 
distinct function82,83. There are many of these modules in 
biological networks61,84–87.

Several groups studied the evolution of these tightly 
connected modules. For example, using the conservation 
in genome organization (such as conserved gene neigh-
bourhood) across many bacteria, numerous functional 
modules in E. coli were identified88. Similarly, phylo-
genetic profile similarity revealed that metabolic mod-
ules were conserved in many species89. However, only 
approximately half of the modules seem to be cohesive 
(conserved in evolution86) and even those can be subject 
to change90. Early on in network analysis, the modularity 
of metabolic networks was quantified. For example, when 
the average of cluster coefficients of a network (C(n)) was 
regarded as a modularity measure, all the studied meta-
bolic networks of 43 distinct organisms were organized 
into highly connected topological modules35. Analysis of 
the more coherent modules revealed that ancient modules 
have been in essential processes such as translation and 
that there were also recently evolved modules that interact 
with the environment and are often horizontally trans-
ferred between species90, implying a considerable impact 
on link evolution.
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Although most of these observations were inferred 
from an accumulation of interaction data and com-
parative genome analysis, the alignment of networks 
derived from S. cerevisiae and H. pylori directly revealed 
conserved functional modules (sub-networks) involv-
ing RNA polymerase and kinase signalling cascades 
and also many unexpected links between processes91. 
When applied to multiple species, more novel inter-
actions and modules could be detected with statistical 
significance24.

As metabolic modules are more cohesive than PPI 
modules92, and as cohesive modules have a higher 
inter connectivity than non-cohesive ones90, metabolic 
networks have a more modular structure than PPI net-
works, consistent with the differences in network struc-
ture described above. modularity is also the basis for 
the hierarchy that is observed in biological networks. 
This has implications for the evolution of links, because 
links between modules are considerably less conserved 
and selection against link changes in modules should be 
particularly prominent in metabolic networks.

Genome size might have an impact on link evolution. A 
large-scale characterization of modularity in metabolic 
networks of more than 300 bacterial species revealed a 
positive correlation between modularity and genome 
size83, suggesting that larger genomes have more modu-
lar metabolic networks and that network size is a strong 
determinant of metabolic modularity. Accordingly, small 
endosymbiotic organisms that tend to have smaller net-
works are less modular than non-symbiotic organisms. 
The modularity values of pathogens and commensals 
are generally even lower than those of endosymbionts. 
However, obligate mammalian pathogens that are trans-
mitted by parasitic insect vectors are an exception as 
they have small networks that are highly modular83. 
This is supported by other reports which claim that  
the adaptation to different niches markedly enhances the  
evolution of modularity93,94. Although the relationship 
between modularity and genome size still has to be 
shown for PPI networks, it is becoming clear that there 
are various constraints on the evolution of links, mostly 
imposed by the modular structure of networks and the 
way environmental conditions affect this topology.

Towards 3D and 4D networks
So far, most of the research on networks has been 
devoted to in vitro and static networks, and these are 
usually considered in two dimensions (2D networks) 
without spatial (3D) or temporal (4D) resolution. In this 
section we discuss the 3D and 4D aspects of network 
evolution. many network features and their evolution 
can be understood only when taking spatiotemporal 
resolution into account.

Spatiotemporal PPI networks. PPIs will never all hap-
pen at the same time and in the same place owing to 
the spatial or temporal separation of participating 
proteins29,95. In fact, PPI networks change consider-
ably during the cell cycle or other dynamic processes96, 
often within minutes. Even though the gene expression 

Figure 3 | Topologies of PPi and metabolic networks in yeast and E. coli. Both axes 
of the coloured plots (k1 and k2) represent the degrees (or connectivity) of interacting 
proteins (nodes). A lower left position in the plot corresponds to interactions between 
two non-highly connected proteins, whereas upper right positions indicate hub–hub 
interactions (illustrated by schematic cartoons of connectivity). The colour gradient 
corresponds to the ratio p(k1,k2):pr(k1,k2), in which p(k1,k2) is the probability of an 
interacting pair with the respective node degrees k1 and k2, and pr(k1,k2) is the same 
probability in a randomized network80. Thus, red indicates that the network has many 
interactions between non-hubs, whereas blue means that these types of interaction are 
avoided. The diagrams below the plots illustrate the assortativity (see also BOX 1) of 
networks. The horizontal axis is the connectivity of a node (degree), and the vertical  
axis is the average of the neighbour’s connectivity. In cases where there is a negative 
correlation between these (as seen in protein–protein interaction (PPI) networks), nodes 
with high connectivity (hubs) tend to interact with nodes with relatively low connectivity. 
By contrast, a positive correlation (as seen in metabolic networks) suggests that hubs  
are usually located in highly connected topological modules.
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profile at a given time point in the cell cycle gives lim-
ited inform ation about the status of the respective func-
tional modules97, PPI networks are highly dynamic. 
Time-dependent transcriptional regulation of individ-
ual genes influences the activation of complexes and 

hence their interaction behaviour97. The considerable 
gene expression differences of orthologues during the 
cell cycle of several eukaryotes coincide with differ-
ences in post-translational modification — transcrip-
tional and post-translational regulation co-evolve98. 

Figure 4 | Metabolic dynamics during the yeast cell cycle. In the central map, the currently known metabolic network 
of Saccharomyces cerevisiae is highlighted by white and red lines (corresponding to constitutive enzymatic reactions and 
periodical enzymatic reactions, respectively) above a black background of all of the metabolic reactions in the KEGG 
database102. The subset of metabolic enzymes that are periodically expressed during the cell cycle (160 enzymes out of a 
total of 600 periodic yeast genes97) is time-resolved in four distinct cell cycle phases (M–G1, orange lines; G1–S, yellow 
lines; S, green lines and G2–M, blue lines). In each phase, considerably different network structures can be observed 
despite a large fraction of constitutively expressed enzymes.
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The changes in post-translational modifications (such 
as phosphorylation sites), even in vertebrates, imply that 
novel interactions (through the kinase or phosphatase) 
can be introduced over short evolutionary timescales,  
independently of nodes.

Similarly, large temporal constraints on net-
works (and their evolution) are also evident from the 
co ordinated gene expression in fly embryogenesis99. 
Here, in addition to individual cellular events, there 
are higher-order temporal processes that impose selec-
tion on network topology. Embryogenesis also implies 
specialization of cells and different spatial orientations. 
The complex gene expression patterns can be visual-
ized by in situ hybrid ization of whole-mount embryos100  
or by monitoring whole organs, as has been carried out 
in Aarabidopsis thaliana101. Although these data have 
not exhaustively projected to biomolecular networks, 
resources on comparative 4D expression data, for exam-
ple102, indicate that PPI networks in each cell type are 
different and that there is a lot of variation between 
organisms.

Taken together, these studies show that there will be 
many constraints on the evolution of networks, indeed 
more than were previously expected, such as the cell 
type-specific gene expression patterns during an organ-
ism’s lifetime. Existing groups of genes are switched off 
and on under various conditions and the network has 
to be robust enough to cope with these time- and cell 
type-specific modifications, such that not only the pres-
ence and absence of nodes in a genome but also the 
regulation of the respective genes have an impact on 
network evolution.

In addition, spatial aspects of a cell can affect net-
work evolution. For example, different cell size or com-
partmental separation might lead to different fluxes and 
concentrations of metabolites, such that orthologues 
from two species might have to operate in a different 
network context.

Spatiotemporal metabolic networks. Although meta-
bolic networks have been much less studied than PPI 
networks in terms of temporal and spatial aspects, it is 
clear that only sub-populations of metabolic proteins 
work together in particular tissues or cell types in multi-
cellular organisms. For example, the human liver has 
the unique capacity to degrade ethanol and lipids and 
to detoxify various other compounds103. In fact, almost 
every cell type has a unique metabolic profile and, 
indeed, genome-wide data provide global support for 
tissue-specific metabolism in humans, for example104,105. 

Even within a cell, metabolic reactions are specialized in 
compartments, even more so in organelles such as mito-
chondria and peroxisomes, which have their own and 
sometimes independent metabolic systems. The locali-
zation of enzymes in compartments can vary between 
species, therefore the same (orthologous) enzymes will 
operate in different metabolic networks.

Network data with such spatial and temporal reso-
lution will be needed to decipher where and when an 
interaction takes place29. To illustrate the temporal 
differences of metabolic networks, we re-analysed 
periodically expressed proteins during the yeast cell 
cycle (expression values taken from ReF. 98) by focus-
ing on metabolic proteins (FIG. 4). Each cell cycle stage 
has its own metabolic network and it is expected that 
different organisms will vary a lot in their expression 
profiles during the cell cycle98. Thus, a combined yeast 
metabolic network in 2D, as we know it from textbooks, 
captures only some of the network features. Network 
para meters might vary at different temporal conditions 
and selection might act on more subtle features such 
as the robustness towards concentration changes of  
substrates or regulatory aspects.

Perspectives
Networks and their evolution have been historically stud-
ied in different subfields, and distinctions between PPI, 
metabolic and transcriptional networks have been made. 
Although some of their properties differ (see above), a 
complete picture of the evolutionary constraints emerges 
only when they are viewed together and in conjunction 
with the interaction data on small molecules, lipids and 
carbohydrates that soon will also be available in large 
quantities. Nevertheless, it is clear already that PPI and 
metabolic networks are highly dynamic both during 
temporal processes such as the cell cycle and on evo-
lutionary timescales. The nodes (proteins or enzymes) 
as well as the links (reactions or interactions) are con-
tinuously changing. Currently, high-quality interaction 
networks of reasonable coverage are available for only a 
small number of interaction types and model organisms, 
and even these might not have sufficient resolution to be 
able to reveal all the evolutionary trajectories. Instead 
of considering only general interactions, directionality, 
specifying actions such as phosphorylation events might 
need to be included. In the future, the main conceptual 
and methodological challenges will relate to the shift 
from static 2D to comparative spatiotemporal network 
analysis to reveal hitherto hidden constraints on the  
evolution of networks.
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