
©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnology  advance online publication	 �

r e s o u r c e

An integrated catalog of reference genes in the  
human gut microbiome
Junhua Li1–3,19, Huijue Jia1,19, Xianghang Cai1,19, Huanzi Zhong1,19, Qiang Feng1,4,19, Shinichi Sunagawa5, 
Manimozhiyan Arumugam1,5,6, Jens Roat Kultima5, Edi Prifti7, Trine Nielsen6, Agnieszka Sierakowska Juncker8, 
Chaysavanh Manichanh9, Bing Chen1, Wenwei Zhang1, Florence Levenez7, Juan Wang1, Xun Xu1, Liang Xiao1, 
Suisha Liang1, Dongya Zhang1, Zhaoxi Zhang1, Weineng Chen1, Hailong Zhao1, Jumana Yousuf Al-Aama10,11, 
Sherif Edris11,12, Huanming Yang1,11,13, Jian Wang1,13, Torben Hansen6, Henrik Bjørn Nielsen8, Søren Brunak8, 
Karsten Kristiansen4, Francisco Guarner9, Oluf Pedersen6, Joel Doré7,14, S Dusko Ehrlich7,15,  
MetaHIT Consortium16, Peer Bork5,17 & Jun Wang1,4,6,11,18 

1BGI-Shenzhen, Shenzhen, China. 2BGI Hong Kong Research Institute, Hong Kong, China. 3School of Bioscience and Biotechnology, South China University  
of Technology, Guangzhou, China. 4Department of Biology, University of Copenhagen, Copenhagen, Denmark. 5European Molecular Biology Laboratory,  
Heidelberg, Germany. 6The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 
Copenhagen, Denmark. 7INRA, Institut National de la Recherche Agronomique, Metagenopolis, Jouy en Josas, France. 8Center for Biological Sequence Analysis,  
Technical University of Denmark, Kongens Lyngby, Denmark. 9Digestive System Research Unit, University Hospital Vall d’Hebron, Ciberehd, Barcelona, Spain. 
10Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University (KAU), Jeddah, Saudi Arabia. 11Princess Al-Jawhara AlBrahim Centre of Excellence 
in Research of Hereditary Disorders (PACER-HD), Faculty of Medicine, KAU, Jeddah, Saudi Arabia. 12Department of Biological Sciences, Faculty of Science, King 
Abdulaziz University (KAU), Jeddah, Saudi Arabia. 13James D. Watson Institute of Genome Science, Hangzhou, China. 14INRA, Institut National de la Recherche 
Agronomique, Unité mixte de Recherche 14121 Microbiologie de l’Alimentation au Service de la Santé, Jouy en Josas, France. 15Centre for Host-Microbiome 
Interactions, Dental Institute Central Office, King’s College London, Guy’s Hospital, London Bridge, UK. 16A full list of additional members and affiliations appears at 
the end of the paper. 17Max Delbrück Centre for Molecular Medicine, Berlin, Germany. 18Macau University of Science and Technology, Macau, China. 19These authors 
contributed equally to this work. Correspondence should be addressed to Jun W. (wangj@genomics.org.cn) or P.B. (bork@embl.de).

Many analyses of the human gut microbiome depend on a catalog of reference genes. Existing catalogs for the human gut 
microbiome are based on samples from single cohorts or on reference genomes or protein sequences, which limits coverage of 
global microbiome diversity. Here we combined 249 newly sequenced samples of the Metagenomics of the Human Intestinal 
Tract (MetaHit) project with 1,018 previously sequenced samples to create a cohort from three continents that is at least 
threefold larger than cohorts used for previous gene catalogs. From this we established the integrated gene catalog (IGC) 
comprising 9,879,896 genes. The catalog includes close-to-complete sets of genes for most gut microbes, which are also of 
considerably higher quality than in previous catalogs. Analyses of a group of samples from Chinese and Danish individuals 
using the catalog revealed country-specific gut microbial signatures. This expanded catalog should facilitate quantitative 
characterization of metagenomic, metatranscriptomic and metaproteomic data from the gut microbiome to understand its 
variation across populations in human health and disease.

The ensemble of microorganisms in our gut, referred to as the 
human gut microbiota, is known to be important for human physiol-
ogy and disease in the gut and beyond1. However, our knowledge 
of the genetic and functional diversity in gut microbes is far from 
complete. Increasing numbers of fecal samples are being analyzed 
by targeted 16S rRNA gene pyrosequencing and to a lesser extent by 
metagenomic shotgun sequencing, because of the higher costs and 
more complex data analysis associated with the latter. Metagenomic 
assembly of short sequencing reads enables functional insights and 
is a more convenient and unbiased way of obtaining genomic infor-
mation for environmental microbes, compared to culture-based or 
single-cell methods. However, data from different studies are scat-
tered (most notably in the MetaHIT2 and the Human Microbiome 
Project (HMP)3 gene catalogs), and there has been no comprehensive 
and uniformly processed database that can represent the human gut 

microbiota around the world. With the increasing amount of sequenc-
ing data, it is also not clear at what pace the number of species and 
genes discovered in the gut microbiome will continue to grow, and to 
what extent our current sampling and data analyses capture common 
and rare entities in the gut microbiota.

Catalogs of reference genes in the human gut microbiome are cru-
cial for functional metagenomic analyses2. Sequencing reads can be 
mapped to the catalog to profile the species and gene content of a 
sample; genes with co-varying abundance levels can be clustered to 
reveal disease markers in metagenome-wide association studies4–7; 
analyses of gene content might guide isolation of strains from fecal 
samples and document the strains’ genomic information in the origi-
nal habitat before possible changes during cultivation; and as meta
transcriptomics8,9 and metaproteomics10 become more common, a 
gene catalog would greatly facilitate analyses of RNA or protein data.  
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The MetaHIT2 and the HMP3 gene catalogs, based on 124 sam-
ples from individuals in European countries (here referred to as 
‘European samples’) and 136 samples from individuals in the United 
States (‘American samples’), respectively, have limited representation 
and might contain partial or chimeric genes that could be extended  
or eliminated with more sequencing data and state-of-the-art pro
cessing algorithms.

In this study, we established a catalog of the human gut micro-
bial genes by processing 249 newly sequenced samples and 1,018 
published samples from MetaHIT2,6,7, HMP3 and a large diabetes 
study from China4, as well as 511 sequenced genomes of gut-related  
bacteria and archaea. This nonredundant reference catalog of 
9,879,896 genes is freely accessible through our website (http://
meta.genomics.cn) and the data are deposited in the GigaScience 
Database11. Beside providing an expanded resource for future analy-
ses, study of the catalog suggests that we may have reached satu-
rated coverage of core gene content and functions, but rare genes 
will continue to be discovered with increased sampling. We also 
demonstrate discovery of population-specific characteristics of gut 
microbiota using the catalog.

RESULTS
Construction of the integrated gene 
catalog
Here we completed the MetaHIT cohort 
by sequencing 249 fecal samples from 
adults in Denmark or Spain, which led to 
a collection of 760 European samples2,6,7  
(Supplementary Table 1) and a catalog of 
8,096,991 nonredundant genes (Fig. 1). To 
create an intercontinental gene catalog for the 

human gut microbiome, we integrated the European-sample microbial 
gene catalog with data from 368 Chinese samples4 and 139 American 
samples3 (Fig. 1a and Supplementary Table 1). Because we used a 
standardized and automated workflow that has been shown previously 
to improve the quality of assembly, gene prediction and redundancy 
removal12,13 (Online Methods), genes from the American samples 
were 32.8% longer on average and 41.5% fewer in total number com-
pared to the updated HMP catalog (downloaded in August 2013). The 
updated HMP catalog had more fragmented assemblies compared to 
ours (despite a slight improvement compared to the original study3) 
(Fig. 1b). Merging of the cohorts resulted in a catalog of 9,750,788 
genes (here called three cohorts nonredundant gene catalog (3CGC)), 
based on 1,267 gut metagenomes (1,070 individuals) from three con-
tinents, amounting to 6.4 Tb of metagenomic sequencing data (Fig. 1 
and Supplementary Fig. 1a,b), which is considerably more than for 
previous cohorts2,3,7.

Abundant gut microbes were well represented in the 3CGC, but 
some low-abundance yet common microbes were insufficiently cov-
ered, probably because of low sequencing depth for these species.  
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Figure 1  Construction of the IGC. (a) Pipeline 
for data processing and integration (see also 
Online Methods). Metagenomic sequencing 
data from the European, Chinese and American 
cohorts were processed with the MOCAT 
pipeline13 to generate their respective gene 
catalogs. The three catalogs were merged to 
form 3CGC. Sequenced prokaryotic genomes or 
draft genomes regarded as potentially of human 
gut origin, according to the IMG system15 
(red), 16S rRNA gene sequence (operational 
taxonomic unit, OTU) from HMP (green), or 
coverage by 3CGC (blue) (Online Methods). 
This initial set of 983 genomes was filtered 
by our metagenomic sequencing data, which 
resulted in 511 genomes whose genes comprise 
the SPGC. Finally, 3CGC were merged with 
SPGC to generate the IGC. (b) General features 
of the gene catalogs. *, original HMP study 
reported a gut microbial gene catalog containing 
5,183,353 genes3, 13% more than the number 
shown here from the catalog downloaded from 
the HMP website in August 2013 (http://www.
hmpdacc.org/HMGC/); the sample number is 
139 instead of the 136 stated in the original 
study3. **, original study for the Chinese 
samples created a gene catalog based on 
145 instead of 368 samples4. ***, IGC also 
incorporated 511 prokaryotic genomes. ORF, 
open reading frame; N50, 50% of the total 
length at this length or longer; N90, 90%  
of the total length at this length or longer;  
NA, not applicable.
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For example, the strain labeled Clostridium sp. D5 by the US National 
Center for Biotechnology Information (NCBI) (but we found it to be 
classified as Clostridium XlVa in Lachnospiraceae instead of Clostridium 
in Clostridiaceae, according to the 16S classifier from the Ribosomal 
Database Project (RDP)14; Online Methods), was listed by the Integrated 
Microbial Genomes (IMG) system15 as a strain isolated from human feces, 
and we detected it in 53% of stool samples (n = 325) in HMP’s 16S rRNA 
gene data (Online Methods). However, only 4.9% of its genome was cov-
ered by 3CGC genes (Supplementary Fig. 1c). To ensure representation 
of such low-abundance but prevalent organisms, we extracted genes from 
the genomes of 511 bacterial and archaeal strains that are associated with 
the human gut and whose genomes were detected in our metagenomic 
sequencing cohorts (>90% cumulative coverage of the genome by all 1,267 
metagenomes; Online Methods). This resulted in a group of 659,492 non-
redundant genes, which we refer to as the sequenced prokaryotic gene 
catalog (SPGC) (Fig. 1 and Supplementary Table 2).

We combined SPGC with 3CGC to form the IGC. The IGC includes 
9,879,896 genes, which is nearly three and four times more than the 
existing MetaHIT and the reassembled HMP gene catalogs, respec-
tively2,3 (Fig. 1). Each sample contained an average of 762,665 genes 
and contributed 469 unique genes on average. Any two samples had 
in common an average of 250,382 genes (32.8% of 762,665 genes).

Quality and completeness of the integrated gene catalog
75.7% and 74.1% of the genes in the IGC were new compared to 
the MetaHIT 2010 (ref. 2) and the HMP 2012 (ref. 3) gene catalogs, 
respectively (Supplementary Fig. 2a,e). For sequencing reads from 
the MetaHIT 2010 study2, we mapped about 10% more reads to the 
IGC than to the MetaHIT 2010 catalog, reaching an average mapping 
rate of 79.24% (Fig. 2a). IGC allowed better mapping of sequencing 
reads (80.54% on average) from the cohorts used for its construction, 
compared to unintegrated European, Chinese and American gene 
catalogs (Supplementary Fig. 3a). Data from three studies conducted 

in America16, Japan17 and Sweden5 not used in the construction of 
the IGC had 73.67%, 81.36% and 76.15% of sequencing data rep-
resented in the IGC, respectively (Fig. 2b,c and Online Methods). 
Because the percentage of gene-coding regions in all prokaryotic 
genomes is ~87% (Supplementary Table 3), and an estimated 7.25% 
of sequencing reads with an average length of 77 base pairs could 
not be mapped reliably as they only partially overlapped with genes 
(Online Methods), the percentages of mapped reads that we observed 
with the IGC are close to the maximum achievable mapping rates. 
In addition, richness estimation based on Chao2 (ref. 18) suggests 
that the IGC covers 94.5% of the gene content in the sampled gut 
microbiome (Fig. 2d), similar to an estimation of 95.4% using the 
incidence-based coverage estimator (ICE)19.

Comparison of the genes assembled in the IGC to the previous cat-
alogs showed that the 12.2% of the MetaHIT 2010 genes not present 
in the IGC were shorter, more fragmented and often had unknown 
taxonomy and function compared to the 87.8% MetaHIT 2010 genes 
present in the IGC (Supplementary Fig. 2c,d). This difference might 
be due to the approaches used to generate the IGC, including stricter 
quality control of sequencing reads (using FASTX Toolkit; http:// 
hannonlab.cshl.edu/fastx_toolkit/), an improved assembler (SOAPdenovo 
1.06)20, assembly revision (in the MOCAT pipeline)13, more specific 
gene calling (MetaGeneMark)21, and a standardized and ultrafast clus-
tering algorithm used to merge gene catalogs (CD-HIT)12 (Fig. 1 and 
Online Methods). Similarly, the 23.6% of HMP 2012 genes that were not 
present in the IGC were much shorter and aligned with a small portion of 
sequencing reads compared to the 76.4% HMP 2012 genes present in the 
IGC (Supplementary Fig. 2g). Of the genes shared among the catalogs, 
the majority were longer in the IGC (Supplementary Fig. 2b,f).

Taxonomic representation in the IGC
We taxonomically annotated the IGC using reference genomes of 
3,449 bacteria and archaea (Supplementary Table 3 and Online 

Figure 2  Coverage of the IGC.  
(a) Percentage of total reads in the  
MetaHIT 2010 study (n = 124 samples)  
that could be mapped to MetaHIT 2010  
and the IGC. Plotted are interquartile  
ranges (IQRs; boxes), medians (dark lines 
in the boxes), the lowest and highest values 
within 1.5 times IQR from the first and third 
quartiles (whiskers above and below the 
boxes), and outliers beyond the whiskers 
(circles). (b) Percentage of total reads in 
unrelated studies of Japanese samples  
(Sanger sequencing, n = 13 samples) and 
American samples (Roche 454 sequencing,  
n = 18 samples) that could be mapped  
to MetaHIT 2010 and IGC with the  
criterion of identity ≥ 90% and mapped  
length ≥ 100 bp16,17, and from Swedish 
samples (Illumina sequencing, n = 145)  
that could be mapped with identity ≥ 95% 
(Online Methods)5. Results for two overlap 
cutoffs (>1% and >80%) for queries are  
shown for Sanger and 454 reads. OL, overlap. 
*, 130 of the 145 individuals were born in 
Sweden. (c) Distribution of mapping ratio for 
the mostly Swedish cohort (shown in b) with 
normal glucose tolerance (NGT), impaired 
glucose tolerance (IGT) and type II diabetes 
(T2D). Each point represents one sample, colored according to nationality at birth. The mapping ratio is not available from the original study5.  
(d) Rarefaction curve based on gene profiles of 1,267 samples using the Chao2 estimator18 (Online Methods).
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Methods)22. Similar to previous studies4,23, 
21.3% of the genes in the IGC could be 
uniquely and reliably assigned to a phylum 
and 16.3% to a genus. Genes that could be 
assigned to genera represented 44.4% of the 
total sequencing reads (ranging from 5.3% to 
78.4% of the sequencing reads in individual 
samples; Supplementary Fig. 3b).

For 3CGC (IGC without SPGC) com-
pared to MetaHIT 2010, we observed that 
on average 3CGC had 32.26% higher cover-
age of individual genomes (the improvement 
in coverage in 3CGC versus MetaHIT 2010 
ranged from −0.71% to +80.44%; average 
gene content in bacterial genomes is 87%) 
(Fig. 3a, Supplementary Tables 3 and 4). The 
improvement in genomic coverage correlated 
with the increase in maximum abundance 
of the genera as the cohort size expanded 
from 124 in MetaHIT 2010 to 1,267 in IGC  
(Fig. 3a,b). The most abundant genus, 

Genera that occurred in large numbers of samples (high occurrence 
frequency) tended to be those species previously known to inhabit the 
human gut (Supplementary Fig. 4d, and Supplementary Tables 5 and 6).  
A notable exception was Oenococcus used in wine fermentation, which 
had not been reported as a gut commensal (Supplementary Table 6)  
but the occurrence frequency of genes annotated to this genus  
was 13.5% in the current cohort (Online Methods). Although  
genera not affiliated with the human gut substantially outnumbered 
genera found in the gut according to the IMG (Supplementary 
Table 6), they only contributed relatively low-occurrence genes 
(Supplementary Fig. 4e).
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Figure 3  Improved genome coverage in 3CGC. 
(a) Improvement in the percentage of each 
strain’s genome covered by 3CGC compared 
to MetaHIT 2010 genes. Only the 593 strains 
whose genomes were covered more than  
60% by MetaHIT 2010 or 3CGC genes 
(BLASTN v2.2.24, with criterion of score ≥ 60  
and mapped length ≥ 80% for queries) are 
shown. A complete list of strains is shown in 
Supplementary Table 4. Strains were grouped  
by genera. Each dot represents one strain  
in a genus. Size of the dots scales inversely  
with the number of strains in the same genus 
(i.e., a genus with only one strain covered more 
than 60% had a large dot). The dashed line 
shows the theoretical maximum of 87% (the 
average gene content of a bacterial genome). 
(b) Difference in the highest relative abundance 
of a genus seen in the MetaHIT 2010 cohort 
(n = 124) and the IGC cohort (n = 1,267). 
Genera were ordered according to their relative 
abundance maxima in MetaHIT 2010 and the 
resulting x-axis labels are as indicated in a.  
(c) Genome coverage of different Lactobacillus 
strains in 3CGC and MetaHIT 2010.

Bacteroides, was no more than 10% better covered except for two 
strains, whereas genera that were sampled to much higher abundance 
in the current cohort (e.g., Prevotella, Lactobacillus, Peptostreptococcus, 
Enterococcus and Helicobacter, specifically, H. winghamensis) showed 
substantial improvement in their genomic coverage by our gene cata-
log. At the strain level, pathogenic strains such as Escherichia coli O157:
H7 and cheese starter strains like L. delbrueckii were substantially bet-
ter represented in the IGC because of increased sampling (Fig. 3c, 
Supplementary Fig. 4a and Supplementary Table 4). Analysis of 
Enterococcus revealed that most samples contained low levels of this 
genus, but its occasional high abundance in Chinese and European 
samples, combined with sufficient sequencing depth, enabled 70–80% 
improvement in the genomic coverage of Enterococcus in the IGC 
(Supplementary Fig. 4b,c). Thus, increased sampling might be a more 
effective alternative to deeper sequencing for improved coverage of 
rare species.
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Functional representation of gut microbes
We annotated the genes in the IGC according to the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) and the evolutionary genealogy of 
genes nonsupervised orthologous groups (eggNOG) databases24,25. 
We identified a total of 6,980 KEGG orthologous groups (KOs) and 
36,489 eggNOG orthologous groups, which represented 51.6% and 
69.3% of the total sequencing reads (Supplementary Fig. 3b) and 
involved 42.1% and 60.4% of the IGC genes, respectively.

876 KOs were present in the IGC but not in the MetaHIT 2010 
catalog, whereas 36 KOs present in the MetaHIT 2010 catalog were 
absent from IGC because of the increased stringency. Consistent with 
richness estimation by Chao2 (Fig. 2d) and ICE, and as suggested by 
the local rather than global improvement in the coverage of metabolic 
pathways from MetaHIT 2010 to IGC (Supplementary Fig. 4f), the 
IGC might provide saturated coverage of the functional capacity of the 
human gut prokaryotes. Although bacteria are the dominant organ-
isms in the gut microbiota26–28, we obtained 500 more eukaryotic 
KOs in the IGC compared to MetaHIT 2010, but pathways in higher 
eukaryotes such as glycosphingolipid biosynthesis, proteoglycan 
biosynthesis and diterpenoid biosynthesis remained largely absent 
(Supplementary Fig. 4f and Supplementary Table 7).

To test the usefulness of the IGC for analyzing metatranscrip-
tomic as well as metagenomic data, we mapped metatranscriptomic 
sequencing reads from a recent study9 to the catalog. After removing 
genes corresponding to noncoding RNAs such as rRNA, tRNA and 
signal recognition particle RNA, a higher percentage of the metatran-
scriptome reads could be mapped to IGC compared to using reference 
genomes of gut bacteria and archaea only (SPGC) (Online Methods 
and Supplementary Fig. 3c). Despite the stringent alignment criteria 
(Online Methods), the amount of reads mapping to protein-coding  

genes in each sample according to the IGC correlated well with  
values from the original study (Supplementary Fig. 3d). Also, using 
the IGC instead of the reference genomes (SPGC) allowed identi-
fication of more KOs, especially in pathways such as carbohydrate 
metabolism, cellular processes and signaling, and membrane trans-
port (Supplementary Fig. 3e).

Country-specific signatures
To demonstrate the utility of the IGC in quantitative comparisons 
of the gut microbiome between cohorts, we selected a phenotype-
matched group of 60 South Chinese and 100 Danish healthy indi-
viduals from the 1,267 samples (Supplementary Tables 8 and 9) and 
profiled their gut metagenomes by comparison to the IGC. Since 
slightly different DNA extraction methods were used for the two sets 
of samples2–4,6, before the comparison we randomly selected 11 of 
the 368 Chinese samples (Supplementary Table 10) and extracted 
the DNA using both protocols to estimate biases resulting from 
this difference. Metagenomes derived from the same sample using 
different protocols displayed high self-correlation and the same 
key features (Supplementary Fig. 5a–d). We removed remaining  
differences before subsequent comparisons (Online Methods).

We could readily separate the Chinese and Danish cohorts by prin-
cipal component analyses (PCA) based on genes (Fig. 4a), KOs or 
genera profiles (Supplementary Fig. 5e,f). Compared to the Danish 
cohort, the Chinese cohort displayed significantly lower α-diversity 
in genes and genera but not in KOs (P = 7.82 × 10−6, P = 1.90 × 10−6,  
P > 0.1, respectively, Wilcoxon rank-sum test), even after normali-
zation of extraction methods and mappable sequencing reads (Fig. 
4b and Supplementary Fig. 5c,g,h). Taxonomically, 151 of the 307 
genera showed clear differences between the Chinese and Danish 
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samples (P < 0.01, false discovery rate (FDR) of 0.0048, power = 0.7, 
Wilcoxon rank-sum test; Supplementary Fig. 5i,j and Supplementary  
Table 11). For example, the Danish samples were generally enriched 
in the phylum Firmicutes, including Oenococcus and other lactic acid 
bacteria, whereas the Chinese samples had greater abundance of  
Proteobacteria (Fig. 4c).

3,491 KOs were significantly different between the two cohorts 
(P < 0.01, FDR = 0.003, power = 0.7, Wilcoxon rank-sum test; 
Supplementary Fig. 5k and Supplementary Table 12). The most 
prominent differences involved diet-related processes such as energy 
metabolism, carbohydrate metabolism, amino acid metabolism,  
and metabolism of cofactors and vitamins, as well as xenobiotic-
associated functions such as membrane transport and xenobiotic 
biodegradation and metabolism (Supplementary Figs. 6 and 7, 
Supplementary Tables 13–25 and Supplementary Notes). These dif-
ferences in metabolic potential of the gut microbiota between healthy 
Chinese and Danish adults might be influenced by differences in  
diet (perhaps bread, dairy and vitamins) and environmental factors 
(perhaps aromatic carcinogens or nitrogen oxides) (Supplementary 
Fig. 8 and Supplementary Notes).

Individual-specific genes
The increased gene number in the IGC could not be explained by 
sequencing and assembly error2 because such errors in the sequences 
would have been eliminated as redundant genes (those with >95% 
identity) during compilation of the gene catalog (Fig. 1). To determine 
the source of the increased number of genes (Fig. 5), we simulated 
the gene content of the catalog when the sample size varied from 50 
to 1,267 (Supplementary Table 26). The number of genes detected in 
more than 5% of the samples increased only slightly and approached 
saturation at about 3.2 million genes; the number of genes present 
in more than 50% of the subjects remained below 300,000, as in 
MetaHIT 2010 (ref. 2) (Fig. 5a). In contrast, genes found in less than 
5% of samples, especially in less than 1% of the samples, continued to 
increase as sample size increased (Fig. 5a). Therefore, genes occurring 
in a few individuals contributed most to the expanded size of the IGC. 

Despite their low occurrence frequency, such genes were abundant in 
the samples that did contain them (Fig. 5b).

The abundance and repertoire of low-occurrence genes were largely 
concordant in samples taken from the same HMP individuals at 
different time points (218 d apart on average), whereas low-occurrence 
genes from different individuals differed substantially (Fig. 6),  
indicating that these genes were not contamination during sample 
handling or transient ‘passengers’ of the gut. Indeed, low-occurrence 
genes could be more effective than high-occurrence genes when used 
to distinguish samples from different individuals (Fig. 6a,b).

Using the eggNOG database25 we compared the functions of genes 
seen in less than 1% of the individuals with genes found in more 
than 50% of the individuals, referred to here as ‘individual-specific’ 
and ‘common’ genes, respectively. The individual-specific genes were 
modestly enriched in the categories cell wall/membrane/envelope 
biogenesis and DNA replication, recombination and repair. The 
common genes were enriched in functions such as signal transduc-
tion mechanism, energy production, carbohydrate transport and 
metabolism, and amino acid transport and metabolism (Fig. 5c and 
Supplementary Table 27).

When we looked at the exact orthologous groups (groups of genes 
with homologous sequence and function in different organisms) 
in the eggNOG resource, genes responsible for the synthesis of cell 
wall components, especially peptidoglycans and lipopolysaccha-
rides, were overrepresented in the individual-specific set (Fig. 5d  
and Supplementary Table 28). We also observed an eightfold higher 
fraction of phage-related proteins, including tail proteins, phage 
repressors and terminases, among these individual-specific genes. 
DNA-related functions such as transposases, endonucleases and 
DNA methylases were enriched in the individual-specific genes 
(Fig. 5d and Supplementary Table 28), possibly linked to exposure 
of the gut microbes to foreign DNA. In addition, the individual- 
specific genes encoded more acetyltransferases, such as GCN5-related  
N-acetyltransferases that inactivate aminoglycoside-type antibiotics. 
These results suggest that common genes supply functions essential 
for survival, whereas individual-specific genes likely reflect adaptation  
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to host immune system, viral infection, antibiotic treatment and other 
challenges experienced by the gut microbiome.

DISCUSSION
The IGC is a comprehensive resource for further investigations of 
the gut microbiome, covering strains with a diverse range of occur-
rence frequencies, abundance and transit durations in the human 
gut. Future efforts to enhance this catalog could be more targeted to 
samples with high abundance of a particular strain of interest, which 
might indicate deviation from a healthy status or relate to a particu-
lar environmental factor. As the gut could be seeded by microbes 
present in food and drinks9, quantitative information on the intake 
and excretion of microbes, the half-life of a strain in the gut29 and so 
forth would be necessary to define a gut commensal reliably. It is also 
possible that invasive techniques such as colonoscopy would identify 
more mucosal-associated microbes than fecal sampling.

Our analysis of two phenotype-matched cohorts of healthy Chinese 
and Danish adults based on the IGC revealed differences in their gut 
microbiota regarding many aspects of nutrient metabolism as well 
as xenobiotic detoxification, which might have been shaped by diet 
and environment (Supplementary Fig. 8 and Supplementary Note). 
However, other influences, such as host genetics, remain possible.

Low-occurrence genes contributed overwhelmingly to the increased 
total gene number in the IGC and might reflect the distinct combination 
of genetic, nutritional and medical factors in a host. Although the individ-
uals had no recent antibiotic treatment, we observed enrichment in pos-
sible antibiotic resistance genes both at the population level30,31 (penicillin 
resistance in Danes and multidrug resistance in Chinese; Supplementary 
Table 21) and in the individual-specific genes (e.g., acetyltransferases and 
peptidoglycan synthesis), which highlights the need for close monitoring 
of direct and indirect exposure to antibiotics.

Gut bacteriophages are believed to be mostly temperate but can be 
induced to enter the lytic cycle32,33. We identified genes for maintenance 
of lysogeny, such as phage repressors, as well as various genes involved 
in replication and infection. Other individual-specific genes might also 
be carried by phages, which are known to alter the metabolism of and 
confer stress resistance to their bacterial host33–36, and appear stably 
associated with a given individual32. It remains to be explored whether 
rare genes in the non-gut microbiome are also enriched for phages or 
adaptive functions possibly carried by phages36.

Similar to the field of human genetics, where the search for new 
alleles has progressed from common to rare, our data indicate that 
cataloging of our ‘other genome’, the human gut microbiome, is also 
entering the stage for identification of rare or individual-specific 
genes instead of common and shared genes. It is also reaching the 
stage for quantitative comparisons between populations around the 
world. A reference gene catalog such as the IGC allows rapid and  

multi-omic profiling of the genetic and functional repertoire of a given 
gut metagenome, and facilitates investigations of its geographical,  
genetic, temporal and physiological characteristics.

A website (http://meta.genomics.cn, optimized for Safari) has  
been set up to better visualize the annotation information of the gene 
catalog and guide researchers who are interested in using our data set 
and downloading specific sets of data.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. European Bioinformatics Institute Sequence Read 
Archive: ERP004605 (metagenomic sequencing data of the 249 
European samples and 11 Chinese samples).

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 6  Temporal stability of low-occurrence 
genes. (a,b) Genes were binned by their 
occurrence frequency estimated from all 1,070 
individuals. Within each bin, the Sorenson 
index based on gene content was estimated for 
pairwise comparisons of multiple samples taken 
from 43 HMP individuals (a), and first time 
point (stool 1) samples from 94 different HMP 
individuals (b). The two sets of dots in a that 
showed substantially lower Sorenson indices 
in all occurrence frequencies than the rest of 
the data originated from comparison between 
763536994-stool 2 sample with the same individual’s stool 1 and stool 3 samples; this sample seems to be an outlier. (c) Relative abundance of genes 
in common among samples from 43 HMP individuals sampled at two time points were compared to calculate the Spearman’s correlation coefficient. 
See Figure 2a for definition of box-and-whisker plot and Online Methods for computation.

1.0

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50 60 70 80 9010
0

Frequency of occurrence in
individuals (%)

In
tr

a-
in

di
vi

du
al

 s
im

ila
rit

y
co

ef
fic

ie
nt

 (
S

or
en

so
n 

in
de

x)

a
1.0

0.8

0.6

0.4

0.2

0

0 10 20 30 40 50 60 70 80 9010
0

Frequency of occurrence in
individuals (%)

In
te

r-
in

di
vi

du
al

 s
im

ila
rit

y
co

ef
fic

ie
nt

 (
S

or
en

so
n 

in
de

x)

b
1.0

0.8

0.6

0.4

–0.4

0.2

–0.2

0

0 10 20 30 40 50 60 70 80 9010
0

Frequency of occurrence in
individuals (%)

In
tr

a-
in

di
vi

du
al

 a
bu

nd
an

ce
si

m
ila

rit
y 

(S
pe

ar
m

an
)

c

http://meta.genomics.cn
http://www.nature.com/doifinder/10.1038/nbt.2942
http://www.nature.com/doifinder/10.1038/nbt.2942
http://www.ebi.ac.uk/ena/data/view/ERP004605%26display=html
http://www.nature.com/doifinder/10.1038/nbt.2942
http://www.lucamp.org/
http://www.metabol.ku.dk
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

�	 advance online publication  nature biotechnology

r e s o u r c e

20Commissariat à l’Energie Atomique, Genoscope, France. 21Centre National de la Recherche Scientifique, UMR 8030, Evry, France. 22Evry, France, Université d’Evry 
Val d’Essone, Evry, France. 23The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. 24Danone Research, Palaiseau, France. 25Gut Biology & Microbiology, 
Danone Research, Centre for specialized nutrition, Wageningen, the Netherlands. 26Istituto Europeo di Oncologia, Milan, Italy. 27Institut Mérieux, Lyon, France. 
28Laboratory of Microbiology, Wageningen University, Utrecht, the Netherlands. 29Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland.

MetaHIT consortium (additional members): 

Nicolas Pons7, Emmanuelle Le Chatelier7, Jean-Michel Batto7, Sean Kennedy7, Florence Haimet7,  
Yohanan Winogradski7, Eric Pelletier20–22, Denis LePaslier20–22, François Artiguenave20–22, Thomas Bruls20–22, 
Jean Weissenbach20–22, Keith Turner23, Julian Parkhill23, Maria Antolin9, Francesc Casellas9, Natalia Borruel9, 
Encarna Varela9, Antonio Torrejon9, Gérard Denariaz24, Muriel Derrien24, Johan E T van Hylckama Vlieg24, 
Patrick Viega24, Raish Oozeer25, Jan Knoll25, Maria Rescigno26, Christian Brechot27, Christine M’Rini27, 
Alexandre Mérieux27, Takuji Yamada5, Sebastian Tims28, Erwin G Zoetendal28, Michiel Kleerebezem28,  
Willem M de Vos28,29, Antonella Cultrone14, Marion Leclerc14, Catherine Juste14, Eric Guedon14,  
Christine Delorme14, Séverine Layec14, Ghalia Khaci14, Maarten van de Guchte14, Gaetana Vandemeulebrouck14, 
Alexandre Jamet14, Rozenn Dervyn14, Nicolas Sanchez14, Hervé Blottière14, Emmanuelle Maguin14,  
Pierre Renault14, Julien Tap5,7 & Daniel R Mende5

1.	 Clemente, J.C., Ursell, L.K., Parfrey, L.W. & Knight, R. The impact of the gut 
microbiota on human health: an integrative view. Cell 148, 1258–1270 
(2012).

2.	 Qin, J. et al. A human gut microbial gene catalogue established by metagenomic 
sequencing. Nature 464, 59–65 (2010).

3.	 The Human Microbiome Project Consortium. A framework for human microbiome 
research. Nature 486, 215–221 (2012).

4.	 Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 
diabetes. Nature 490, 55–60 (2012).

5.	 Karlsson, F.H. et al. Gut metagenome in European women with normal, impaired 
and diabetic glucose control. Nature 498, 99–103 (2013).

6.	 Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic 
markers. Nature 500, 541–546 (2013).

7.	 Nielsen, H.B. et al. Identification and assembly of genomes and genetic elements 
in complex metagenomic samples without using reference genomes. Biotechnol. 
doi:10.1038/nbt.2939 (6 July 2014).

8.	 Xiong, X. et al. Generation and analysis of a mouse intestinal metatranscriptome 
through Illumina based RNA-sequencing. PLOS ONE 7, e36009 (2012).

9.	 David, L.A. et al. Diet rapidly and reproducibly alters the human gut microbiome. 
Nature 505, 559–563 (2014).

10.	Erickson, A.R. et al. Integrated metagenomics/metaproteomics reveals human host-
microbiota signatures of Crohn’s disease. PLOS ONE 7, e49138 (2012).

11.	Li, J. et al. Supporting data for the paper: “An integrated catalog of reference genes 
in the human gut microbiome.” GigaScience Database doi:10.5524/100064 
(2014).

12.	Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets 
of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

13.	Kultima, J.R. et al. MOCAT: a metagenomics assembly and gene prediction toolkit. 
PLOS ONE 7, e47656 (2012).

14.	Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Naive Bayesian classifier for rapid 
assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. 
Microbiol. 73, 5261–5267 (2007).

15.	Markowitz, V.M. et al. IMG 4 version of the integrated microbial genomes comparative 
analysis system. Nucleic Acids Res. 42, D560–D567 (2014).

16.	Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 
480–484 (2009).

17.	Kurokawa, K. et al. Comparative metagenomics revealed commonly enriched gene 
sets in human gut microbiomes. DNA Res. 14, 169–181 (2007).

18.	Chao, A. Estimating the population size for capture-recapture data with unequal 
catchability. Biometrics 43, 783–791 (1987).

19.	Lee, S.M. & Chao, A. Estimating population size via sample coverage for closed 
capture-recapture models. Biometrics 50, 88–97 (1994).

20.	Li, R. et al. De novo assembly of human genomes with massively parallel short 
read sequencing. Genome Res. 20, 265–272 (2010).

21.	Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic 
sequences. Nucleic Acids Res. 38, e132 (2010).

22.	Mende, D.R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation 
of prokaryotic species. Nat. Methods 10, 881–884 (2013).

23.	Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 
174–180 (2011).

24.	Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic 
Acids Res. 28, 27–30 (2000).

25.	Powell, S. et al. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 
different taxonomic ranges. Nucleic Acids Res. 40, D284–D289 (2012).

26.	Scanlan, P.D. & Marchesi, J.R. Micro-eukaryotic diversity of the human distal gut 
microbiota: qualitative assessment using culture-dependent and -independent 
analysis of faeces. ISME J. 2, 1183–1193 (2008).

27.	Marchesi, J.R. Prokaryotic and eukaryotic diversity of the human gut. Adv. Appl. 
Microbiol. 72, 43–62 (2010).

28.	Parfrey, L.W., Walters, W.A. & Knight, R. Microbial eukaryotes in the human 
microbiome: ecology, evolution, and future directions. Front. Microbiol. 2, 153 
(2011).

29.	Faith, J.J. et al. The long-term stability of the human gut microbiota. Science 341, 
1237439 (2013).

30.	Forslund, K. et al. Country-specific antibiotic use practices impact the human gut 
resistome. Genome Res. 23, 1163–1169 (2013).

31.	Hu, Y. et al. Metagenome-wide analysis of antibiotic resistance genes in a large 
cohort of human gut microbiota. Nat. Commun. 4, 2151 (2013).

32.	Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their 
mothers. Nature 466, 334–338 (2010).

33.	Minot, S. et al. The human gut virome: inter-individual variation and dynamic 
response to diet. Genome Res. 21, 1616–1625 (2011).

34.	Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. 
Nat. Commun. 1, 147 (2010).

35.	Reyes, A., Semenkovich, N.P., Whiteson, K., Rohwer, F. & Gordon, J.I. Going viral: 
next-generation sequencing applied to phage populations in the human gut.  
Nat. Rev. Microbiol. 10, 607–617 (2012).

36.	Modi, S.R., Lee, H.H., Spina, C.S. & Collins, J.J. Antibiotic treatment expands the 
resistance reservoir and ecological network of the phage metagenome. Nature 499, 
219–222 (2013).

http://www.nature.com/doifinder/10.1038/nbt.2939
http://dx.doi.org/10.5524/100064


©
20

14
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

nature biotechnologydoi:10.1038/nbt.2942

which were downloaded from EBI with the accession code PRJNA28117; and 
(iii) data from European individuals5, which was downloaded from NCBI with 
the accession code ERP002469.

Two previously published gene catalogs for the human gut microbiome used 
in this project include: (i) a gene catalog established from 124 Europeans by 
MetaHIT2, which was downloaded from http://gutmeta.genomics.org.cn/; (ii) 
a gene catalog established by HMP3, which was downloaded from http://www.
hmpdacc.org/HMGC/ in August 2013.

Gut metatranscriptomic data from 59 samples were downloaded from the 
Gene Expression Omnibus under accession GSE46761 (ref. 9). All of these 
public metatranscriptomic sequencing samples were processed by the MOCAT 
pipeline to extract high-quality reads13.

Collection and quality control of 3,449 sequenced prokaryotic genomes 
or draft genomes. Prokaryotic genomes were collected and filtered as 
described22. Briefly, all prokaryotic genomes available at NCBI and EMBL 
Bank on 23 February 2012 were downloaded and genomes with more than 300 
contigs and N50 < 10 kbp were removed. In addition, we removed genomes 
for which less than 30 of 40 universal single-copy marker genes were identi-
fied40,41. Finally, for genomes with the same taxonomy identifier, but different 
project identifiers, one genome was randomly chosen, which resulted in a set 
of 3,449 genomes used in this study.

Construction of the integrated gene catalog (IGC). Illumina sequencing 
reads for fecal samples from European, Chinese and American adults were 
independently processed (quality control, removal of human sequences, assem-
bling, assembly revision and gene prediction) using MOCAT13, which could 
process metagenomes in a standardized and automated way while improv-
ing the quality of assembly and gene prediction compared to using default 
parameters for the supported programs based on parameter exploration and 
data-driven parameter optimization at run time13. We chose FASTX Toolkit 
(http://hannonlab.cshl.edu/fastx_toolkit/) for quality control, SOAPaligner2 
(ref. 42) for identifying human sequences, SOAPdenovo v1.06 (ref. 20) for 
assembling and MetaGeneMark21 for gene prediction in the MOCAT pipeline. 
The configuration file we used in MOCAT has been deposited on GigaScience 
Database11. Genes in each cohort were clustered using CD-HIT12. The gene 
catalogs were then merged to generate a human gut microbial gene catalog 
based on all 1,267 samples, referred to as 3CGC.

3,449 sequenced bacteria and archaea genomes or draft genomes were 
gathered22, and human gut–related prokaryotes were selected in two steps. 
First, strains that satisfied any one of these three criteria were included: (i) the 
strain’s habitat is “human gastrointestinal tract” according to IMG (http://img.
jgi.doe.gov/cgi-bin/w/main.cgi) (downloaded on 24 July 2012), i.e., the strain’s 
“Body Site” is “Gastrointestinal tract” or “Isolation” is “human feces.” (ii) 16S 
rRNA sequence of the strain is identical to that of an OTU reported by HMP as 
from stool body site43. 485 nonchimeric HMP OTUs from stool body site were 
aligned to the 16S rRNA gene of each strain using mothur (version 1.23.1)44, 
with a global identity cutoff of ≥99.5%. (iii) Ratio of genes covered by 3CGC 
with a weak criterion is high. Genes from each strain were aligned to 3CGC 
using BLAT45 with the criterion of overlap ≥ 10% and identity ≥ 95%. Strains 
with over 80% of their genes covered by 3CGC were selected. We obtained 
983 gut-related prokaryotic strains following these three criteria (Fig. 1a and 
Supplementary Table 3). Second, these 983 prokaryotic genomes were filtered 
by the cumulative coverage by our metagenomic sequencing data (more than 
90% of genome by 1,267 samples) to confirm that they are part of the human 
gut microbiome. The genomes or draft genomes of each strain were initially 
aligned with sequencing reads from 100 samples using SOAP2 (ref. 42) with 
identity ≥ 90%. Strains whose genome had not yet been covered over 90% 
were aligned with data from all 1,267 samples for further selection. After such 
filtering, 511 prokaryotes remained and were used to construct the gut-related 
SPGC (Fig. 1 and Supplementary Table 3).

Finally, the gene catalog based on metagenomic sequencing data (3CGC) 
and the gene catalog based on sequenced prokaryotic genomes (SPGC) were 
combined using CD-HIT to generate the IGC (Fig. 1).

The gene catalogs, annotation information, abundance profile, assemblies 
and predicted open reading frames of the 1,267 samples have been deposited 
into the GigaScience database11.

ONLINE METHODS
Sample collection and transfer. Under the MetaHIT consortium, 249 fecal 
samples were collected in a container provided for this purpose at homes 
of the participating individuals, immediately transferred to a −20 °C freezer 
and brought frozen in a cold box to the clinic on the next day. The samples 
were transferred then to −80 °C and kept at that temperature or on dry ice. 
Informed consent was obtained from all Danish volunteers from the Ethical 
Committees of the Capital Region of Denmark and from all Spanish volun-
teers from Hospital Univeritari Vall d’Hebron. All other samples have been 
reported previously2–4,6,7.

Sample DNA extraction. DNA extraction from the 249 new MetaHIT samples 
was performed as previously described37.

For comparison of DNA extraction methods, BGI’s protocol4 was identi-
cal to the MetaHIT protocol37 except that for each fecal sample (up to ~1 g),  
25 mg of lysozyme and 12.5 mg of proteinase K was added after the initial 
centrifugation to facilitate cell lysis. Incubation was performed at 37 °C for  
1 h to conform to the optimal reaction temperature of lysozyme.

To assess the influence of different DNA extraction protocols, we ran-
domly selected 11 fecal samples from the Chinese cohort4 and sent them  
to Institut National de la Recherche Agronomique (INRA). Our MetaHIT  
collaborators in INRA extracted the DNA from these 11 samples again  
following the MetaHIT protocol.

HMP uses PowerSoil DNA isolation kit (MO BIO Laboratories)3, which 
gives a low DNA yield according to assessments by us (data not shown) 
and others38. Combined with the lower α–diversity in the HMP samples 
(Supplementary Fig. 5l)39 and the non-overlapping ages (<40 for HMP  
versus >40 for MetaHIT), we did not include HMP data in our intercontinental 
comparison.

DNA library construction and sequencing. DNA library construction was 
performed following the manufacturer’s instructions (Illumina). We used the 
same workflow as described elsewhere2 to perform cluster generation, template 
hybridization, isothermal amplification, linearization, blocking and denatura-
tion, and hybridization of the sequencing primers.

We constructed Illumina libraries for 249 new MetaHIT samples from 
the European cohort with insert size of 350 bp, followed by high-throughput 
sequencing to obtain around 36 million paired-end (PE) reads. The read length 
for each end was 90 bp. High-quality reads were extracted by the MOCAT 
pipeline from the Illumina raw data13. The proportion of high-quality data in 
these samples was 89.5% on average.

We constructed Illumina libraries for 11 randomly selected samples from 
the Chinese cohort, followed by high-throughput sequencing to obtain around 
14 million PE reads or 15 million single-end (SE) reads. The read length for 
each end was 90 bp. High-quality reads were extracted by the MOCAT pipeline 
from the Illumina raw data13. On average, the proportion of high-quality data 
in these samples was 87.9%, and the actual insert size of our PE library ranged 
from 311 bp to 326 bp.

The Illumina libraries of 511 European fecal samples from the MetaHIT 
project and libraries of 368 Chinese fecal samples were constructed and 
sequenced at BGI using the same protocol as the 249 MetaHIT samples2,4,6. 
139 HMP samples were processed by HMP sequencing centers using a similar 
protocol and platform3.

Public data used. The public gut microbial metagenomes used in this IGC 
include: (i) 139 HMP samples from stool body site3, which were down-
loaded from http://www.hmpdacc.org/HMASM/; (ii) 368 Chinese fecal 
samples4, which were downloaded from NCBI (accession codes SRA045646  
and SRA050230); (iii) 511 European fecal samples from the MetaHIT project, 
which were downloaded from the European Bioinformatics Institute (EBI) 
with accession codes ERA000116, ERP003612 and ERP002061 (refs. 2,6,7), 
and shared within the MetaHIT consortium. All of these public metagenomic 
sequencing samples were processed using the MOCAT pipeline to extract 
high-quality reads13.

Other gut metagenomic data used to validate representativeness of IGC 
include: (i) data from US individuals16, which were downloaded from NCBI 
with the accession code SRA002775; (ii) data from Japanese individuals17, 

http://www.ebi.ac.uk/ena/data/view/PRJNA28117
http://www.ncbi.nlm.nih.gov/sra/?term=ERP002469
http://gutmeta.genomics.org.cn/
http://www.hmpdacc.org/HMGC/
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http://hannonlab.cshl.edu/fastx_toolkit/
http://img.jgi.doe.gov/cgi-bin/w/main.cgi
http://img.jgi.doe.gov/cgi-bin/w/main.cgi
http://www.hmpdacc.org/HMASM/
http://www.ncbi.nlm.nih.gov/sra/?term=SRA045646
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Investigation on the representation of a low-abundance but prevalent 
human gut bacterium. Genome of NCBI 556261.HMPREF0240_10201 (Clo
stridiaceae|Clostridium|Clostridium sp. D5 in NCBI, Lachnospiraceae|Clostrid
ium XlVa according to the RDP database14, Feburary 2014) originally isolated 
from human feces was chosen as a reference. Genes from 3CGC were aligned 
to the NCBI 556261 genome by BLAST with the criterion of more than 95% 
identity and 90% overlap of query. Only 4.9% the genome was represented by 
3CGC. The occurrence frequency of the strain was assessed by sequencing 
data of 325 stool samples from HMP in 16S rRNA gene variable regions3. Tags 
of each sample with length more than 150 bp were aligned to the 16S rRNA 
gene from the NCBI 556261 genome by mothur (version 1.23.1)44 with more 
than 97% identity and more than 90% overlap of query. 53% of the HMP stool 
samples carried this species (2.1 tags on average), which indicated that it is a 
universally present but low-abundance species in the human gut environment. 
Cumulative coverage of its genome by metagenomic sequencing reads from 
1,267 samples was assessed by SOAP2 (ref. 42) with more than 95% identity. 
The best covered sample was chosen according to the maximum number of 
NCBI 556261 genes covered by ORFs assembled from the sample.

Phylogenetic annotation based on reference genomes. Phylogenetic annotation 
was performed using an in-house pipeline. (i) We aligned 9.7 million genes of 
3CGC onto the database of 3,449 prokaryotic genomes using BLASTN (v2.2.24, 
default parameters except that -e0.01 -b100 -K 1 -F T). (ii) For each gene, only the 
top 10% highest-scoring alignments covering ≥ 80% of gene length and identity ≥ 
65% were retained. (iii) Each gene was assigned the taxonomy of the alignment(s) 
with 50% or higher consensus above the similarity threshold for taxonomic rank 
(>65% for phylum, >85% for genus and >95% for species). (iv) The 0.7 million 
genes of SPGC were assigned the taxonomy they came from.

As explained previously4,23, our phylogenetic annotation method ensures 
unique assignment and minimizes ambiguity. The false positive rates at phy-
lum level and genus level were 0.77% and 1.84%, respectively23.

Functional annotation (KEGG and eggNOG). We aligned putative amino 
acid sequences translated from the integrated gene catalog against the pro-
teins or domains in eggNOG (v3.0) and KEGG databases (release 59.0, genes 
from animals or plants were excluded) using BLASTP (v2.2.24, default param-
eter except that -e 0.01 -b 100 -K 1 -F T). KEGG annotation was performed 
using an in-house pipeline, where each protein was assigned to a KO when 
the highest-scoring annotated hit(s) contained at least one alignment over 
60 bits. eggNOG annotation was performed using Smash Community (v1.6, 
find_best_hit.pl&og_mapping.py, with default parameters)46.

Comparison between MetaHIT 2010, HMP 2012 and IGC genes. 9.9 mil-
lion genes from IGC and 3.3 million genes from the MetaHIT 2010 catalog2 
were pooled together, and redundant genes were identified using CD-HIT11 
with ≥95% identity and ≥90% overlap. For the shared (overlapped) genes, 
the length was compared and discrepancies greater than 10% were regarded 
as significantly longer or shorter in IGC. 9.9 million genes from IGC and  
4.6 million genes from the updated HMP 2012 catalog3 were compared using 
the same workflow.

Aligning public human microbial sequencing data onto gene catalogs. Roche 
454 reads from 18 US twins and their mother16 and Sanger reads from 13 
Japanese individuals17 were aligned to MetaHIT 2010 and IGC using BLASTN 
(v2.2.24), with the criterion of mapped length ≥ 100 bp. The ratio of reads that 
could be aligned to MetaHIT2010 or IGC was filtered by two overlap thresholds 
(the proportion of a read aligned to the gene catalog), 1% and 80% (Fig. 2b).

Illumina reads from 145 European individuals (130 of them were born 
in Sweden)5 were aligned to MetaHIT 2010 and IGC using SOAP2 with the 
criterion of identity ≥ 95%42.

Aligning public human microbial metatranscriptomic data onto gene cata-
logs. With our gene catalog constructed directly from the gut microbiome, 
we were able to allocate transcript sequences from 59 metatranscriptomic 
sequencing samples9 onto the gene catalog (IGC) using SOAP2 (≥95% iden-
tity)42 to identify expressed genes, and retrieve their annotated functions. 

SPGC, the gene catalog compiled from 511 gut-related bacterial or archaeal 
genomes or draft genomes present in the 1,267 metagenomes, was used to 
compare with IGC, because the set of 539 human-associated microbial refer-
ence genomes used in the original study is not known (the human microbiome 
database used47 now contains 2673 genomes, as of 31 March 2014, http://www.
hmpdacc.org/catalog/). The hashing-based software SSAHA2 (ref. 48) used 
in the original study has a very loose alignment criterion (parameters: ‘-best 
1 -score 20 -solexa’) and likely does not support unequivocal identification 
of gene functions. Besides, SSAHA2 is substantially slower than short-read 
aligners such as SOAP2 in terms of aligned bases per unit time, and is too slow 
to handle our gene catalogs.

A few noncoding RNAs were involved while integrating 511 human gut-
associated reference genomes into our catalog. In order to calculate the ratio of 
reads mapped to protein-coding genes (coding sequences; CDS), we eliminated 
genes annotated to non-coding RNAs in SPGC and IGC, with the keywords 
‘RNA’ but no ‘-ase’, ‘enzyme’ or ‘protein’ from the original genome annota-
tions22. SPGC and IGC contained 923 and 866 noncoding RNA genes (rRNA, 
tRNA, SRP RNA, etc.), respectively, according to this search criteria.

Computation of relative gene abundance. High-quality reads from each 
sample were aligned against the gene catalog by SOAP2 using the criterion 
of identity ≥ 95%42. Sequence-based abundance profiling was performed as 
previously described4.

Construction of genus, KO and enzyme profiles. For the genus profile, we 
used phylogenetic assignment of each gene from the original gene catalog 
and summed the relative abundance of genes from the same genus to yield 
the abundance of that genus. Relative abundance of each genus in a sample 
constituted the genus profile of that sample. The KO profile was constructed 
using the same method. The relative abundance of an enzyme was calculated 
from summation of the relative abundance of its corresponding KOs.

Estimating loss of mappable reads at gene boundaries. When mapped 
against the gene catalog, a portion of short reads would be lost at the bound-
ary regions of a gene (Supplementary Fig. 9a).

The lost ratio of abundance, ratelost could be calculated as (Supplementary 
Fig. 9b),
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where Lg is gene length; Lboundary is length of boundary region which equals 
read length in our situation.

We used all the genes from 511 human gut-associated prokaryotes 
(Supplementary Table 2) to estimate the proportion of lost sequencing data 
from prokaryotic gene coding region for individual samples (Supplementary 
Fig. 9c). The proportion of lost sequencing data from prokaryotic gene cod-
ing region,
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where i (1,2, … n) refers to each gene from the 511 human gut-associated 
prokaryotes; Lgi is the length of gene i; ratelost, i is the lost abundance for gene i; 
L511, genome is the total genome size of 511 human gut-associated prokaryotes.
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For a given read length of 77 bp (the average read length of 1,267 samples in 
this study) (Supplementary Table 1), the proportion of lost sequencing data 
from prokaryotic gene coding regions is estimated to be 7.25%.

BMI criteria used for European and Chinese cohorts. A number of reports 
indicated that the BMI criterion for Asians is lower than for Europeans, and 
that Asians tend to accumulate abdominal fat and develop obesity-related dis-
eases without overall obesity49–51. Accordingly, we used a lower BMI cutoff to 
define obesity status in Chinese. For Chinese, we used BMI values < 21 kg/m2 
for being lean and ≥ 25 kg/m2 for obesity. For Danish we used BMI values  
< 25 kg/m2 for being lean and ≥ 30 kg/m2 for obesity.

Biodiversity and richness analysis: a-diversity. Based on the gene, genus or 
KO profile, we calculated the α-diversity (within-sample diversity) to estimate 
the gene, genus or KO diversities of a sample using the Shannon index:

′ = −
=
∑H a lnai i
i

S

1

where S is the number of genes and ai is the relative abundance of gene i.  
A high α-diversity indicates a high evenness or many types of genes present 
in the sample.

Adjustment by linear regression. A linear regression equation was gener-
ated based on the 11 randomly selected samples whose DNA was extracted 
twice using both the BGI and MetaHIT protocols (Supplementary Fig. 5c). 
For comparison with the Danish cohort, the within-sample diversity index of 
the Chinese cohort (n = 60) was adjusted according to the linear regression 
equation to eliminate possible biases introduced by different DNA extraction 
protocols.

Read downsizing. To eliminate the influence of fluctuations in sequencing 
amount, we sampled the alignment results and downsized the number of 
mapped pairs to 11 million for each sample.

Rarefaction curve analysis. To assess the gene richness in our Chinese or 
Danish cohort, we generated a rarefaction curve. For a given number of indi-
vidual samples, we performed random sampling 1,000 times in the cohort with 
replacement and estimated the total number of genes that could be identified 
from these samples by the Chao2 richness estimator18. To minimize erroneous 
identification, only the genes with ≥1 pair of mapped reads were determined 
to be present in a sample.

Statistical analysis of the gut metagenome. To identify associations between 
metagenomic profiles and populations, a two-tailed Wilcoxon rank-sum 
test was used in the profiles. We identified a genus marker if its P value was  
<0.01 and occurrence frequency >10% in at least one cohort, and identified 
a KO/enzyme marker if its P < 0.01 and occurrence frequency > 30% in at 
least one cohort.

The statistical method used to detect biases in extraction methods was 
similar to the above-mentioned method, but we did not consider occurrence 
frequency because the sample size was only 11.

Estimating the false discovery rate and statistical power. Instead of a 
sequential P-value rejection method, we applied the ‘qvalue’ method proposed  
in a previous study52 to estimate the FDR. Statistical hypothesis tests were 
performed on a large number of features of the genus profiles and KO profiles. 
Given that a FDR was obtained by the q value method53, we estimated the 
power Pe for a given P-value threshold as

P
N
Ne
e e=

−
−

( )
( )
1
1 0

FDR
p

where π0 is the proportion of null distribution P values among all tested hypoth-
eses; Ne is the number of P values that were less than the P-value threshold;  

N is the total number of all tested hypotheses; FDRe is the estimated false 
discovery rate under the P-value threshold.

Simulation for the dependence of gene catalog size on sampling scale. 
Two data tables were prepared before simulation. The first one was a ‘gene 
profile’ table, containing information about the relative abundance of each 
gene for each sample. The table was generated using the method in ref. 4. 
The second one was a ‘genes assembled’ table, containing information about 
whether a gene was assembled due to the presence of an individual sample. 
The table was generated from the clustering output file from CD-HIT, which 
traced genes corresponding to the same cluster (representative gene) to the  
original sample.

Simulation was performed by random sampling without replacing the 
selected samples, with sample size from 50 to 1,267 samples, 50 samples per 
step. For each simulated set, the estimated size of the nonredundant gene 
catalog was calculated from the ‘genes assembled’ table, and the distribution 
of genes in a range of occurrence frequencies was calculated through the ‘gene 
profile’ table. For each sample size, the simulation was performed 1,000 times, 
and the averages were plotted.

Concordance of low-occurrence genes between samples. Sorenson index, 
also known as Sørensen-Dice index, was used to measure the presence/absence 
similarity of genes of all occurrence frequencies (according to all 1,070 indi-
viduals) in HMP samples.

Sørensen’s original formula was applied to the presence/absence data, in 
the form:

QS C
A B

A B
A B

=
+

= ∩
+

2 2 | |
| | | |

where A and B are the number of genes in samples A and B, respectively, and 
C is the number of species shared by the two samples; QS is the quotient of 
similarity and ranges from 0 to 1.

Spearman’s rank correlation coefficient was used to measure the abundance 
similarity of genes of all occurrence frequencies in HMP samples.

Intraindividual similarity was based on the samples taken from the same 43 
HMP individuals at different times (218 d apart on average). And the interin-
dividual similarity was based on any two stool samples (the first time point) 
from 94 different HMP individuals.

Source genera for genes of diverse occurrence frequencies. The occur-
rence frequency of each IGC gene was rounded to the nearest integer, for 
example, 1% represents 1% ± 0.5%. For each source genus, the numbers of 
genes in each occurrence frequency percentile were counted (Supplementary  
Table 5). Supplementary Figure 4e was derived from this table with a gene 
number cutoff of ≥10.
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