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The human body is colonized by trillions of microorganisms 
that contribute to our health and wellbeing. Different commu-
nities of microorganisms inhabit various anatomical regions 

(Fig. 1). Inter-individual variation at each of these body sites is con-
siderable, but the separation among sites within individuals remains 
apparent1 (Fig. 1). The most densely populated habitat is the gut, 
with an estimated 0.15 kg of microbial biomass2. The gut harbours 

hundreds of bacterial and archaeal species, with Firmicutes and 
Bacteroidetes as dominant phyla1,3–5. Considerable variation in 
microbiota composition has been described among individuals, for 
example in the US National Institute of Health Human Microbiome 
Project (HMP)1, the European Metagenomics of the Human 
Intestinal Tract project (MetaHIT)3,6 and multiple other popula-
tion studies7,8. The gut microbial ecosystem shows a succession of  
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different microbiota stages: community composition changes rap-
idly in early childhood, stabilizes in adults and deteriorates in old 
age8,9. There is no simple description of this complex landscape 
across large populations and geographies, in part because some 
taxa vary monotonically among individuals while most others show 
bimodal or more complex distributions10 (Fig. 2a). Given the impor-
tance and complexity of the gut ecosystem, there is great interest 
in identifying compositional patterns and their underlying rules, 
as they may help us understand human health and disease states. 
A classification based on compositional patterns would potentiate 
microbiota-based diagnostics, therapies or prevention of disease, 
with implications for personalized treatment through nutritional, 
microbial and pharmaceutical interventions. Such patterns of 
microbial composition could be used to stratify populations, simi-
larly to the molecular subtyping commonly used in cancer research, 
where, for example, breast cancer subclasses based on gene expres-
sion patterns are clinically relevant11,12. However, in other cases, 
such as colorectal cancer, the determination and usefulness of such 
classifications remains unclear13, highlighting the fact that molecu-
lar stratification is not actionable in all situations.

Reproducible patterns of variation in the microbiota—for 
example, the proportions of major taxa such as Bacteroides and 
Prevotella—have been observed in the adult human gut (Fig.  2a 
and Supplementary Fig.  1). When separated into clusters, these 
variations  were termed enterotypes14 and proposed as a useful 
method to stratify human gut microbiomes. Later, other studies 
found stratification in other ecosystem types, such as the vagina15 
and other body sites16–18. However, due to the nature of clustering 
in the gut, the number or even existence of different community 
types has been a topic of heated debate after the publication of the 
original work14.

Here we assess gut microbial community composition and test 
the different hypotheses using three of the largest available metage-
nomic datasets, which include data from three continents (from 
HMP, MetaHIT and a Chinese type II diabetes study)1,6,19. We per-
form a refined meta-analysis and propose a modified concept of 
enterotypes, with the goal of reconciling divergent viewpoints. The 
results illustrate the advantages and disadvantages of clustering and 
other stratification approaches. We find that the gut microbial com-
position is structured and that clustering can provide useful insights 
into some microbiome datasets, even when not strongly supported 

statistically. This approach does not diminish the need to pursue 
other analyses and avenues for interpretation, since broad commu-
nity-wide stratification captures only some of the dimensions of 
microbiota complexity.

Recurrent compositional patterns in the gut microbiome
From the survey of the three large datasets mentioned above, it can 
be seen that groups of samples tend towards preferred genus level 
composition (Supplementary Fig.  2), as was also reported in the 
original study14. That is, some configurations of relative microbial 
abundance occur more frequently than others. This can be observed 
by calculating distances between samples and investigating the 
resulting clustering, as well as by directly observing the complex 
abundance distributions of some gut microbial taxa (Fig. 2). This 
preference for specific microbial community profiles is modest, 
resulting in higher sample density around the preferred constella-
tions, but with a considerable proportion of samples falling between 
them. This makes it hard to describe these preferential microbial 
compositions mathematically or determine the number of such 
densely populated areas, prompting an alternative description of 
this space as consisting of gradients16. However, it is important 
to characterize these local optima of community compositions to 
understand the mechanisms responsible for these ecological con-
straints and community properties.

In 2011, clustering human faecal metagenomic samples from 
three countries  (Denmark, Spain and the United States) based 
on their taxonomic composition—using three sequencing tech-
nologies (Illumina, 454 and Sanger), as well as 16S rRNA gene 
profiling data—resulted in the proposal of three enterotypes. 
They were described as being “densely populated areas in a mul-
tidimensional space of community composition”, and were inde-
pendent of age, gender, cultural background and geography14. 
An investigation of the properties of each enterotype found 
networks of co-occurring microorganisms centred around one 
indicator (driver) taxon, that is, the taxon correlating best to that 
given enterotype: enterotype 1, here denoted ET B for clarity, has 
Bacteroides as its best indicator; enterotype 2, here ET P, is driven 
by Prevotella, a genus whose abundance is inversely correlated 
with Bacteroides; and enterotype  3, here ET  F, is distinguished 
by an overrepresentation of Firmicutes, most prominently 
Ruminococcus14. Analyses were performed at genus level, where 
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Fig. 1 | The microbiota of distinct body locations within the healthy human is separable at the genus level. a–c, Using 2381 HMP samples profiled with 
16S rRNA, we illustrate the degree of separation between body sites using different distance measures and taxonomic resolutions: unweighted UniFrac at 
the operational taxonomic unit (OTU) level (a), Jensen–Shannon divergence at the genus level (OTUs belonging to the same genus are added up together) 
(b) and Jensen–Shannon divergence at the OTU level (c). Shown are the first two principal coordinates (PCo1 and PCo2) of a principle coordinate 
analysis (PCoA) for each, as well as a summary of the distances within and between body sites in the top left of each plot. Median inter-sample distances 
(error bars ranging from the 25th to 75th quantile) compared to the median between all body sites (red line) illustrate the ability to capture similarities 
and differences between these biomes, albeit with different effectiveness. We note that the silhouette index (a measure of clustering strength) in the case 
of unweighted UniFrac suggests a clustering into only three types, with an absolute value of ~0.2 (Supplementary Fig. 4).
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microbial ecological niches are hypothesized to be most clearly 
reflected20, notwithstanding functional heterogeneity of some 
genera (such as streptococci, which groups deadly pathogens 
with common commensals and useful food-fermenting species). 
Species- and strain-level variations are neglected, although they 

can contribute to functional differences between individuals that 
are important in a clinical context21,22.

Although much of the discussion emphasized the existence of 
three enterotypes, the original definition had made clear that they 
are not discrete, and that clustering is just one way to define them 
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Fig. 2 | Stratification of the microbial composition landscape of the human gut microbiome. a, Abundance distributions of prevalent microbial genera of 
the human gut are often complex. Theoretical beta distributions (left) were compared with observed distributions (middle) and the observed abundance 
plotted in enterotype space (right) of key enterotype taxa or ratios thereof, based on 278 MetaHIT samples6. While Bacteroides abundance distribution is 
close to log-normal in the three large-scale datasets studied, that of Prevotella is bimodal, suggesting that the observed values are perhaps better explained 
by a mixture of two distributions, generated by two distinct processes, one of which corresponds to a dominating role in the community, while the other 
to a low-abundance state. b, Geographical distribution of studies that report enterotypes (Supplementary Table 1), coloured according to the number of 
microbial clusters reported. Map locations indicate the country from which samples were collected. Links between locations represent samples belonging 
to a single study. Overrepresentation of Western countries is a well-known bias and probably misses a portion of variation in other human societies.  
c, Schematic representation of the simulated microbial composition landscape with three density peaks, modelled as multivariate normal distributions, each 
representing an enterotype and drawn out of scale to make the concept more accessible. This figure illustrates how segmentation of this space by clustering 
with different parameters would result in different numbers of clusters (three and two here) and in differential coverage of individuals (represented by 
intersecting planes). The top-most overlay presents the discretizing segmentation, which splits the space into three zones. d, Projection onto a set of 278 
Danish samples6 of the three most frequent enterotype classification schemes based on different methods, including the Prevotella/Bacteroides gradient. 
This shows a split into a gradient or two, three (distance-based clustering) or four enterotypes (Dirichlet multinomial mixture models, DMMs). The local 
structure is preserved regardless of the method applied, and Prevotella (ET P) remains separated, suggesting the methods mostly differ in dividing the area 
between ET B and ET F. Additionally, the top right of each PCoA with a number of clusters greater than or equal to two shows the distance within a cluster 
(coloured accordingly) compared to the median distance between the clusters (black line), showing that for all cases the distances within are smaller than 
between; bar height is the median distance and the whiskers represent the 25th and 75th quantile. It should be noted that a ‘horseshoe effect’ can occur in 
ordinations, particularly if samples contain non-overlapping compositions86, which is not the case in the datasets analysed here.
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and stratify samples to reduce complexity (see Fig.  3a comparing 
clustering and genera abundances). There are limitations to this 
operational definition, and although the resulting stratification only 
partially reflects the more complex structure within the population 
space, the definition has been used to demonstrate that such strati-
fication can be useful in analysing microbiome data.

Some later studies replicated enterotypes in new datasets to dif-
ferent extents, both in the numbers of enterotypes and the strength 
of the statistical support; whereas others reported finding no struc-
ture (Fig. 2 and Supplementary Table 1). For example, a large-scale, 
diet-focused study in a US cohort23 reported support for two attrac-
tors, one of which shared similar dominant taxa with ET P, while the 
other was a merge of ETs F and B. Analysis of the HMP 16S rRNA 
data18, a meta-analysis of four metagenomics datasets24 and a pop-
ulation-wide Flemish study7 showed a preference for three entero-
types, similar to the originally proposed ones. A study of individuals 

from Venezuelan and Malawian rural areas and US metropolitan 
areas emphasized the importance of Prevotella and Bacteroides as 
driving taxa, as well as a strikingly different composition in infants, 
with their communities mostly containing Bifidobacteria and 
Proteobacteria8. The establishment of an enterotype-like structure 
has been estimated to occur between the age of 9 and 36 months 
in humans25, highlighting the need for caution when extrapolating 
overall community patterns from a limited sampling of the world 
population at different ages.

Departing from the clustering approach, Holmes et al.26 propose 
an alternate approach to identify structure. Their method identifies 
a generative model for each possible state and determines how each 
explains the observed data, focusing on the actual genera abun-
dances rather than the distances. Using this approach (Dirichlet 
multinomial mixture models; DMMs) they reported that the data 
from the original study most likely results from four generative 
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than 480,000 genes (according to ref. 6); all other subjects have high gene count) are significantly different between enterotypes (Supplementary Fig. 8), 
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three-enterotype model is illustrated by colour in a,b,d.
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processes (loosely referred to here as ‘clusters’). Two of the clus-
ters resembled ET B and ET P, while a third showed an increased 
prevalence of Ruminococcus and other Firmicutes genera, which 
are usually lowly abundant in the gut microbiome. The last clus-
ter had a high fraction of unidentified taxa. DMMs have also been 
used to identify three optimal clusters in a healthy Swedish cohort, 
again showing compositions similar to ET  B and ET  P, with one 
additional cluster dominated by unknown taxa27. A further study 
that applied the same method to the HMP 16S rRNA data found 
that the gut microbiome is best approximated with four similar 
models17. When applying DMMs to the MetaHIT metagenomics 
dataset, we identified four groups. Two of these are overlapping 
with ET B and ET P, while the other two are a more complex mix-
ture (Fig. 2 and Supplementary Fig. 3). While DMMs represent a 
statistically more rigorous approach, further research is needed to 
determine if the distributional assumptions of generative models 
hold on microbiome data.

The three dominant gut taxa that contribute to enterotype clus-
tering (Prevotella, Bacteroides and Ruminococcaceae) have been 
shown to have the largest variance in terms of relative abundance, 
despite being core taxa7. Therefore, it is not surprising that an 
ensemble-based network approach recovered them as hubs of three 
co-occurrence network clusters and showed that their abundances 
are mutually negatively correlated1. This negative correlation was 
also shown with qPCR data of 35  signature taxa28. Three distinct 
networks were found in adult Amish individuals29, with the domi-
nant genera in these networks largely overlapping with the driver 
taxa of the original enterotypes. Similarly, six species co-abundance 
groups (CAGs) were reported in a dataset consisting of Irish adults 
and elderly individuals, with healthy hosts mostly possessing net-
works that correspond to the original three enterotypes9,30. Thus, 
independent of clustering and modelling approaches, bacterial co-
abundance networks provide a species network that may underline 
the fundamental properties of these preferred community profiles. 
Theoretical studies show that enterotype-like structures can be an 
emerging feature of communities over a wide range of species inter-
action strengths31.

Enterotype-like structures have also been reported in several 
animal studies, although their gut composition is distinct from that 
of humans. In mouse gut microbiomes, obtained from hosts liv-
ing under controlled experimental conditions32, clustering showed 
a clear compositional stratification, while in animals living in the 
wild (mice33, primates34,35 and pigs36,37) clustering was considerably 
weaker. This is suggestive of preferred community states emerging 
more clearly when no external factors influence the microbiome. 
The concept of enterotypes is therefore not anthropocentric and can 
be defined in animals as well38, which has led to the speculation that 
enterotypes have existed before the pan–human split39. As gut com-
mensals are mostly evolving in competition with each other, under 
the restraints of the host organism40, enterotypes might represent 
optimized states of symbiont compositions, which represent local 
optima in community effectiveness that are still compatible with the 
restraints imposed by the host.

Challenges in defining microbial community types
Assessing clustering in faecal microbiota profiles is non-trivial, given 
that demonstration of alternate states is debated in disciplines from 
ecology to philosophy16,41. Given the nature of enterotype cluster-
ing, and additional factors including multiple choices for taxonomic 
levels, distance metrics, clustering algorithms and cluster optimality 
scores, it is not surprising that analysis can yield different numbers 
of clusters (Supplementary Fig. 4 and Supplementary Information), 
even on the same dataset16. Some have therefore argued that there 
is little support for enterotypes in the data8,16,23,29,42,43. However, sep-
arating samples by body site (skin, stool, vaginal and oral) using 
the same methods also has little statistical support (Supplementary 

Fig. 4), even though this separation is widely accepted in the scien-
tific community.

Regardless of clustering support or modelling assumptions 
(Supplementary Information), an analysis of the three largest pub-
lic datasets, backed by reports from the literature (Supplementary 
Table 1), reveals that the local substructure is always similar—that is, 
a three-cluster model finds Bacteroides, Prevotella and Firmicutes-
dominated clusters, and a two-cluster model separates Prevotella-
driven samples from the rest. Partitioning of the gut microbiota is 
thus stable in the sense that related cluster compositions are recov-
ered, reconciling many studies and supporting the existence of pre-
ferred community compositions.

There is certainly agreement that there are distinct areas within 
the complex microbial composition landscape in which the respec-
tive gut communities show biological differences44. The concept 
of enterotypes can help capture such differences, although defin-
ing meaningful and robust boundaries remains a challenge. This is 
analogous to clustering of macrobiomes, which faces similar prob-
lems despite the recognition of separate types of environments. For 
example, treeless, savannah and forest ecosystems in sub-Saharan 
Africa could equally be represented as a gradient in response to 
mean precipitation45 or as contrasting stable states46.

Given the practical challenges in accurately determining gut 
community structure, such as overcoming batch effects, consider-
ing confounders (Supplementary Fig.  5) and accounting for tem-
poral variation, an objective number of stable states is difficult to 
determine. Still, in the (mostly Western) subjects studied cross-
sectionally, Bacteroides and Prevotella act as the driving taxa that 
explain inter-individual differences, and delineate the main sources 
of variation, regardless of the technique employed. The extremes of 
the enterotype space are substantially different in microbial com-
position and diversity, and these are discussed in the following sec-
tions in terms of their function, ecology and disease. While three 
enterotypes may not always be the best explanation of the data, it is 
the model that has been used most and that provides the framework 
that we use below.

Functional and ecological context of enterotypes
Differences in taxonomic composition suggest that enterotypes 
may differ in functional and ecological properties. Analysis of the 
three large datasets revealed significant functional variation associ-
ated with microbial composition (Fig. 3b). Indeed, when gene types 
are considered, most KEGG  (Kyoto Encyclopedia of Genes and 
Genomes) orthologues (KOs)47 and non-supervised orthologous 
groups (NOGs)48 differ in abundance among the three enterotypes 
(64% and 77%, respectively; false discovery rate (FDR) <​ 0.1). The 
same is true for eggNOG functional categories, where 23 out of 25 
are significantly different (Supplementary Fig.  6). Other models 
choosing two or four enterotypes show similar broad functional 
differences (Supplementary Table 3), with some differences highly 
relevant to gut carbon metabolism. For example, it has been shown 
on several occasions that either ET P23,29,49,50 or Prevotella (when no 
enterotype was reported) was enriched in individuals with non-
Western and/or fibre-rich diets8,51–53. This association can be better 
understood in light of functional differences, as Prevotella hydro-
lases are specialized in the degradation of plant fibres54, and an over-
all decreased lipolytic and proteolytic fermentation potential has 
been reported for the whole ET P community44. Conversely, ET B 
has been associated with diets enriched in animal proteins and satu-
rated fats23,53, in line with a large proportion of Bacteroides-specific 
carbohydrate-active enzymes (CAZymes) (50%)55 being specialized 
for animal carbohydrates (Supplementary Table 2). Further, we find 
enzymes specific to carbohydrate metabolism overrepresented in 
ET B (Supplementary Table 3), corroborating recent research show-
ing increased saccharolytic as well as proteolytic potential44. While 
some of the functional differences between enterotypes can be 
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attributed to the driver genera, others emerge only after imposing 
structure on the variation space.

The observed functional differences between enterotypes sup-
port the notion that they have varying community properties, such 
as richness, diversity and temporal stability. Such characteristics 
are relevant from an ecological perspective, where theory predicts 
a higher diversity in dynamic systems such as the gut, with nutri-
ent availability and type fluctuating over time56. Using 16S ampli-
con sequencing, richness differences between three enterotypes 
were first shown in an Amish population29, with a cluster similar 
to ET B having the lowest richness, as has been recently confirmed 
in a large population-wide study7. Our analysis of the three large 
datasets used here replicated these differences, with ET B having the 
lowest and ET F having the highest taxonomic as well as functional 
richness (Supplementary Figs.  7 and 8). Community diversity, as 
measured by the Shannon diversity index, is also highest in ET F in 
all datasets, while ET B and ET P are similarly decreased in diversity 
(Supplementary Fig. 8). Moreover, such differences go hand in hand 
with differences in stool consistency57 and/or transit time58—with 
slow-transit-associated ETs also showing a higher relative ratio of 
proteolytic over saccharolytic potential44 and proteolysis-derived 
metabolites58.

Gut community composition in healthy adults in many studies 
does not change substantially over long time periods23,29,59, indica-
tive of a generally stable ecosystem and enterotype stability. There 
are, however, important exceptions. Our analysis of the HMP 
metagenomic time-series dataset, containing individuals sampled 
more than six months apart, reveals significant stability in all three 
enterotypes, although 16% of individuals switched putative entero-
types between visits (Supplementary Fig. 9). This suggests that, at 
least for some individuals, gut microbial types are relatively fluid 
and do not have discrete boundaries (Supplementary Fig. 9). These 
observations could be explained through alternative models of gut 
community dynamics: (1) the existence of preferred community 
compositions (that is, enterotypes; Supplementary Fig. 10A); or (2) 
individual-specific attractors that exist mostly due to temporal auto-
correlation of that individual’s gut community60 (Supplementary 
Fig. 10B). Disentangling these models requires information about 
the response of the microbial community to different perturbations, 
thereby allowing us to determine if individuals are more likely to 
maintain/return to their original composition or maintain/return to 
their enterotype. Unfortunately, only limited data on gut community 
perturbations—such as antibiotics, faecal microbiota transplanta-
tion and diet—are available, many of which were not considered in 
the enterotype framework, making it difficult to draw conclusions 
about which steady-state model is correct. Short-term therapeu-
tic antibiotic treatment was shown to induce substantial, partially 
recoverable shifts in the gut microbiota of humans61,62, suggesting 
little resistance to such a dramatic disruption. Indeed, antibiotic 
treatment can lead to a complete deterioration of the community 
and subsequent pathogen invasion (for example, Clostridium diffi-
cile63), effectively resulting in failure to recover the original com-
munity state.

Dietary interventions, which cause considerably less perturba-
tion to the microbial ecosystem of the human gut, may thus be bet-
ter suited for investigating community resilience. The effects of such 
interventions, with significant compositional changes, have been 
observed within four days and could cause an enterotype shift23,64. 
However, after about ten days, enterotypes appeared to be stable23, 
suggesting a tendency of recovering the original state. Stability 
was also observed in a six-month intervention, using the ratio of 
Prevotella to Bacteroides (obtained by qPCR) as a proxy for entero-
type assignments28. These results suggest that there are limitations 
on how much an individual’s microbiome may be perturbed by 
short-term dietary interventions, and support enterotype resilience. 
In contrast, long-term perturbations have a more profound effect, 

with dietary modulation over the period of a year having a strong 
impact on the Bacteroidetes/Firmicutes ratio23,65, potentially lead-
ing to enterotype switches. As enterotypes were generally stable over 
time and no follow-up studies exist for the long-term interventions, 
no approximation of their resilience either in terms of overall com-
munity resemblance or enterotype assignment can be derived from 
the available data. There are, however, indications that enterotypes 
may vary in their recovery after intervention, with ET F estimated 
to have the lowest overall bacterial growth rate44, possibly resulting 
in a delayed return to equilibrium.

Although it is not yet possible to predict how particular per-
turbations will modify the microbiota, it is possible that different 
microbiome configurations, including those stratified as entero-
types, might allow stratified treatment and diet recommendations 
in the future. Modulation of the gut microbiome is particularly rel-
evant for diseases, where the challenge is to shift the microbiome 
back to a healthy pre-disease state in a given individual.

Clinical relevance of enterotypes
A simple classification scheme of gut community structure by 
enterotypes has the potential to be clinically useful. First, it can help 
in diagnosis, contributing to the identification of a disease state 
in an individual. Second, it can serve as an indicator of the risk or 
susceptibility of developing certain conditions. Third, the stratifica-
tion may be a useful biomarker for changes that occur during dis-
ease progression. Fourth, given that the gut microbiota influences 
xenobiotic metabolism, it may be that different enterotypes are 
associated with different pharmacokinetics and dynamics of drug 
metabolism66–69. Thus, enterotyping may guide treatment options 
and help in understanding different treatment responses.

Several associations between enterotypes (or their main taxo-
nomic drivers) and human disease phenotypes have been reported 
(Fig.  3d). For example, an increase of Bacteroides or ET B  itself, 
which tends towards lower overall diversity (Supplementary Figs. 7 
and 8), has been linked to nonalcoholic steatohepatitis (NASH)70, 
colorectal cancer49,71,72, caeliac disease73, immune senescence and 
constant low-grade inflammation6,30. Reanalysis of the MetaHIT 
dataset found lymphocyte counts and C-reactive protein to be sig-
nificantly increased in ET B compared to ET F (FDR <​ 0.1), with 
ET F samples on average lower in insulin resistance index (HOMA 
IR) and insulin levels (FDR  =​  0.107 for both) (Supplementary 
Table 4). Increased Prevotella abundance has been linked to long-
term antibiotic usage74, rheumatoid arthritis75, type II diabetes76 and 
HIV77, although the latter is enriched in one of the risk groups (that 
is in men who have sex with men78), which might confound the 
reported association. Lastly, ET F has been linked to high microbi-
ota diversity and decreased host inflammatory status, and has only 
been associated with an increased risk of atherosclerosis79. Given 
the multitude of associations to different disease phenotypes, an 
enterotype classification by itself may not be sufficiently specific as 
a standalone diagnostic marker of any disease80, but may be able to 
indicate an increased risk of some. Enterotype associations within 
groups of healthy individuals at risk of certain conditions are rare, 
and it remains unclear if enterotype classifications might be useful 
as prognostics for disease development. In one example, increased 
prevalence of ET P had been reported in healthy individuals who 
had the heterozygous form of a Crohn’s disease (CD) risk allele27, 
while in the MetaHIT cohort, there is a significant enrichment of 
CD patients in ET B—implying that inflammation shifts commu-
nity states to these two enterotypes and thus indicating an increased 
risk for inflammatory bowel disease.

Finally, it is possible that some diseases will have different aeti-
ologies, depending on enterotype. Stratification could allow discov-
ery of these underlying signals, thereby eliminating part of the large 
variation observed in microbial communities between individuals 
that may be irrelevant to the disease itself. In one mouse study, for 
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example, such stratification allowed discovery of genotype–micro-
biome and cage–microbiome associations32. Similarly, stratifying 
human patients into eight microbial clusters helped identify medi-
cal parameters that correlated with microbial composition30, and 
microbial stratification significantly improved accuracy in clas-
sifying C.  difficile-associated diarrhoea81. Although there are cur-
rently no long-term data, responses to diet and drugs as well as the 

impact of intestinal physiology and lifestyle are also likely to differ 
depending on the position of an individual in the compositional 
landscape. Thus, stratification represents an entry point into vari-
ous clinically relevant areas. It can be implemented largely indepen-
dently of a gradient- or cluster-centric view, analogous to the body 
mass index where defined cutoffs are an important guide to patient 
disease risk82.

Towards guidelines for rational enterotyping
For enterotyping to be useful, standardization is essential. In addi-
tion to the technical challenges mentioned above, an inherent prop-
erty of clustering is that assignment of single samples depends on 
which other samples are analysed at the same time. An enterotype 
defined this way makes comparisons across studies difficult. For 
example, if the majority of samples in a single study are ET B or ET F 
and only a few are ET P, the optimal cluster score might indicate two 
or even one cluster(s). Nevertheless, these few ET P samples may be 
identified based on the knowledge that similar samples have been 
clustered in other datasets. Combining data from multiple studies is 
often challenging, because differences in DNA extraction methods, 
sample handling, sequencing technology, primer choice (for 16S 
rRNA gene amplification) and data processing (for example, 16S 
rRNA clustering, copy number correction and chimaera reduction) 
influence the proportions of bacteria detected and lead to biases in 
detecting enterotype clusters83. Extreme rigour is needed in stan-
dardizing these steps, perhaps in conjunction with artificial ‘mock’ 
communities that span a large proportion of the phylogenetic spec-
trum of microorganisms found in the gut, and enable comparability 
between standard and clinical samples. Furthermore, there is a need 
for more longitudinal studies involving larger population cohorts 
across multiple continents to identify additional confounding fac-
tors. Indeed, several consortia such as  the International Human 
Microbiome Standards (IHMS)84, the Microbiome Quality Control 
Project (MBQC)85 and the Genomic Standards Consortium (GSC) 
are already trying to set standards for metagenomics and identify 
sources of variation.

We propose a classification procedure that circumvents many 
of the problems outlined above while also providing more compa-
rable results (Fig. 4). While we do not want to limit other explo-
rations of the data or novel analysis options, alternative schemes 
should at least be compared with the results from the procedure 
described here. Based on the MetaHIT dataset6, we have trained 
a classifier at genus level on taxonomic and functional features 
that recovers putative clustering observed in the Chinese type II 
diabetes study19 and in the HMP1 dataset (Supplementary 
Fig. 11), available online (http://enterotypes.org). If the results of 
de  novo clustering differ from the classifier results, we recom-
mend caution in directly comparing the stratification outcome 
to the enterotypes described in this meta-analysis. Moreover, 
this approach also defines an enterotyping space, by determining 
which samples are compositionally similar to a reference set. This 
could be used to define the boundaries of ‘normal’ gut communi-
ties and identify individuals outside of them, serving as a health 
indicator. Unusual disease states have been previously reported: 
for example, by using a model of six-species communities, net-
works resembling the three enterotypes were most strongly over-
represented in healthy patients, whereas two new states were 
overrepresented in frail, elderly patients9. Another case reported 
a new enterotype H, enriched in Enterobacteriaceae70. The above 
classifier would consider samples from this ‘enterotype’ compo-
sitionally dissimilar to those present in large datasets, and they 
would thus be labelled as being outside the enterotyping space. 
The individuals with this unusual composition frequently suf-
fered from obesity, NASH, and high blood ethanol and reactive 
oxygen species (ROS) levels70, suggesting this unusual composi-
tional state to be dysbiotic.
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Fig. 4 | Determination of enterotype structure. A flow diagram of 
recommended steps for determining enterotype assignment based 
on microbial abundance data. Two main routes to obtain enterotype 
assignments are depicted: de novo identification (enterotype discovery, 
left) and enterotype assignment based on a reference dataset (right). 
The suitability of existing models imposed on the data to describe the 
composition landscape (1) can be assessed by either determining the 
existence of cluster structure using one of the proposed clustering 
strength measures (Supplementary Fig. 4), or by using a DMM modelling 
framework26. Other models might also be useful in capturing the structure 
in the data, although an exact implementation is not yet available. 
Determining whether samples are within the enterotype space (2) is based 
on similarity in composition to adult human stool samples from the HMP1 
and MetaHIT6 studies. This suitability check and a respective classifier 
are available online (http://enterotypes.org). There are many explanations 
for the different compositional structures (3); for example, they may come 
from non-Western individuals, or from infants. Technical issues such as 
DNA extraction, PCR primers and/or bioinformatics preprocessing may 
skew the analysis. The consistency of the separation (4) obtained from the 
classifier may be determined using a silhouette index.
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Whether used for disease state identification, prospective strati-
fication or flagging technical issues, standardized enterotyping will 
ensure comparability across a wide range of studies and facilitate 
our understanding of the role and importance of enterotypes.

Conclusions
Identification and characterization of the major patterns related to 
human gut microbiota configurations remains challenging. Given 
an array of available approaches, each with their advantages and 
caveats, the number of recovered enterotype states and their statisti-
cal support can vary. With more standardization, control of sample 
processing and data analysis, increased concordance among differ-
ent studies can be expected. Enterotype attribution can be further 
refined by the addition of a wider range of samples and contextual 
information, extending beyond the industrialized world to better 
represent the global human population. For now, however, we here 
propose a way of restricting the enterotyping space, allowing for the 
detection of samples that are outside of it.

Independent of the many difficulties outlined above, multiple 
studies have reported enterotypes with similar compositional prop-
erties albeit with varying statistical support (Fig. 2). While clearly 
not discrete and confounded by various factors, they differ in taxo-
nomic, functional and ecological properties, and can be accurately 
recovered across large datasets (Supplementary Fig. 11). They rep-
resent a way of capturing preferred microbial compositions in the 
human gut and thus appear to be useful stratifiers in many settings.

Relying solely on enterotype classifications can obscure poten-
tially important microbial variation, and therefore should not 
replace direct clinical associations and expert statistical analysis 
with microbial species and functions where possible. However, 
enterotypes may still be relevant in various clinical settings, ranging 
from direct disease associations to prospective study stratification, 
or even personalized dietary interventions or other gut modulation 
treatments. We believe, despite our still limited knowledge, that 
enterotypes can be a useful tool for studying the human microbial 
community landscape.
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