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Abstract

Quantitative mass spectrometry enables to monitor the abundance
of thousands of proteins across biological conditions. Currently,
most data analysis approaches rely on the assumption that the
majority of the observed proteins remain unchanged across
compared samples. Thus, gross morphological differences between
cell states, deriving from, e.g., differences in size or number of
organelles, are often not taken into account. Here, we analyzed
multiple published datasets and frequently observed that proteins
associated with a particular cellular compartment collectively
increase or decrease in their abundance between conditions
tested. We show that such effects, arising from underlying
morphological differences, can skew the outcome of differential
expression analysis. We propose a method to detect and normalize
morphological effects underlying proteomics data. We demon-
strate the applicability of our method to different datasets and
biological questions including the analysis of sub-cellular
proteomes in the context of Caenorhabditis elegans aging. Our
method provides a complementary perspective to classical dif-
ferential expression analysis and enables to uncouple overall abun-
dance changes from stoichiometric variations within defined
group of proteins.
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Introduction

Mass spectrometry-based proteomics has been successfully used to

determine sub-cellular protein composition, discover new portions

of the cellular interactome, and map post-translational modifi-

cations. Different experimental strategies have been developed to

perform quantitative experiments where differences in protein abun-

dance are determined, for example, by introducing stable isotopes

in one of the experimental conditions tested (Ong et al, 2002; Ong &

Mann, 2005). A major factor for the interpretation of the experimen-

tal outcome is data processing (Park et al, 2003). The main data

processing strategies used in proteomics, e.g., scaling by mean or

median through quantile normalization, have been developed for

microarray and RNAseq data, with the underlying assumption that

total level of mRNA in the cell is stable and does not differ signifi-

cantly between the compared samples (Bolstad et al, 2003). For

transcriptomics data, it has been shown that global changes in tran-

script levels, e.g., down-regulation of all transcripts due to general

inhibition of transcription, can introduce artifacts when standard

differential analysis approaches are employed (apparent up- and

down-regulation of transcripts instead of, e.g., widespread down-

regulation; Jaksik et al, 2015). Similarly, profound morphological

differences between cellular types or states can also influence the

outcome of comparative genomic and proteomic analysis (Lin et al,

2012; Lovén et al, 2013). Lundberg et al (2008) showed that the

majority of all proteins are expressed in a cell size-dependent fash-

ion and that the comparative analysis of the protein expression

values requires a normalization procedure. Additionally, it is known

that different tissues show different levels of respiratory activity and

variable amounts of mitochondria (Kirby et al, 2007; Fernández-

Vizarra et al, 2011) and that the number and composition of orga-

nelles can be affected, for example, by the aging process (Cellerino

& Ori, 2017). Covariation of protein abundance across different

conditions can be also exploited, and it can contribute to functional

proteomics (Kustatscher et al, 2016). Currently, there is a lack of

systematic approaches able to detect and deal with differences in

cellular organization that might influence the outcome of proteo-

mics data analysis from unfractionated samples.

Here, we show that in several published proteomics datasets

proteins associated with different cell compartments/organelles

show distinct distribution of fold changes across the conditions

tested. This manifests as a consequence of underlying differences in

cell morphology that are not taken into account by classical differen-

tial expression tools. Although such differences provide robust

signals about different cell states and, as such, can be used as
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biomarkers, the non-uniform distribution of fold changes can mask

biologically relevant alterations in the composition of cell compart-

ments/organelles. We thus propose an approach that is able to

better reflect compartment-specific protein changes (Fig 1A), and

we experimentally validate this by analyzing the proteomic changes

identified in nuclei isolated from different cancer cell lines compared

to their total lysate. Using our approach, changes in protein

abundance identified in comparative proteomic studies can be

re-interpreted to better reflect the context of protein sub-cellular

localization, and to provide an additional level of detail about the

biological differences between cellular states. To demonstrate this,

we re-analyzed a dataset of chronological aging in the nematode

Caenorhabditis elegans and observed heterogeneous abundance

changes among mitochondrial and extracellular proteins implying

an age-dependent remodeling of these cellular compartments. These

novel biological insights were not apparent when traditional analy-

sis methods were applied. Our approach is broadly applicable to

large-scale proteomic studies, and we anticipate analogous strate-

gies to be derived for different context levels such as protein

complexes and pathways.

Results and Discussion

Compartment-specific shifts in protein abundance are apparent
in large-scale proteomics dataset

We analyzed seven mass spectrometry datasets covering the

proteomes of different mammalian tissues (Geiger et al, 2013), cell

types (Azimifar et al, 2014; Sharma et al, 2015), healthy and

diseased states (Wi�sniewski et al, 2012; Guo et al, 2015; Tyanova

et al, 2016), and cancer development stages (Wis�niewski et al,

2015). In these experiments, the abundance fold change (FC) of

thousands of proteins has been calculated using standard differen-

tial analysis approaches (see Materials and Methods section). To

investigate whether changes in organelle number or size are

reflected in these datasets, we assigned cellular localization to each

of the quantified proteins using Gene Ontology (GO) term annota-

tion (The Gene Ontology Consortium, 2015). On average, 78% of

the proteins in the analyzed dataset could be annotated using GO

cellular compartments terms (Fig EV1A). We compared abundance

changes of proteins belonging to four major cellular compartments

(nucleus, cytoplasm, mitochondrion, and extracellular space)

which, on average among the analyzed datasets, accounted for 96%

of all the annotated proteins. In all the seven datasets, we observed

that proteins assigned to specific cellular compartments tend to

display similar protein fold changes, indicating that their abun-

dances are associated with each other. We therefore calculated

protein fold change distributions for each cellular compartment and

found statistically significant shifts between such distributions

(Fig 1B–D). We found a distinct increase in mitochondrial proteins

in liver cells that can be readily captured from the comparison of

lung and liver tissue proteomes (Geiger et al, 2013; average change

of +1 log2FC, Mann–Whitney test P = 5.3 × 10�32; Fig 1B and

Dataset EV1), consistent with the knowledge that hepatocytes have

an elevated number of mitochondria as compared to other cell types

(Veltri & Espiritu, 1990). Similar differences can be also detected

between more closely related cell types deriving from the same

organ. For instance, we found increased abundance of nuclear and

extracellular proteins and decreased abundance of mitochondrial

proteins in Kupffer cells vs. hepatocytes (Azimifar et al, 2014; aver-

age change of +0.4, +0.3 and �1.2 log2FC, Mann–Whitney test

P = 3.3 × 10�22, P = 8.5 × 10�03, and P = 1.9 × 10�88, respectively;

Fig 1C and Dataset EV2).

Major morphological changes can also be a consequence of

disease such as malignant transformation. We analyzed the abun-

dance of proteins in healthy kidney cells and renal carcinoma cells

(Guo et al, 2015) and found a decrease in mitochondrial proteins in

cancer cells (average change of �0.5 log2FC, Mann–Whitney test

P = 1.8 × 10�22; Fig 1D and Dataset EV3). In addition, we also

observed progressive shifts in the relative abundance of nuclear

(Mann–Whitney test P < 0.01) and extracellular (Mann–Whitney

test P < 0.01) proteins between healthy colorectal mucosa, adeno-

mas, and colon cancers (Wis�niewski et al, 2015; Fig EV2). Sub-

sequently, we extended the analysis to proteins mapping to six

additional organelles: endoplasmic reticulum, Golgi apparatus,

cell membrane, nuclear membrane, lysosome, and peroxisome

(Fig EV1C–E). This allowed us to observe a previously unappreci-

ated correlation between the abundance changes of proteins anno-

tated as peroxisomal and mitochondrial (Pearson’s R = 0.97,

P = 3 × 10�04) that manifested in all the seven different datasets

used (Fig EV1F).

Collectively, our analysis indicates the widespread existence of

cell compartment-specific shifts in the output of comparative mass

spectrometry experiments reflecting morphological differences

between the compared cell states. These major shifts can be

detected using protein annotation and a simple statistical test and, if

present, should be taken into account when interpreting the data.

However, this approach does not inform about variations of protein

abundance within the same cellular compartment. As an example, a

mitochondrial protein complex might appear increased in abun-

dance, reflecting an increase in mitochondrial number or size,

although its actual abundance with respect to all other mitochon-

drial proteins remains unchanged.

Differential protein expression analysis in the context of
cell compartments

In order to gain insight into the composition of cellular compart-

ments across cell states, we propose a normalization approach that

complements standard differential analysis by taking into account

differences in size or abundance of cell compartments. Our

approach aims at partitioning total proteome data using prior

knowledge deriving from the GO annotation, and calculates new

relative abundances for proteins belonging to major cellular

compartments. For each compartment, a linear model is built from

the abundances of proteins in the two conditions compared

(Fig 2A). In all the datasets that we tested, the log2 abundances of

proteins annotated to same cell compartment followed linear models

between the compared samples; therefore, non-linear modeling was

not explored (see Materials and Methods section). Each linear model

was evaluated through its statistics, namely the P-value and the R2

(Dataset EV4A). In each linear model, the distance, i.e., the residual

value, between the protein abundance and the linear fit, can be used

as a compartment-normalized variation (CNV) value. This value

reflects the relative abundance difference of a protein compared to
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its cellular compartment (Fig 2B and Dataset EV3). Since many

proteins are associated with more than one cellular compartment

(on average, only 20% of the annotated proteins were specific to

one compartment and 36% were annotated to two compartments,

Fig EV1B; Thul et al, 2017), we wanted to assess the robustness of

the linear models when taking into account multiple compartment

annotations for the same proteins. Thus, we compared the CNV

models built using all the proteins mapping to a given compartment

to CNV models built using only proteins that are exclusive to a

given compartment, so that there are no shared proteins between

the linear models. We measured an average Pearson correlation of

0.97 between the CNV values for the same proteins using the two

types of models. In the case of mitochondria, we evaluated an inde-

pendent and curated annotation of mitochondrial proteins from

MitoCarta (Calvo et al, 2016), and used it to build the mitochon-

drial-exclusive CNV model. The average Pearson correlation

between the previous models and these mitochondrion-exclusive

models was 0.99. The statistics of the CNV models and their correla-

tion with compartment-exclusive models are reported in the Dataset

EV4A. Finally, we tested whether proteins belonging to different
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Figure 1. Differences in cellular organization emerge from quantitative proteomic experiments.

A Scheme of the analysis of cellular compartments based on modeling compartment-normalized variation (CNV) values for proteins (shown for two hypothetical cell
conditions displaying different numbers of mitochondria).

B–D Analysis of protein abundance shift in cellular compartments in published datasets. Density plots for protein fold change distributions in different compartments
for (B) lung vs. liver cells (Geiger et al, 2013), (C) hepatocytes vs. Kupffer cells (Azimifar et al, 2014), and (D) healthy human kidney vs. renal carcinoma cells (Guo
et al, 2015). Distribution of protein fold changes for 10 different compartments is shown as boxplot (inset); mean fold changes (log2) are indicated below the
density plots; below the boxplot, asterisks mark the cellular compartments that show significantly different distribution of fold changes compared to the whole
proteome (Mann–Whitney test *P < 0.01).

Data information: Boxplots: the horizontal line represents the median of the distribution, the upper and lower limit of the box indicate the first and third quartile,
respectively, and whiskers extend 1.5 times the interquartile range from the limits of the box. Values outside this range are indicated as outlier points. Related to
Figs EV1 and EV2 and Datasets EV1–EV3.
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Figure 2. Compartment-specific analysis reveals differences in organelle composition that can be validated by sub-cellular fractionation.

A–C Mitochondrial proteins are plotted using their absolute abundance (IBAQ score) in healthy kidney vs. renal carcinoma cells (Guo et al, 2015). Each mitochondrial
protein is colored according to (A) its fold change calculated by standard differential expression using the limma package (Ritchie et al, 2015; Phipson et al, 2016);
(B) its CNV value (five proteins with the highest CNV value and five proteins with the lowest CNV values are highlighted and annotated in boxes); and (C) the
absolute difference between the two values.

D Correlation between standard fold change values (left panel) and CNV values (right panel) of proteins quantified in the total lysate and isolated nuclei of HeLa and
RKO cells. Only proteins that are differentially regulated (adj. P < 0.05) in isolated nuclei are shown.

E Clustering of nuclear protein fold changes estimated from whole cells and isolated nuclei, and comparison to the CNV values obtained from whole cell data.
F–H Comparison of standard differential expression and CNV approach for the three datasets shown in Fig 1B–D. Volcano plots based on fold changes and adjusted P-

values (limma) obtained for (F) lung vs. liver cells (Geiger et al, 2013), (G) hepatocytes vs. Kupffer cells (Azimifar et al, 2014), and (H) healthy kidney vs. renal
carcinoma cells (Guo et al, 2015). Proteins are colored depending on their significance when using the standard limma approach and the CNV approach (based on
the four main compartments, q-value < 0.1). A stacked barplot (inset) shows the percentage of unique proteins belonging to each category for three q-value
thresholds (0.05, 0.1, and 0.25).

Data information: Related to Figs EV3 and EV4, and Datasets EV1, EV2, EV3, and EV5.
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compartments are more likely to be detected as significantly affected

by the CNV approach. We did not observe a significant association

between multiple compartment annotation for proteins and their

classification as differentially expressed by the CNV approach

(Dataset EV4B). Thus, we conclude that the linear models underpin-

ning the CNV approach are robust regardless of whether proteins

with multiple compartments are considered or not.

Depending on the extent of the cellular compartment shift in

whole proteome data, proteins can be assigned different standard

fold change and CNV values (Fig 2C). Therefore, in order to evalu-

ate the performance of the CNV approach, we analyzed the

proteome profiles obtained from two cell lines that are known to

have distinct morphological features. The commonly used HeLa

cells and the colon carcinoma-derived cells (RKO) have drastically

different morphology and nuclear size, due to a > 2-fold smaller

RKO nuclear size as compared to HeLa (average nuclear surface

area 206.3 and 543.5 Å2 for RKO and HeLa, respectively; Fig EV3).

Proteome profiles from whole cell extract and isolated nuclei are

available for both cell lines (Geiger et al, 2012; Ori et al, 2013).

Indeed, when we analyzed whole cell data using a standard dif-

ferential expression analysis tool [limma package (Ritchie et al,

2015; Phipson et al, 2016)], we observed that the majority (70%) of

the nuclear proteins differentially regulated in isolated nuclei are

classified as down-regulated in RKO cells compared to HeLa cells,

reflecting the smaller nuclear size of the former cell line. However,

the same analysis performed on data from isolated nuclei showed

that ratio between up- and under-regulated proteins is, as expected,

more balanced, reflecting differences in the composition of the

nucleus between the two cell lines. The discrepancies between the

fold changes estimated from whole cell and isolated nuclei result in

a significant, but modest, correlation between the two datasets

(R = 0.49; Fig 2D, left panel). We then re-analyzed the whole cell

data treating cellular localizations independently using our CNV

approach (Dataset EV5). We found that our approach is able to take

into account the differences attributed to changed morphology

and provides fold change values for nuclear proteins that are

considerably closer to the values obtained from isolated nuclei,

with an improved correlation (R = 0.65) between whole cell and

isolated nuclei estimates (Figs 2D, right panel, and E). These data

show that our CNV approach is useful to derive insights on the

proteome of a cell compartment when applied to total proteome

data, irrespectively of morphological differences between the

compared samples.

Comparison of proteome-wide and compartment-specific
differential expression analysis

In order to quantify the impact of the CNV approach on the analysis

of proteomics data, we compared the outcome of standard differen-

tial expression and CNV approach for the three datasets where we

detected significant compartment shifts (Fig 1B–D). Direct compar-

ison of the statistics revealed low correlation between q-values

assigned by the two approaches (Fig EV4), indicating complemen-

tarity between them. Notably, the extent of complementarity was

not uniform between datasets, being more pronounced when dif-

ferent tissues (e.g., liver vs. lung) are compared (Fig 2F and H). We

reasoned that the CNV can provide two additional levels of informa-

tion: (i) It can reveal alterations of protein level that reflect a

compartment-wide abundance change rather than a protein-specific

one; and (ii) it can discover new protein changes that emerge only

after normalizing for compartment-wide changes. Therefore, we

explicitly investigated the overlap between significant proteins iden-

tified by standard differential expression and CNV approach. Across

the three datasets tested, we found a variable proportion of cases

(ranging between 50 and 92%) that were identified as differentially

expressed by the standard approach (q-value < 0.1), but are very

close to the linear model of their respective compartment, and, thus,

classified as not significant with the CNV approach (Fig 2F–H,

colored in red). We interpret these cases as deriving from compart-

ment-wide abundance changes. This effect was particularly

pronounced for the Azimifar et al (2014) dataset that showed very

prominent shifts for nuclear, mitochondrial, and extracellular

proteins (Fig 1C). Regarding newly discovered cases, we found 104,

53, and 38 proteins that were identified as significant (q-

value < 0.1) exclusively by the CNV approach, respectively, for the

lung vs. liver (Geiger et al, 2013), hepatocytes vs. Kupffer cells

(Azimifar et al, 2014), and healthy kidney vs. carcinoma (Guo et al,

2015) datasets (Fig 2F–H, colored in cyan). The majority of these

cases display low fold changes relative to the total proteome, but

appears as outlier in the linear models for the respective compart-

ment. Taken together, these data demonstrate that protein expres-

sion can be analyzed in the context of cellular compartment by

building simple linear models that allow a complementary interpre-

tation of the results of canonical differential expression (Fig EV4),

revealing new differences in the abundance of proteins belonging to

the same compartment across cell types and states.

Reinterpreting age-related changes of the C. elegans proteome

To illustrate how the CNV approach can provide novel biological

insights, we analyzed a time-series mass spectrometry experiment

related to aging of C. elegans (Walther et al, 2015). The abundance

of proteins was calculated at five different time points during the

lifespan of the organism (days 1, 6, 12, 17, and 22) using the SILAC

approach (Ong et al, 2002). In the original publication, the authors

noted that different cellular compartments were differently affected

by aging in terms of protein abundance changes. We re-analyzed

this dataset using the CNV approach by assigning proteins to four

main cellular localizations and investigating the respective SILAC

ratios as a function of aging in a compartment-specific manner. We

observed a general age-dependent increase in abundance for nuclear

and extracellular proteins, while mitochondrial proteins were

progressively decreasing in abundance with age (Mann–Whitney

test P < 0.01, Fig 3A–C). The CNV approach highlighted an age-

dependent decrease in members of the cytosolic ribosome and an

increase in the proteasome, relative to their respective cell compart-

ment (Mann–Whitney test P < 0.01; Fig EV5 and Dataset EV6).

Indeed, the same age-related variations were observed by the

authors of the original publication, and they are corroborated by

other independent studies (Hsu et al, 2003; Golden & Melov, 2004;

Vilchez et al, 2012; Kirstein-miles et al, 2013).

The complex I of the respiratory chain was originally described

to decrease in abundance during C. elegans aging (Fig 3D, left

panels), similar to what has been observed for other species (Zahn

et al, 2006; Ori et al, 2015). However, using the CNV approach, we

found that the majority of complex I members do not change
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significantly relative to the rest of mitochondrial proteins (Fig 3D,

right panels, and Dataset EV6). We instead revealed two members

of the complex I (the nuclear-encoded NDUF-2.2 and the mitochon-

drial-encoded ND5) that showed extreme and opposite CNV values,

suggesting loss of stoichiometry due to mitonuclear imbalance

(Fig 3E; Houtkooper et al, 2013). Similarly, the abundance of mito-

chondrial ribosome components was suggested to be decreasing

with age. However, using the CNV approach, we could show that

the abundance of this complex relative to the rest of the mitochon-

drial proteome appears to be stable (Fig 3D and E). Conversely, we
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Figure 3. Remodeling of the mitochondrial and extracellular proteome during Caenorhabditis elegans aging.

A–C Analysis of the abundance distribution for (A) cytoplasmic, (B) mitochondrial, and (C) extracellular proteins across five age groups in C. elegans (Walther et al, 2015).
Each age group was compared against a pool reference sample using SILAC (Ong et al, 2002). Distribution of protein fold changes for the different time points is
shown as density plots and as boxplots (inset); below the boxplots, asterisks mark the time points that show significantly different distribution of fold changes
compared to the first time point (Mann–Whitney test *P < 0.01).

D Abundance variation of complex members for three mitochondrial complexes (respiratory complex I, mitochondrial ribosome, and mitochondrial import/export
proteins). For each complex, the abundance variation of each member (colored in gray) over the five age groups is reported with the D SILAC ratio (difference
between the experimental SILAC ratio of a time point and the SILAC ratio at day 1, left) and the CNV value (right). For each age group, the boxplot (colored as the
corresponding time point in the panels A–C) represents the variance between the abundances of the complex members. Significant changes (Mann–Whitney test
P < 0.05) are marked with a red star.

E Variation of the mitochondrial proteome over the lifespan of C. elegans (day 1 and day 22). Respiratory chain complex I and mitochondrial ribosomal proteins are
highlighted in green and purple, respectively (selected proteins, with extreme CNV values, are indicated).

F Variation of the extracellular proteome abundance over the lifespan of C. elegans (day 1 and day 22). Four proteins have been selected (highlighted with a colored
circle: purple for NAS-34, green for Y45F10C.4, blue for Vitellogenin-1, and black for Y45F10C.2) for their slower or accelerated increase in abundance compared to
the rest of extracellular proteins. The variation of the selected proteins (highlighted with the same colors) throughout the worm lifespan is represented in the
middle box, with the average of the extracellular proteome colored in yellow.

Data information: Boxplots: the horizontal line represents the median of the distribution, the upper and lower limit of the box indicate the first and third quartile,
respectively, and whiskers extend 1.5 times the interquartile range from the limits of the box. Values outside this range are indicated as outlier points. Related to Fig EV5
and Dataset EV6.
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observed that proteins forming the inner and outer mitochondrial

membrane transport systems increase their abundance with age

(Mann–Whitney test P = 3.9 × 10�3; Fig 3D). This phenomenon

might be linked to protein turnover imbalances in the mitochon-

drion and the age-related increase in harmful and damaged proteins

in the organelle (Walther et al, 2015). These results indicate that the

mitochondrial proteome, as a whole, decreases during aging, and

the variation in the abundance of specific proteins hints to re-

arrangement of mitochondria composition potentially underlying

ultrastructural differences (Brandt et al, 2017).

The application of the CNV approach to SILAC experiments

based on a common reference sample provides an additional level

of analysis that is exemplified by the behavior of extracellular

proteins during C. elegans aging. Extracellular proteins are generally

characterized by a significant increase in abundance as C. elegans

ages, with an average SILAC ratio (log2,), relative to common refer-

ence sample, of �1.4 on day 1 and of +1.0 on day 22 (Fig 3C). This

is reflected by a linear relationship between SILAC ratios of day 1

and day 22 (P = 1.6e�10) with extracellular proteins that show a low

SILAC ratio on day 1 showing a high SILAC ratio in old worms

(Fig 3F). CNV values can be used to capture differences among

extracellular proteins and estimate the relative rate of abundance

change with age. Among proteins showing the most extreme CNV

values, we observed Vitellogenin-1 (CNV value of +1.5), a precursor

of egg-yolk proteins, the Y45F10C.4 protein (CNV value of +2.1),

and the UPF0375 protein Y45F10C.2. The latter protein, known to

negatively regulate the egg-laying rate (Hao et al, 2011), shows a

SILAC ratio of �7.4 on day 1 and increases it to +2.7 on day 22.

However, its CNV value is low (�1.6), indicating that the abun-

dance of this protein is not increasing at the same rate as other

extracellular proteins. Similarly, the Zinc metalloproteinase nas-34

shows a SILAC ratio of �3.2 on day 1 and of �1.5 on day 22, thus

increasing its abundance. The CNV approach assigned to it a value

of �3, which is the lowest score of the whole extracellular compart-

ment. The different dynamics of extracellular proteins suggest

remodeling of the extracellular matrix composition during

C. elegans aging.

In summary, we show that morphological differences between

cell types, states, or conditions are reflected in the abundance of

proteins associated with particular cellular compartments. This

results in global fold change shifts for proteins associated with

different compartments. Such abundance shifts are extremely

robust (deriving from tens to hundreds of proteins), and they can

be used as markers of cell identity. Currently used data process-

ing approaches do not contemplate such differences that affect

collectively large portions of the proteome. This poses limitations

to the detection of variations in composition of cellular compart-

ments. The aim of the CNV approach presented here is to inte-

grate standard analysis by revealing compartment-specific changes

that can be hidden in whole proteome data. We show that a

compartment-based partitioning of proteome data followed by

normalization of protein abundances according to a linear model

recapitulates variations in protein abundance observed in sub-

cellular fractionation experiments, and it can be used to reveal

proteome alterations within a cell compartment that might under-

line, e.g., age-related differences in the morphology of an orga-

nelle (Brandt et al, 2017). Our approach does not rely on sample

fractionation and can be applied to data obtained from whole

cell/tissue extracts. However, it depends on compartment assign-

ment of proteins and, therefore, it relies on accurate annotation

of protein localization, thus limiting its application to well-anno-

tated model organisms. For this reason, the CNV approach cannot

be useful for the annotation of organelle catalogues of proteins.

Moreover, the reliability of the linear models built for each

compartment depends on the number of proteins used to build

them; therefore, the statistics of models built for organelles repre-

sented by few proteins must be carefully evaluated. Our concept

can, in principle, be extended to other linear and non-linear

modeling approaches, and applied to other interdependencies of

proteins such as finer grained sub-cellular localizations and struc-

tures (Christoforou et al, 2016; Mulvey et al, 2017), protein

complexes, or pathways, to identify true drivers of biological dif-

ferences between cell types and states.

Materials and Methods

Datasets

The following dataset were analysed in this work: (i) SILAC quan-

tification of proteins in mouse lung and mouse brain, each with

three replicates (Geiger et al, 2013). SILAC ratio was log2-trans-

formed. (ii) Proteome quantification in murine liver (Azimifar et al,

2014). Protein intensities from Kupffer cells, hepatic stellate cells,

and hepatocytes (each with four replicates) were collected and log2-

transformed. (iii) Mouse brain proteome resolved by cell type

(Sharma et al, 2015). Protein intensities from microglia (young and

old, each with three replicates), neurons (nine replicates), and astro-

cyte (three replicates) were collected and log2-transformed. (iv)

Proteome quantification in breast cancer subtypes (Tyanova et al,

2016). Normalized SILAC ratios of proteins from triple negative (11

replicates), Her2-positive (15 replicates), and ERPR (14 replicates)-

positive breast cancer were collected. (v) Protein quantification of

nine paired (healthy/cancer) kidney biopsies (Guo et al, 2015), each

with two replicates. One of the nine patients was removed from the

analysis as the distribution of the protein abundances was not

consistent with other samples. Protein intensities were log2-trans-

formed. (vi) Proteome quantification of normal colon tissue (eight

samples) and adenocarcinoma (eight samples; Wi�sniewski et al,

2012). Protein intensities were log2-transformed. (vii) Proteome

analysis of colorectal mucosa (eight samples), adenoma (16

samples), and cancer (eight samples; Wis�niewski et al, 2015).

Protein intensities were log2-transformed. All the above datasets

were then processed as described below.

Data pre-processing

Every protein was required to be quantified in more than half of the

replicates (or samples of the same cell state) in both compared

samples in the dataset, it was discarded otherwise. Quantile normal-

ization was applied across samples/replicates prior to the analysis

with the limma (Ritchie et al, 2015; Phipson et al, 2016) approach.

Replicates were averaged for every protein before applying the CNV

approach, and no prior normalization was applied in this case. Data-

sets were quantile-normalized when comparing the performances of

the CNV and limma approaches.
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Annotation

Proteins were assigned a cellular localization, whenever possible,

using GO (The Gene Ontology Consortium, 2015) cellular compart-

ment terms through the biomaRt package (Smedley et al, 2017).

Ten compartments and their associated sub-localizations were

considered in this work and defined using the following GO terms:

GO:0005634 (nucleus); GO:0005737 (cytoplasm); GO:0005739

(mitochondrion); GO:0005576, GO:0031012, GO:0044421, and

GO:0044420 (extracellular compartment); GO:0005777 (peroxi-

some); GO:0005764 (lysosome); GO:0005783 (endoplasmic reticu-

lum); GO:0005794 (Golgi apparatus); GO:0005886 (cell membrane);

GO:0031965 (nuclear membrane). Children terms of these main

compartments were derived using the GOCCOFFSPRING function of

the GO.db library (https://doi.org/doi:10.18129/b9.bioc.go.db).

Multiple identifiers for the same protein were considered if

provided. Every protein was considered during the analysis for all

the cellular compartments it was matched to.

Data modeling

The standard differential expression analysis was conducted using

the limma package (Ritchie et al, 2015; Phipson et al, 2016), fitting

the data into a linear model (lmFit function) and estimating the

empirical Bayes statistics (eBayes function); q-values were esti-

mated using fdrtool (Strimmer, 2008). The CNV approach annotates

and divides the proteome into ten main cell compartments using

the GO cellular component annotation (defined above). The abun-

dances of proteins in the two compared conditions/samples were

used to build linear regression models using the lm function

(Chambers, 1992) for each compartment. The P-value of the linear

model was evaluated, and the linear model was retained if signifi-

cant (P < 0.05). The residuals associated with each protein were

taken from the linear model of the compartment and then standard-

ized (CNV value). The q-value corresponding to each CNV value

was calculated with fdrtool (Strimmer, 2008).

Data availability

The standard analysis with limma and the CNV approach can be

performed through a python/R scripts package available at https://

github.com/lucaparca/cnv (Code EV1, https://doi.org/10.5281/ze

nodo.1237046). Analyses can be customized, depending on the pres-

ence and number of replicates, setting the number of tolerated miss-

ing values per sample, and setting the organism and the type of the

protein identifier (e.g., UniProt or Ensembl). Protein grouping can

be automatic (compartment annotation is performed as described in

the paper) or customized (in this case, protein annotation is

provided by the user). A readme file is provided with all the instruc-

tions needed, as well as example input files [related to two of the

datasets analyzed in this work (Guo et al, 2015; Azimifar et al,

2014)].

Expanded View for this article is available online.
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