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Statin therapy is associated with lower 
prevalence of gut microbiota dysbiosis
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Microbiome community typing analyses have recently identified the Bacteroides2 
(Bact2) enterotype, an intestinal microbiota configuration that is associated with 
systemic inflammation and has a high prevalence in loose stools in humans1,2. Bact2 is 
characterized by a high proportion of Bacteroides, a low proportion of 
Faecalibacterium and low microbial cell densities1,2, and its prevalence varies from 13% 
in a general population cohort to as high as 78% in patients with inflammatory bowel 
disease2. Reported changes in stool consistency3 and inflammation status4 during the 
progression towards obesity and metabolic comorbidities led us to propose that 
these developments might similarly correlate with an increased prevalence of the 
potentially dysbiotic Bact2 enterotype. Here, by exploring obesity-associated 
microbiota alterations in the quantitative faecal metagenomes of the cross-sectional 
MetaCardis Body Mass Index Spectrum cohort (n = 888), we identify statin therapy as 
a key covariate of microbiome diversification. By focusing on a subcohort of 
participants that are not medicated with statins, we find that the prevalence of Bact2 
correlates with body mass index, increasing from 3.90% in lean or overweight 
participants to 17.73% in obese participants. Systemic inflammation levels in 
Bact2-enterotyped individuals are higher than predicted on the basis of their obesity 
status, indicative of Bact2 as a dysbiotic microbiome constellation. We also observe 
that obesity-associated microbiota dysbiosis is negatively associated with statin 
treatment, resulting in a lower Bact2 prevalence of 5.88% in statin-medicated obese 
participants. This finding is validated in both the accompanying MetaCardis 
cardiovascular disease dataset (n = 282) and the independent Flemish Gut Flora 
Project population cohort (n = 2,345). The potential benefits of statins in this context 
will require further evaluation in a prospective clinical trial to ascertain whether the 
effect is reproducible in a randomized population and before considering their 
application as microbiota-modulating therapeutics.

Indications that alterations in the faecal microbiome are linked to the 
development of obesity5 have resulted in intense research efforts since 
the early days of metagenomics. However, developing a comprehen-
sive blueprint of an obesity-associated microbiota constellation has 
proved challenging6. Although compositional observations still remain 
inconclusive7, obesity and obesity-related comorbidities have clearly 

been associated with alterations in the intestinal microbiota, includ-
ing lowered faecal-community richness and reduced proportional 
abundances of butyrate producing bacteria7–9.

Cross-sectional microbiome-association studies are inherently lim-
ited regarding the inference of causality, and are potentially biased by 
unaccounted confounders. However, they remain highly suitable for 
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explorative analyses, as they enable the scale requirements imposed 
by the moderate effect-sizes10 to be met with relative ease. As part of 
the European Union MetaCardis project, a large-scale observational 
cohort study was set up to investigate the role of gut microorganisms 
in the progression of cardio-metabolic diseases through a combina-
tion of metagenomic, metabolomic and clinical approaches (http://
www.metacardis.net). Recruitment efforts resulted in the enrolment 
of more than 2,000 participants (Supplementary Fig. 1) and involved, 
amongst others, the assembly of a transnational n = 888 Body Mass 
Index Spectrum cohort (BMIS; median BMI = 31.5 kg m−2, range = 18.0–
73.3; Supplementary Tables 1, 2). Faecal samples were analysed using 
a quantitative microbiome profiling pipeline1 adapted for shotgun 
metagenomics data and were subsequently annotated with customized 
metabolic modules11 (Supplementary Table 3). Because more than 42% 
of BMIS participants reported taking at least one type of medication 
at the time of sampling, we assessed the potential confounding effect 
of the most frequently disclosed therapeutics (those consumed by 
more than 10% of participants; Extended Data Fig. 1a, Supplementary 
Table 1) on the association between microbiota and obesity; this was 
achieved by evaluating their explanatory power on relative genus-level 
microbiome variation as compared with the effect-sizes of obesity 
parameters and host variables constituting the International Diabe-
tes Federation consensus definition of metabolic syndrome12 (Sup-
plementary Table 4). Statins were identified as the drugs with largest 
explanatory power, contributing to genus-level microbiome variation 
beyond the effect of obesity-related parameters and metabolic syn-
drome features (n = 869, stepwise distance-based redundancy analysis 
(dbRDA), R2 = 0.24%, adjusted P value (Padj) = 0.032; Extended Data 
Fig. 1b, c). Statin-medicated participants (n = 106) were most commonly 
prescribed simvastatin (48%; 31% atorvastatin, 21% other statins), which 
had an effect on microbiome variation similar to that of general statin 
intake (Extended Data Fig. 1d, Supplementary Table 4). To enable an—in 
terms of medication—least-confounded evaluation of BMI–microbiome 
associations, statin-medicated participants were excluded from the 
explorative analyses presented below.

In accordance with the premise of the analysis, within the n = 782 
non-statin-medicated BMIS cohort (Supplementary Table 1), we found 

that BMI correlated both with changes in stool consistency (higher BMI 
values were associated with looser stools, as assessed using the Bristol 
Stool Scale; n = 772, Spearman’s ρ = 0.16, Padj = 9.13 × 10−6) and with host 
inflammation markers (for example, serum levels of highly sensitive 
C-reactive protein (hsCRP), n = 763, Spearman’s ρ = 0.70, Padj = 1.60 × 
10−113; Fig. 1a, Supplementary Table 5). Regarding metadata variables 
that define obesity or metabolic syndrome, only BMI, fat mass per-
centage and serum fasting triglycerides were found to explain a both 
significant and non-redundant fraction of compositional microbiome 
variation (n = 764, stepwise dbRDA, R2 = 6.22% (Padj = 1.0 × 10−4), 1.15% 
(1.0 × 10−4) and 0.39% (0.009), respectively; Fig. 1b, c, Supplementary 
Table 6). All three covariates correlated with microbiome gene richness 
(n = 771, Spearman’s ρ = −0.45 to −0.26, Padj = 4.0 × 10−39 to 1.6 × 10−13), 
a proxy for microbial biodiversity proposed as a marker of metabolic 
health in obese individuals8, and with faecal microbial load (n = 771, 
Spearman’s ρ = −0.17 to −0.13, Padj = 4.1 × 10−6 to 3.1 × 10−4; Extended 
Data Fig. 2, Supplementary Table 7, Supplementary Fig. 2). Addition-
ally, BMI, fat mass percentage and triglycerides could all be linked to 
quantitative variation in specific microbiome features, in terms of 
composition as well as metabolic potential (Supplementary Table 8). 
Notable associations included the decrease in Akkermansia13—which 
is associated with metabolic health—with increasing BMI (n = 432, 
Spearman’s ρ = −0.23, Padj = 6.8 × 10−9), alongside an increase in, for 
example, Acidaminococcus spp. (n = 163, Spearman’s ρ = 0.23, Padj = 5.8 
× 10−9), a genus that has previously been linked to body mass in a large 
Korean cohort14. The abundance of Faecalibacterium—a genus with 
potential anti-inflammatory properties15—was negatively correlated 
with all three parameters assessed, but was most closely associated 
with serum triglyceride levels (n = 753, Spearman’s ρ = −0.16, Padj = 2.5 
× 10−4). Covariation patterns between BMI, fat mass percentage or 
triglyceride levels and gut-microbial metabolic modules consisted 
nearly exclusively of negative correlations (Supplementary Table 8), 
reflecting the accompanying overall decrease in total microbial load 
(Supplementary Table 7). Among the features that decrease with all 
three variables, we highlight that the variation in the butyryl-CoA–
acetate CoA-transferase pathway16—the most common butyrate pro-
duction pathway in colon bacteria (n = 771, Spearman’s ρ = −0.27 to 
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Fig. 1 | Microbiome variation in the non-statin-medicated BMIS cohort.  
a, Correlations between BMI and inflammation levels (top; serum hsCRP, 
n = 763 biologically independent samples, Spearman’s ρ = 0.70, Padj = 1.60 × 
10−113) and faeces consistency (bottom; Bristol Stool Scale (BSS), n = 772 
biologically independent samples, Spearman’s ρ = 0.16, Padj = 9.13 × 10−6). 
Adjustment for multiple testing (Padj) was performed using the Benjamini–
Hochberg method. b, Principal coordinates analysis of inter-individual 
differences (genus level Bray–Curtis dissimilarity) in the microbiome profiles 
of the non-statin-medicated BMIS cohort (open circles, coloured by 
enterotype; Extended Data Fig. 4), with the rest of the MetaCardis dataset in the 
background (n = 1,240 biologically independent samples, grey dots). Arrows 

represent the effect sizes of a post hoc fit of significant microbiome covariates 
identified in the multivariate model in c. c, Variables correlating most to 
microbiome compositional variation in the non-statin-medicated BMIS cohort 
(dbRDA, genus-level Bray–Curtis dissimilarity), either independently 
(univariate effect sizes in black) or in a multivariate model (cumulative effect 
sizes in grey). The cut-off for significant non-redundant contribution to the 
multivariate model is represented by the red dashed line. In a, b, the body of the 
box plot represents the first and third quartiles of the distribution, the line 
represents the median, and the whiskers extend from the quartiles to the last 
data point within 1.5× IQR, with outliers beyond.
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−0.20, Padj = 3.1 × 10−13 to 6.0 × 10−8; Extended Data Fig. 3a–c)—is in line 
with previous reports linking this pathway with metabolic health8. 
The metabolism of microbiota-derived butyrate by colonocytes is 
essential for the maintenance of hypoxic conditions within the colon 
environment17, and the disruption of microbial butyrate production 
has been suggested to induce low-diversity gut microbiota dysbiosis18.

To investigate a potential association between BMI and the preva-
lence of faecal microbiome community constellations, we enterotyped 
the BMIS cohort using Dirichlet multinomial mixtures on genus-level 
molecular operational taxonomic unit (mOTU) profiles. By applying 
probabilistic models to group samples that potentially originate from 
the same community, stratification based on Dirichlet multinomial 
mixtures reproducibly identifies microbiome constellations across 
datasets without making any claims regarding the putative discrete 
nature of the strata detected. Our analyses confirmed previous reports 
of microbiome variation centred around four enterotypes1,2,19 (Fig. 1b, 
Extended Data Fig. 4a, b), hereafter termed Ruminococcaceae (Rum), 
Bacteroides1 (Bact1), Bacteroides2 (Bact2) and Prevotella (Prev) on the 
basis of their respective genus-level proportional abundance profiles 
(Extended Data Fig. 4c). Cell counts differed between enterotypes1, with 
the low-richness Bact2 samples (n = 782, Kruskal–Wallis, χ2 = 325.65, 
Padj = 5.5 × 10−70) also exhibiting the lowest microbial loads (n = 771, 
Kruskal–Wallis, χ2 = 80.14, Padj = 2.9 × 10−17; Fig. 2a, Supplementary 
Table 9).

A quantitative compositional and functional analysis of the dif-
ferences between enterotypes aligned with previous reports11 (Sup-
plementary Table 10). Further to the findings highlighted above, we 
found that Bact2 communities displayed the lowest abundances of 
Akkermansia (n = 771, Kruskal–Wallis, χ2 = 141.12, Padj = 2.0 × 10−29) and 
of Faecalibacterium (n = 771, Kruskal–Wallis, χ2 = 112.73, Padj = 1.7 × 10−23), 
as well as a decreased butyrate production potential (n = 771, Kruskal– 
Wallis, χ2 = 167.12, Padj = 4.7 × 10−35; Extended Data Fig. 3d). Whereas no sig-
nificant differences in Acidaminococcus levels could be noted between 
enterotypes (n = 771, Kruskal–Wallis, χ2 = 6.47, Padj = 0.12), taxa such as 
Eggerthella—a genus that is considered part of a normal microbiota but 
is also linked to gastrointestinal infections as well as bacteraemia20—was 

found to occur in higher absolute numbers against the background 
of overall reduced microbial load, as observed in Bact2 communities 
(n = 771, Kruskal–Wallis, χ2 = 224.95, Padj = 4.1 × 10−47; Extended Data 
Fig. 5a, b, Supplementary Table 10). Co-abundance gene group analyses 
additionally indicated enterotype differentiation at the species level 
(Supplementary Table 11). For example, in Bact2-enterotyped com-
munities, the Bacteroides fraction was observed to be proportionally 
depleted in Bacteroides caccae (n = 768, Kruskal–Wallis, χ2 = 78.40, 
Padj = 1.3 × 10−15) and Bacteroides cellulosilyticus (n = 768, Kruskal–Wallis, 
χ2 = 64.79, Padj = 5.3 × 10−13) when compared with Rum, Prev and Bact1 
samples. By contrast, it seemed to be enriched in Bacteroides fragilis 
(n = 768, Kruskal–Wallis, χ2 = 65.26, Padj = 3.5 × 10−11; Extended Data Fig. 6, 
Supplementary Table 11), which is considered to be among the most 
pathogenic and immunomodulatory of the Bacteroides species21,22.

The prevalence of enterotypes along a gene-richness axis in the 
non-statin-medicated cohort confirmed previous observations of a 
bimodal distribution8; however, the Bact2 community type enabled 
further refinement of richness stratifications through the deconvolu-
tion of overlapping peaks (Fig. 2b). The prevalence of Bact2 was found 
to increase with BMI, from 3.90% among lean or overweight participants 
(BMI < 30) to 17.73% among obese participants (BMI ≥ 30) (n = 782, bino-
mial logistic regression, relative risk = 1.05, P = 1.2 × 10−7, where relative 
risk can be interpreted as the scale factor necessary to obtain the preva-
lence of the Bact2 enterotype after a unit increase in BMI; Fig. 2c; Supple-
mentary Table 12). Notwithstanding methodological differences, this 
finding was validated in the independent, amplicon-sequenced Flemish 
Gut Flora Project10 dataset (FGFP, n = 2,051; excluding statin-medicated 
participants; binomial logistic regression, relative risk = 1.03, P = 9.3 
× 10−3; Fig. 2d). In line with previous findings from the FGFP2, Bact2 
hosts from the BMIS cohort displayed more pronounced systemic 
inflammation levels when compared to non-Bact2 participants, here 
assessed through serum hsCRP concentrations (Kruskal–Wallis, χ2 
= 48.61, P = 1.37 × 10−10; Extended Data Fig. 7a; Supplementary Table 13). 
Notably, the inflammatory tone of Bact2 hosts exceeded the levels 
anticipated on the basis of their obesity status (n = 86, one-sample loca-
tion test on residuals of non-statin-medicated BMIS linear regression 
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Fig. 2 | Characterization of enterotypes and variation in prevalence with 
BMI in the non-statin-medicated BMIS cohort. a, Distribution of faecal 
microbial loads across enterotypes, showing decreased microbial density in 
the Bact2 enterotype (n = 771 biologically independent samples, Kruskal–
Wallis with post hoc Dunn test, ***Padj < 0.001; **Padj < 0.01; Supplementary 
Table 9). b, Distribution of gene richness between enterotypes, with low 
richness samples corresponding to the Bact2 community constellation  
(n = 782 biologically independent samples). c, Variation in the prevalence of 
enterotypes with the BMI of individuals, showing the significant increase in 
Bact2 prevalence with obesity (n = 782 biologically independent samples, 
binomial logistic regression, Bact2 relative risk = 1.05, P = 1.2× 10−7). Coloured 
areas represent the stacked enterotype prevalence along the BMI gradient, 
with lines provided by multivariate logistic regression of enterotypes by BMI, 

and data points (light grey) jittered at the corresponding BMI. d, Validation of 
the association between BMI and Bact2 prevalence in the independent FGFP 
dataset (n = 2,051 participants, excluding statin-medicated individuals; 
binomial logistic regression, relative risk = 1.03, P = 9.4 × 10−3). e, Inflammatory 
levels are higher in Bact2 carriers than would be expected on the basis of BMI, 
as shown by the distribution of residuals of the linear regression between 
serum CRP and BMI (n = 763 biologically independent samples, one-sample 
location test (dotted line, null hypothesis; mean = 0), Cohen’s d = 0.27, 
*Padj = 0.018). In a, e, the body of the box plot represents the first and third 
quartiles of the distribution, the line represents the median, and the whiskers 
extend from the quartiles to the last data point within 1.5× IQR, with outliers 
beyond.
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between hsCRP and BMI, Cohen’s d = 0.27, Padj = 0.018; Fig. 2e, Extended 
Data Fig. 7b, Supplementary Table 14). In a multivariate model, the 
BMI and the Bact2 carrier status of the participants both provided a 
non-redundant contribution to increased systemic inflammation levels, 
corresponding to a 1.04 (n = 763, linear multivariate model, Padj = 2.2 × 
10−16) and a 1.16 (Padj = 0.004) unit increase risk in serum hsCRP levels, 
respectively (Supplementary Table 15). These observations support the 
qualification of the Bact2 microbiota configuration as an (low-grade) 
inflammation-associated, potentially dysbiotic enterotype1,2.

Whether initiating or sustaining pro-inflammatory processes and 
metabolic derailment, countering dysbiosis of the gut ecosystem 
has been suggested to contribute to the maintenance of host health 
and the containment of obesity-related comorbidities. However, no 
effective microbiome modulation strategy has yet been established. 
Here, within the limitations of the cross-sectional study design, we 
identify statin treatment as a potential lever in the management of 
dysbiosis. In contrast to the findings from the non-statin-medicated 
participants, we observed that Bact2 prevalence no longer significantly 
increased with BMI in statin-medicated individuals (n = 106, binomial 
logistic regression, relative risk = 1.03, P = 0.60). Among obese indi-
viduals, only 5.88% of statin-medicated individuals were enterotyped 
as Bact2, compared with 17.73% of non-statin-medicated participants 
(Fisher’s two-tail exact test, log likelihood = −2.88, P = 0.028; Fig. 3a, 
Supplementary Table 16). When exploring whether accounted clinical 
parameters, anticipated treatment responses, co-medication or key 

microbiome covariates10 could be associated with the observed dif-
ferences in Bact2 prevalence, we noted that statin-medicated obese 
participants displayed ameliorated lipid metabolism (low-density 
lipoprotein (LDL)-cholesterol, n = 473, Mann–Whitney U-test, r = −0.17, 
Padj = 0.002) and inflammation status (hsCRP, n = 462, Mann–Whit-
ney U-test, r = −0.23, Padj = 8.4 × 10−6; Supplementary Table 17)—both 
expected outcomes of statin therapy23. Besides minor differences in 
the incidence of concomitant drug intake (notably aspirin intake being 
more prevalent among statin-medicated participants; n = 474, Fisher’s 
two-tailed exact test, log likelihood = −17.36, Padj = 2.2 × 10−7) and glucose 
metabolism (lower HbA1c levels among non-statin-medicated partici-
pants, n = 474, Mann–Whitney U-test, r = 0.17, Padj = 0.001)—the latter 
being a known side effect of statin treatment24—the statin-medicated 
subcohort was characterized as older (median age statin-medicated 
versus non-statin-medicated, 61 versus 47; n = 474, Mann–Whitney 
U-test, r = 0.34, Padj = 1.4 × 10−11) and less obese (BMI 33.5 versus 40.8; 
n = 474, Mann–Whitney U-test, r = −0.25, Padj = 2.1 × 10−6). However, 
among these significant covariates, and excluding variables that reflect 
pleiotropic effects of statins—that is, levels of LDL-cholesterol and 
inflammation markers—only statin intake and blood HbA1c levels were 
shown to have a significant, non-redundant explanatory power for 
Bact2 prevalence (Supplementary Table 18), with the latter being associ-
ated with an increased probability of Bact2 carrier status (n = 472, mul-
tivariate binomial logistic regression, statin intake relative risk = 0.31, 
Padj = 0.013; HbA1c relative risk = 2.00, Padj = 0.009). Although 41% of 
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control (LDL-cholesterol), inflammatory modulation (hsCRP) and glucose 

regulation (HbA1c)). Variables were modelled independently or together in 
univariate or multivariate models, respectively (Supplementary Table 19). The 
latter suggests that statin intake remains associated with a reduction in 
dysbiosis risk after partialing-out hsCRP and HbA1c (n = 462 biologically 
independent samples, multivariate binomial logistic regression, Statin | 
(hsCRP and HbA1c) relative risk = 0.36, Padj = 0.039). Adjustment for multiple 
testing (Padj) was performed on univariate tests using the Benjamini–Hochberg 
method (represented by black lines when significant (Padj < 0.05), or otherwise 
a dashed grey line (Padj = 0.15)). d, Graphical summary of the main results 
regarding the prevalence of the Bact2 enterotype, BMI and statin intake. In the 
present BMIS cohort, we identify Bact2 as an inflammation-associated 
microbiome community constellation, with increasing prevalence along a BMI 
gradient in non-statin-medicated individuals. Statin therapy is associated with 
attenuated inflammation and a Bact2 prevalence comparable to that observed 
among lean and overweight subjects. Circles represent individual host 
configurations in terms of body mass, microbiota community type, and 
inflammation status.
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BMIS participants reported taking non-statin drugs, (co-)medication 
status did not affect the outcome of Bact2 prevalence analyses in obese 
participants (Extended Data Fig. 8). Low prevalence of the Bact2 ente-
rotype among statin-medicated individuals was validated in the accom-
panying MetaCardis cardiovascular disease dataset (non-diabetic 
patients with cardiovascular disease (CVD); Bact2 prevalence among 
statin-medicated versus non-statin-medicated participants, 4.72% ver-
sus 16.33%; n = 282, Fisher’s two-tailed exact test, log likelihood = −3.47, 
P = 0.008; Fig. 3b, Supplementary Table 16). Here—and in accordance 
with observations in non-CVD disease cohorts1,2—increased Bact2 
prevalence was not limited to obese non-statin-medicated patients 
with CVD, but could also be noted within the non-statin-medicated 
lean and overweight subgroup. In the independent FGFP dataset—
which targets an average representation of a Western population, 
and therefore covers a narrower BMI spectrum (n = 2,345; median 
BMI = 24.2, range = 16–40)—we confirmed lowered Bact2 prevalence 
among statin-medicated individuals given their BMI (n = 2,345, mul-
tivariate binomial logistic regression, Statin | BMI, relative risk = 0.72, 
Padj = 0.045; Extended Data Fig. 9, Supplementary Table 16). Additional 
evidence—which is indicative of causality in statin-associated micro-
biota variation—is provided by a recent small-scale intervention study 
in a rat model, which demonstrates reversion of microbiota alterations 
induced by a high-fat diet and hypercholesterolemia upon treatment 
with atorvastatin, resulting in an increased microbiome richness25. 
Although caution should be applied when extrapolating findings from 
the rodent microbiome to a human context, these results do demon-
strate directionality in statin–microbiota associations, although the 
effect of atorvastatin (31% of statin-medicated participants) in the 
present BMIS cohort did not reach statistical significance (Extended 
Data Fig. 1, Supplementary Table 4).

The cross-sectional nature of the MetaCardis dataset did not enable 
us to establish a causal chain of events that lead to a lower prevalence 
of the Bact2 enterotype among statin-medicated individuals. Given 
the putatively independent effects of statin therapy on levels of serum 
hsCRP and LDL-cholesterol23, we modelled the association of both vari-
ables with Bact2 prevalence for obese participants in the BMIS cohort. 
Although no significant effect of LDL-cholesterol concentrations was 
found (n = 473, univariate binomial logistic regression, LDL-cholesterol 
relative risk = 1.16, Padj = 0.15), lower hsCRP levels were associated with 
a lower prevalence of the Bact2 enterotype (n = 462, univariate bino-
mial logistic regression, hsCRP relative risk = 2.11, Padj = 0.003; Sup-
plementary Table 19). A multivariate model for the prediction of Bact2 
prevalence—which covers treatment (statin intake), treatment outcome 
(hsCRP levels), as well as side effects of treatment (HbA1c concentra-
tions)—indicated a significant additive contribution of statin therapy to 
the reduction of dysbiosis risk (n = 462, multivariate binomial logistic 
regression, Statin | (hsCRP and HbA1c) relative risk = 0.36, Padj = 0.039; 
Fig. 3c, Extended Data Fig. 10, Supplementary Table 19); this suggests 
that the effect of statins is greater than solely the attenuating effect 
on the inflammation status of the host. Nevertheless, the pleiotropic 
effect of statins on microbiome community constellations seemed to 
be closely associated with a concomitant effect on host inflammation 
levels. At this point, at least two mechanistic interpretations of our 
observations—or a combination of both—remain possible (Fig. 3d). 
On one hand, aligning with the microbiota–inflammation hypothesis, 
statins could counteract the microbial contribution to inflammatory 
and metabolic obesity comorbidities through (in)direct modulation of 
the microbiota. Consistent with this, in vitro studies have demonstrated 
that statins affect the growth of several gut microorganisms26. Con-
versely, the demonstrated anti-inflammatory effects of statins could 
alleviate gut host–microbial interactions and enable the subsequent 
development of enterotypes that are not associated with inflammation. 
However, it should be stressed that the cross-sectional design of our 
study does not allow us to rule out potential confounding by indica-
tion (lower Bact2 prevalence resulting from the specific condition that 

prompted statin prescription) or by unaccounted diagnosis-associated 
diet or lifestyle alterations (participants adopting health-promoting 
and/or microbiota-modulating activities complementary to statin 
therapy).

For many years, strategies for the modulation of microbiota have 
revolved around (next-generation) probiotics and prebiotics— 
introducing or promoting the growth of beneficial bacteria or bacterial 
consortia. It is only recently that a revived interest in the effect of small 
molecules and drugs on the colon ecosystem, as well as individual faecal 
isolates, has been noted26,27. Although we cannot rule out a potential 
effect of unaccounted confounders, nor can we infer causality from the 
associations observed, our analyses reveal that statin therapy is linked 
with a lowered prevalence of a pro-inflammatory microbial community 
type in obese individuals. Our results align well with previous, sparse 
reports of a beneficial effect of statins in pathologies in which a role of 
the gut microbiota has been postulated28—including interventional29 as 
well as epidemiological30 evidence in Crohn’s disease, a condition that 
has previously been linked to a high prevalence of Bact21,2. Within the 
limitations of the cross-sectional nature of the cohorts analysed—and 
emphasizing the need for interventional follow-up research using a 
randomized, double-blind, placebo-control study design to exclude 
potential confounding by indication—our findings suggest statins as 
a possible target for the development of future drug-based strategies 
for the modulation of the intestinal microbiota.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Sample collection
Ethical compliance. Ethical approval was obtained from the Ethics 
Committee CPP Ile-de France, Ethics Committee at the Medical Faculty 
at the University of Leipzig, and the Ethical Committees of the Capital 
Region of Denmark. The study protocol (also comprising an interven-
tional arm which is not part of the analysis presented) was registered 
at https://clinicaltrials.gov (study number NCT02059538). The study 
design (observational cohort study) complied with all relevant ethical 
regulations, aligning with the Helsinki Declaration and in accordance 
with European privacy legislation. All participants provided written 
informed consent.

Study cohort. The n = 888 transnational Body Mass Index spectrum 
(BMIS) cohort was assembled as part of the overall MetaCardis recruit-
ment efforts (Supplementary Fig. 1). Participants were recruited be-
tween 2013 and 2015 in the clinical departments of the Pitié-Salpêtrière 
Hospital (Paris, France), the Integrated Research and Treatment Center 
for Adiposity Diseases (Leipzig, Germany), and in the Novo Nordisk 
Foundation Center for Basic Metabolic Research (Copenhagen, Den-
mark). Potential participants were evaluated for suitability according to 
standardized inclusion and exclusion criteria across the three recruit-
ment centres. Exclusion criteria included history of abdominal cancer/ 
radiation therapy on the abdomen, history of intestinal resection  
(except for appendectomy), acute or chronic inflammatory or infec-
tious diseases (including hepatitis C virus, hepatitis B virus and HIV), 
history of organ transplantation or receiving immunosuppressive 
therapy, severe kidney failure (MDRD glomerular filtration rate < 50 ml 
(min 1.73m2)−1), or drug or alcohol addiction. All study participants had 
to be free of any antibiotic use in the three months before inclusion. The 
BMIS (n = 888) cohort consisted of a MetaCardis sub-cohort, defined by 
exclusion of cardiovascular patients (defined in the MetaCardis consor-
tium study protocol as patient groups 4, 5, 6 and 7) and any individual 
with type-2 diabetes. Diagnosis of type-2 diabetes was defined using 
the American Diabetes Association definition: fasting glycemia >6.9 
mmol l−1 and/or 2 h values in the oral glucose tolerance test >11 mmol l−1 
and/or haemoglobin A1c (HbA1c, glycated haemoglobin) ≥ 6.5% and/or 
use of any antidiabetic treatment. The MetaCardis project sample size 
calculation was focused on the objectives of multi-omics integration 
and metagenomic-wide metabolome-wide association study (MW2AS) 
across groups of patients ranging different cardiometabolic pheno-
types. On the basis of unpublished data from consortium partners, 
a sample size of 2,000 individuals was deemed required to detect a 
significant association (with and without concomitant risk factors). No 
specific sample size calculation was performed before BMIS sub-cohort 
recruitment. On the basis of the baseline prevalence of Bact2 enterotype 
(with baseline defined as lean/overweight individuals P(Bact2) = 14%) 
in the amplicon-sequenced FGFP cohort, the present study cohort size 
enabled us to identify a minimum difference of 7.4% in Bact2 prevalence 
between the two groups: lean or overweight (n = 414) versus obese 
(n = 474) as significant (power = 80%, alpha = 0.05).

Validation cohorts. MetaCardis cardiovascular disease (CVD,  
n = 282). The CVD cohort was recruited as described above as part of the 
MetaCardis cohort, and corresponds to patients with cardiovascular 
disease and without diabetes, defined in the MetaCardis consortium 
study protocol as patient groups 4, 5, 6 and 7. Flemish Gut Flora Pro-
ject (FGFP, n = 2,345). The FGFP cohort is part of a population-level 
cross-sectional sampling of the Flemish population described in  

ref. 10 and re-sequenced with dual-indexed HiSeq amplicon sequencing 
as analysed in ref. 31. Ethical approval for the FGFP sampling was granted 
by the Commissie Medische Ethiek UZ-VUB (B.U.N.143201215505) and 
the Ethische Commissie Onderzoek UZ/KU Leuven (S58125). The inclu-
sion and exclusion criteria defined for recruitment of the MetaCardis 
cohort and, more specifically, the BMIS subset, were applied to the 
FGFP: inclusion age between 18 and 75 years old, exclusion of acute 
or chronic inflammatory or infectious diseases (notably diagnosis of 
inflammatory bowel disease and recent gastroenteritis), and exclusion 
of patients with diabetes—defined as having a diagnosis of diabetes or 
increased glycated haemoglobin A1c levels (HbA1c ≥ 6.5%), or the use 
of any antidiabetic treatment. The disease diagnoses used for exclu-
sion were reported by the general practitioners of the participants. 
The medical questionnaire and blood sampling for analysis (including 
HbA1c) were performed within one week of faecal sampling.

Sample collection. Faeces were collected according to International 
Human Microbiome Standards (IHMS) guidelines (modified SOP 04 V1 
(collection without anaerobic bag)). In brief, participants were handed a 
collection kit, collected samples at home, and stored them temporarily 
(less than 48 h) at −20 °C until they were transported frozen (on dry ice) 
to the collection centre (Pitié-Salpêtrière Hospital (France), University 
Hospital of Leipzig (Germany) or Frederiksberg Hospital (Denmark)). 
Blood samples were collected during the clinical examination visit 
after overnight fasting.

Metadata collection. Participant phenotyping was performed accord-
ing to standardized operational procedures and included the acquisi-
tion of biological samples and the assessment of clinical parameters 
and anthropometrics including age, gender, smoking status, weight, 
height, BMI, blood pressure, body composition, and waist and hip 
circumference measurements. Body fat mass and fat-free mass were 
determined through bioelectrical impedance analysis. Systolic and 
diastolic blood pressure were measured using a mercury sphygmoma-
nometer (measures were taken three times on each arm; the mean of 
the last two measurements on the right arm was used for analyses). 
During the interview at the clinical visit, a detailed list of prescribed 
medications (based on direct recall or medication list when provided) 
as well as the medical history of the patient was compiled. Subjects 
were questioned on adherence to their medication plan. Five-year an-
tibiotic intake was assessed by recall in France and Denmark, whereas 
participants in Germany were requested to provide medication anam-
nesis from their general practitioners or physicians (drugs prescribed 
over the past five years). All medication data was curated jointly by the 
study physicians at each centre so as to harmonize presentation. The 
metadata necessary for reproducing the results presented in the article 
are available in Supplementary Table 2.

Sample analyses
Blood analyses. Blood metabolic markers were assessed in local 
routine laboratories. Analyses of adipokines, measures of glycaemia, 
inflammatory markers, and free fatty acids were centralized; plasma 
and serum samples were stored at the respective clinical centres at 
−80 °C until shipment to a central measuring facility. Blood cell counts 
(leukocytes, monocytes, neutrophils and immune cells) were meas-
ured using flow cytometry as described previously32. Fasting glucose, 
total cholesterol, high-density-lipoprotein cholesterol, triglycerides 
and HbA1c were measured using enzymatic methods. LDL-cholesterol 
concentrations were measured enzymatically for German participants; 
values for French and Danish subjects were calculated using the Fried-
wald equation. Kinetic assays based on coupled enzyme systems were 
used to measure alanine aminotransferase, aspartate aminotransferase 
and γ-glutamyltransferase levels. Free fatty acid concentrations were 
assessed by photometrics (Diasys Diagnostic Systems). A chemilu-
minescence assay (Insulin Architect, Abbott) was used to measure 
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serum insulin and C-peptide levels in a fasting state and at 30 and  
120 min during an oral glucose tolerance test. Serum leptin was deter-
mined using the Human Leptin Quantikine ELISA Kit (R&D Systems); 
adiponectin was measured using an ELISA sandwich assay (HMW & 
Total Adiponectin ELISA Kit, ALPCO). Levels of hsCRP were determined 
by an IMMAGE automatic immunoassay system (Beckman-Coulter). 
Blood concentrations of high-sensitivity interleukin 6 (hsIL6) and CD14 
were measured using the Human IL-6 Quantikine HS and the Human 
Quantikine ELISA Kit (R&D Systems), respectively. A Luminex assay 
(ProcartaPlex Mix&Match Human 13-plex, eBioscience) was set up to 
measure the following cytokines: interferon gamma-induced protein 
10 (IP-10), C-X-C motif chemokine ligand 5 (CXCL5), CC-Chemokin 
ligand 2 (CCL2), Eotaxine, Interleukine 7 (IL-7), macrophage migration 
inhibitory factor (MIF), macrophage inflammatory protein 1β (MIP 1β), 
stromal cell-derived factor 1 (SDF1) and vascular endothelial growth 
factor A (VEGFA).

Metagenomic analyses of faecal samples. Total faecal DNA was  
extracted following the International Human Microbiome Stand-
ards (IHMS) guidelines (SOP 07 V2 H) and sequenced using an Ion  
proton system (Thermo Fisher Scientific) resulting in 23.3 ± 4.0 mil-
lion (mean ± s.d.) 150-bp single-end reads per sample on average. 
Reads were cleaned using AlienTrimmer (v0.2.4)33 to remove resilient 
sequencing adapters and to trim low quality nucleotides at the 3′ side 
(quality and length cut-off of 20 and 45 bp, respectively). Cleaned 
reads were subsequently filtered from human and potential food 
contaminant DNA (using human genome RCh37-p10, Bos taurus and 
Arabidopsis thaliana with an identity score threshold of 97%). Gene 
abundance profiling was performed using the 9.9-million-gene in-
tegrated reference catalogue of the human microbiome34. Filtered 
high-quality reads were mapped with an identity threshold of 95% 
to the 9.9-million-gene catalogue using BowTie (v.2.2.6) included in 
the METEOR software35. A gene abundance table was generated by 
means of a two-step procedure using METEOR. First, the uniquely 
mapping reads (reads mapping to a single gene in the catalogue) were 
attributed to their corresponding genes. Second, shared reads (reads 
that mapped with the same alignment score to multiple genes) were 
attributed according to the ratio of their unique mapping counts. 
The gene abundance table was processed for rarefaction and nor-
malization and further analysis using the R package MetaOMineR36. 
To decrease technical bias due to different sequencing depth and 
avoid any artefacts of sample size on low-abundance genes, read 
counts were rarefied. The gene abundance table was rarefied to  
10 million reads per sample by random sampling of 10 million mapped 
reads without replacement. The resulting rarefied gene abundance 
table was normalized according to the FPKM (fragments per kilo-
base of transcript per million mapped reads) strategy (normaliza-
tion by the gene size and the number of total mapped reads reported 
in frequency) to give the gene abundance profile table and binned 
by functional and phylogenetic categories as carried out within the 
MOCAT2 framework37. 1,436 metagenomic species (MGS; co-abundant 
gene groups with more than 500 genes corresponding to microbial 
species) were clustered from 1,267 human gut metagenomes used 
to construct the 9.9-million-gene catalogue34, as described previ-
ously38. MGS abundances were estimated as the mean abundance of 
the 50 genes defining a robust centroid of the cluster (if more than 
10% these genes gave positive signals). MGS taxonomical annotation 
was performed using all genes by sequence similarity using NCBI blast 
N; a species-level assignment was given if more than 50% of the genes 
matched the same reference genome of the NCBI database (November 
2016 version) at a threshold of 95% of identity and 90% of gene length 
coverage. The remaining MGS were assigned to a given taxonomical 
level from genus to superkingdom if more than 50% of their genes had 
the same level of assignment. Microbial gene richness (gene count) 
was calculated by counting the number of genes that were detected 

at least once in a given sample, using the average number of genes 
counted in ten independent rarefaction experiments.

Determination of faecal microbial load. Microbial loads of faecal 
samples of were determined as described previously1,2. In brief, 0.2 g  
frozen (−80 °C) aliquots were dissolved in physiological solution  
(9 g l−1 NaCl; Baxter S.A.) to a total volume of 100 ml. Subsequently, the 
slurry was diluted 1,000 times. Samples were filtered using a sterile  
syringe filter (pore size 5 μm; Sartorius Stedim Biotech). Next, 1 ml of the 
microbial cell suspension obtained was stained with 1 μl SYBR Green I  
(1:100 dilution in DMSO; shaded 15 min incubation at 37 °C; 10,000 
concentrate, Thermo Fisher Scientific). The flow cytometry analysis was 
performed using a C6 Accuri flow cytometer (BD Biosciences)39. Fluores-
cence events were monitored using the FL1 533/30 nm and FL3 > 670 nm  
optical detectors. In addition, forward and sideward-scattered light 
was also collected. The BD Accuri CFlow (v.1.0.264.21) software was 
used to gate and separate the microbial fluorescence events on the 
FL1/FL3 density plot from the faecal sample background. A threshold 
value of 2,000 was applied on the FL1 channel. The gated fluorescence 
events were evaluated on the forward/sideward density plot, so as to 
exclude remaining background events. Instrument and gating settings 
were kept identical for all samples (fixed staining/gating strategy39; 
Supplementary Fig. 2). On the basis of the exact weight of the aliquots 
analysed, cell counts were converted to microbial loads per gram of 
faecal material.

Analyses of faecal metagenomes
Quantitative microbiome profiling. Phylogenetic quantitative mi-
crobiome profiles were built using a modified version of the pipeline 
described in ref. 1. In short, sample abundance profiles were downsized 
to even sampling depth, defined as the ratio between sampling size 
(average mOTU marker genes coverage40) and microbial load (average 
total cell count per gram of frozen faecal material). The sequencing 
depth of each sample was rarefied to the level necessary to equate 
the minimum observed sampling depth in the cohort. The rarefied 
mOTU abundance matrix was converted into numbers of cells per gram 
and quantitative microbiome profiling matrices created for phylum 
to species levels. Functional quantitative microbiome profiles and 
quantitative co-abundance gene groups38 profiles were constructed 
by multiplication of relative proportions to an indexing factor propor-
tional to the microbial cell densities of the samples (load), defined as 
the sample load divided by the median load over the entire MetaCardis 
cohort. The processed microbiome profiles can be downloaded at 
http://raeslab.org/software/BMIS/.

Customized module analyses. Customized module sets included 
previously described gut metabolic modules11 covering bacterial and 
archaeal metabolism specific to the human gut environment with a 
focus on anaerobic fermentation processes, expanded with a specific 
set of six modules focusing on bacterial trimethylamine metabolism41. 
Additionally, following a previously published strategy to build manu-
ally curated gut-specific metabolic modules11,31, we constructed a new 
set of modules to describe and map microbial phenylpropanoid me-
tabolism (phenylpropanoid metabolism modules, PPM) from shotgun 
metagenomic data. This set of 20 modules, following KEGG syntax, 
is provided in the Supplementary Information, including references 
to the original publications in which the pathways were described 
(Supplementary Table 3). Abundances of customized modules were  
derived from the orthologue abundance tables using Omixer-RPM v1.0 
(https://github.com/raeslab/omixer-rpm)11,42. The coverage of each 
metabolic variant encoded in a module was calculated as the number 
of steps for which at least one of the orthologous groups was found in 
a metagenome, divided by the total number of steps constituting the 
variant. The presence or absence of a module was identified with a 
detection threshold of more than 66% coverage to provide tolerance to 

http://raeslab.org/software/BMIS/
https://github.com/raeslab/omixer-rpm


Article
misannotations and missing data in metagenomes. Module abundance 
was calculated as the median of orthologue abundances in the pathway 
with maximum coverage.

Statistical analyses
Statistical analyses were performed in R using the following pack-
ages: vegan43 v.2.5-3, phyloseq44 v.1.26.0, FSA45 v.0.8.24, coin46 v.1.2-2, 
DirichletMultinomial47 v.1.24.0, Hmisc48 v.4.1-1, car49 v.3.0-2, sjstats50 
v.0.17.5, and nnet51 v.7.3-12. All statistical tests used were two-sided. All 
P values were corrected for multiple testing when appropriate using 
the Benjamini–Hochberg method (Padj), only Padj < 0.05 were reported 
as significant.

Faecal microbiome derived features and visualization. Observed 
richness was calculated using phyloseq44. Microbiome inter-individual 
variation was visualized by principal coordinates analysis using Bray–
Curtis dissimilarity on the genus-level relative abundance matrix with 
Hellinger transformation.

Partitioning of microbiome variation across clinical explana-
tory variables. The estimation of the explanatory power of clini-
cal features regarding relative, genus-level, microbiome profiles 
variation was performed using univariate or multivariate stepwise 
distance-based redundancy analysis as implemented in the R package  
vegan43.

Microbiome community typing. Enterotyping (or community  
typing) of the genus-level abundance microbial profiles with Hell-
inger transformation was performed on the basis of the Dirichlet 
multinomial mixtures (DMM) approach implemented in the R package  
DirichletMultinomial, as described in ref. 52 on the whole of the n = 2,022 
MetaCardis cohort. Although the dissimilarity/distance-based  
approaches were applied to screen for covariate-associated micro-
biome trends throughout the whole of the BMIS cohort, DMM-based 
stratification allows identification of covariates not only associated 
with the strata, but also linked to fluctuations in the prevalence of 
one (or more) particular microbiota constellation(s). This makes 
enterotyping a valuable strategy when assessing microbiome  
variation in pathologies that are not expected to be characterized by 
generalized dysbiosis with varying severity according to diagnosis53, 
but—by contrast—by the increased occurrence of a single dysbiotic  
community type with prevalence depending on the condition  
studied1,2,31, as proposed here for obesity.

Microbiome features and clinical features associations. Taxa un-
classified at the genus level or present in fewer than 20% of samples 
were excluded from the statistical analyses. Pearson or Spearman 
correlations were used, respectively, for linear or rank-order correla-
tions between continuous variables, including genera abundances 
and metadata. The Mann–Whitney U-test was used to test median 
differences of continuous variables between two different groups. 
For more than two groups, the Kruskal–Wallis test with post-hoc Dunn 
test were used. Statistical differences in the prevalence of enterotypes 
between groups were evaluated using pairwise Fisher’s exact tests. 
Modelling the association between the prevalence of enterotypes 
(Bact1, Bact2, Prev, Rum) or Bact2 prevalence (Bact2 = Yes/No) and 
single (univariate) or multiple (multivariate) dependent variables 
(clinical metadata features) was performed using generalized lin-
ear models, namely multinomial or binomial logistic regression (for 
enterotypes or Bact2 prevalences, respectively) with significance 
evaluated by likelihood ratio tests using the R package car. Risk ratio 
estimates (and their confidence intervals) were retrieved using the  
R package sjstats, by conversion of the odds ratios of the generalized 
linear models54, the latter corresponding to exponential transforma-
tion of the model coefficients.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw amplicon sequencing data used in this study have been deposited 
in the EMBL-EBI European Nucleotide Archive (ENA) under accession 
number PRJEB37249. The metadata and processed microbiome data 
required for the reanalysis of results presented in the manuscript are 
respectively provided as Supplementary Table 2 and available for down-
load at http://raeslab.org/software/BMIS/. For clinical cohort-related 
questions, contact K.C.
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Extended Data Fig. 1 | Microbiome variation in the BMIS cohort (n = 888 
participants). a, Percentage of subjects in the BMIS cohort taking medication 
of the stated drug classes. ACE inhibitors, angiotensin converting enzyme 
inhibitors; ARB, angiotensin II receptor blockers; ASA, acetylsalicylic acid; PPI, 
proton-pump inhibitors. b, Best model explaining inter-individual microbiome 
variation based on obesity-defining and metabolic-syndrome-defining 
variables as well as on most frequently disclosed therapeutics (taken by more 
than 10% of participants; Supplementary Table 4). Explanatory power of the 
included variables are reported for the variables taken individually (black bars; 
n = 888 biologically independent samples, univariate dbRDA)) or in a 
multivariate model (grey bars; n = 888 biologically independent samples, 
multivariate dbRDA). c, Principal coordinates analysis of inter-individual 
differences (genus level Bray–Curtis dissimilarity) in the microbiome profiles 

of the BMIS cohort (n = 888 biologically independent samples, data points 
coloured by enterotypes (Extended Data Fig. 4)) with the rest of the MetaCardis 
dataset in the background (n = 1,134, grey dots). Full and open circles 
corresponding to statin-medicated (Stat(+)) and non-statin-medicated 
participants (Stat(−)), respectively. Arrows represent the effect sizes of a post 
hoc fit of significant microbiome covariates identified in the multivariate 
model in b. d, Same principal coordinates analysis as in c, with the statin intake 
variable split into the separate statin classes (n = 888 biologically independent 
samples, simvastatin (n = 51), atorvastatin (n = 33) and other statins (n = 22); 
Supplementary Table 4). In c, d, the body of the box plot represents the first and 
third quartiles of the distribution, the line represents the median, and the 
whiskers extend from the quartiles to the last data point within 1.5× the 
interquartile range (IQR), with outliers beyond.



Extended Data Fig. 2 | The association of BMI, fat mass percentage and 
serum fasting triglyceride levels with faecal microbial gene richness and 
faecal microbial load in the non-statin-medicated BMIS cohort (n = 782 
participants). All three covariates were found to be associated with both 
microbiome gene richness (n = 711 biologically independent samples, 
Spearman’s ρ = −0.45 to −0.26, Padj = 4.0 × 10−39 to 1.6 × 10−13), a proxy for 
microbial biodiversity previously suggested as a marker of metabolic health  
in obese individuals8, and faecal microbial load (n = 711 biologically 
independent samples, Spearman’s ρ = −0.17 to −0.13, Padj = 4.1 × 10−6 to 3.1 × 10−4; 
Supplementary Table 7). Adjustment for multiple testing (Padj) was performed 
using the Benjamini–Hochberg method. Least square linear regression lines 
(dashed line) with 95% confidence interval (grey shading) are provided  
for visual representation of the non-parametric testing provided in 
Supplementary Table 7. Data points are coloured by enterotype classification.
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Extended Data Fig. 3 | Association between the variation in quantitative 
butyrate production potential and the BMI, fat mass percentage and 
triglycerides levels of participants, or the enterotype classification of the 
samples, in the non-statin-medicated BMIS cohort (n = 782 participants). 
Quantitative functional microbiome profiles were constructed by 
multiplication of relative proportions to an indexing factor proportional to the 
microbial load of the samples. The module ‘butyrate production II’ describes 
butyrate production from the butyryl-CoA–acetate CoA-transferase pathway—
the most common among colon bacteria. a–d, The abundance of the butyrate 
production II module was negatively correlated with BMI (n = 771 biologically 
independent samples, Spearman’s ρ = −0.27, Padj = 3.1 × 10−13) (a), fat mass 
percentage (n = 771 biologically independent samples, Spearman’s ρ = −0.21, 
Padj = 6.0 × 10−8) (b) and tryglyceride levels (n = 771 biologically independent 
samples, Spearman’s ρ = −0.20, Padj = 6.4 × 10−8) (c), and significantly decreased 
in the Bact2 enterotype compared with the others (Bact2 <  Prev < Bact1 = Rum; 
n = 771 biologically independent samples, Kruskal–Wallis Padj = 4.71 × 10−35; 
different letters denote enterotypes with a significant pairwise difference 
(post hoc Dunn tests provided in Supplementary Table 10) (d). The body of the 
box plot represents the first and third quartiles of the distribution, the line 
represents the median, and the whiskers extend from the quartiles to the last 
data point within 1.5× IQR, with outliers beyond. In a–d, adjustment for 
multiple testing (Padj) was performed using the Benjamini–Hochberg method.



Extended Data Fig. 4 | Enterotyping of the MetaCardis dataset (n = 2,022 
biologically independent samples). a, Principal coordinates visualization of 
the four enterotypes resulting from community typing was performed using 
DMM52 on genus-level faecal microbiome profiles. b, Information criteria 
(minimum Laplace) used to determine the optimal number of clusters 
(enterotypes) for the MetaCardis dataset (n = 2,022 biologically independent 
samples) DMM-based community typing. c, Average relative composition of 

the enterotypes for key genera, used to label the enterotypes Bacteroides1 
(Bact1; high percentages of Bacteroides and Faecalibacterium), Bacteroides2 
(Bact2; high percentages of Bacteroides and low percentages of 
Faecalibacterium), Prevotella (Prev; high percentages of Prevotella) and 
Ruminococcaceae (Rum; low percentages of Bacteroides and Prevotella), on the 
basis of their respective genus-level proportional abundance profiles.
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Extended Data Fig. 5 | Increased quantitative abundance of Eggerthella in 
the Bact2 enterotype of the non-statin-medicated BMIS cohort.  
a, Difference in quantitative Eggerthella abundances between enterotypes 
(Prev = Rum < Bact1 < Bact2; n = 771 biologically independent samples, Kruskal–
Wallis Padj = 4.10 × 10−47; different letters denote enterotypes with a significant 
pairwise difference (post hoc Dunn tests provided in Supplementary Table 10)). 
Adjustment for multiple testing (Padj) was performed using the Benjamini–
Hochberg method. b, Difference in the proportion of Eggerthella (normalized 
by the sample total microbial load) between enterotypes, showing a 
comparable trend to that seen in a (n = 771 biologically independent samples). 
The body of the box plot represents the first and third quartiles of the 
distribution, the line represents the median, and the whiskers extend from the 
quartiles to the last data point within 1.5× IQR, with outliers beyond.



Extended Data Fig. 6 | Species dominating the Bacteroides fraction in the 
different enterotypes of the non-statin-medicated BMIS cohort. The top 
associations with the Bact2 enterotype—with the proportions they contribute 
to the total fraction shown in the ring chart—were the depletion in B. caccae 
(n = 768 biologically independent samples, Kruskal–Wallis, Padj = 1.3 × 10−15) and 
B. cellulosilyticus (n = 768 biologically independent samples, Kruskal–Wallis, 
Padj = 5.3 × 10−13) when compared with the Rum, Prev and Bact1 enterotypes, and 
the enrichment in B. fragilis (n = 768 biologically independent samples, 
Kruskal–Wallis, Padj = 3.5 × 10−11; Supplementary Table 11). Species were defined 
by species-level annotation of metagenomic species, and their proportional 
abundances were defined relative to the genus abundance. Samples for which 
the genus had a low total abundance (below the 20% quantile for all species 
belonging to the top 10 genera) were excluded from the analysis (n = 768 
biologically independent samples were included). Adjustment for multiple 
testing (Padj) was performed using the Benjamini–Hochberg method.
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Extended Data Fig. 7 | Systemic inflammation and its relation to 
enterotypes and to BMI in the non-statin-medicated BMIS cohort.  
a, Individuals with faecal samples enterotyped as Bact2 displayed more 
pronounced systemic inflammation levels as assessed through fasting serum 
hsCRP concentrations when compared with participants classified as Rum, 
Prev and Bact1 (n = 763 biologically independent samples, Kruskal–Wallis 
P = 1.37 × 10−10; Rum = Bact1 < Prev < Bact2; different letters denote enterotypes 
with a significant pairwise difference (post hoc Dunn tests provided in 
Supplementary Table 13)). The body of the box plot represents the first and 
third quartiles of the distribution, the line represents the median, and the 
whiskers extend from the quartiles to the last data point within 1.5× IQR, with 
outliers beyond. b, Linear model of the correlation between host systemic 
inflammation (hsCRP concentration, log10-transformed) and BMI, fitted by 
least squares regression (n = 763 biologically independent samples; estimated 
intercept = −0.8681, estimated slope = 0.0379, R2 = 0.47, P = 1.5 × 10−108).



Extended Data Fig. 8 | Control for the effect of additional medication taken 
by obese statin-medicated or non-statin-medicated individuals of the 
BMIS cohort (n = 888 participants) on the association between reduced 
Bact2 prevalence and statin intake. a, List of drugs taken by 
non-statin-medicated and statin-medicated obese BMIS participants 
separated into 5 groups: those reporting no (co-)medication (beyond statin 
intake) (+0), and those reporting one (+1), two (+2), three (+3) and more than 
three (more) (co-)medications. The size and colour of the dots represent the 
fraction of the non-statin-medicated or statin-medicated obese BMIS 
participants falling within that group. b, Difference in prevalence of the Bact2 

enterotype in statin-medicated compared with non-statin-medicated  
obese BMIS participants, with decreasing co-medication threshold for 
inclusion of participants. For ‘all’, the total number of statin-medicated and 
non-statin-medicated obese BMIS participants were included (n = 474 
biologically independent samples); then only subjects reporting three or fewer 
(≤3; n = 419), two or fewer (≤2; n = 369), one or fewer (≤1; n = 296) or no (0; n = 226) 
(co-)medications were included. The relative risk and respective significance 
level associated with the prevalence of the Bact2 enterotype given statin intake 
is provided above the bar plots (Fisher’s exact test, two-sided, *P < 0.05, relative 
risk = P(Bact2|Statin = Yes)/P(Bact2|Statin = No)).
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Extended Data Fig. 9 | Variation in prevalence of the Bact2 enterotype with 
BMI and statin intake in the BMIS discovery cohort, and in the FGFP and 
CVD validation cohorts. a–c, Variation in the prevalence of the Bact2 
enterotype with BMI for statin-medicated and non-statin-medicated 
individuals, showing the significant effect (represented by the range bar with 
an asterisk; Supplementary Table 16) of statin intake given individuals’ BMI, in 
the BMIS obese participants (n = 474 biologically independent samples, 
multivariate binomial logistic regression, Statin | BMI, relative risk = 0.34, 
*Padj = 0.025) (a); the FGFP cohort, a population-level recruitment with a much 
narrower BMI range than the BMIS cohort (n = 2,345 biologically independent 
samples, multivariate binomial logistic regression, Statin | BMI, relative 
risk = 0.72, *Padj = 0.045) (b) and the MetaCardis CVD cohort (n = 271 biologically 
independent samples, excluding 11 individuals for which BMI was not known, 
multivariate binomial logistic regression, Statin | BMI, relative risk = 0.29, 
*Padj = 0.021) (c). In a–c, the fit lines were obtained by multinomial logistic 
regression of enterotypes as predicted by BMI, for statin-medicated and 
non-statin-medicated individuals separately, with the shaded area 
corresponding to the 95% confidence intervals for the Bact2 regression. 
Adjustment for multiple testing (Padj) was performed using the Benjamini–
Hochberg method.



Extended Data Fig. 10 | Probability of carrying a Bact2 enterotype 
microbiota as a function of CRP levels and statin intake in the obese BMIS 
cohort. Association between systemic inflammation (measured by hsCRP 
levels) and having a faecal microbiota of the Bact2 enterotype, according to 
statin medication status. Binomial logistic regression (lines with 95% 
confidence intervals as shaded area) was performed for statin-medicated and 
non-statin-medicated individuals separately (n = 462 biologically independent 
samples).
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