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Abstract

Resource competition and metabolic cross-feeding are among the main drivers of microbial 

community assembly. Yet, the degree to which these two conflicting forces are reflected in the 

composition of natural communities has not been systematically investigated. Here we use 

genome-scale metabolic modeling to assess resource competition and metabolic cooperation 

potential in large co-occurring groups (up to 40 members) across thousands of habitats. Our 

analysis revealed two distinct community types, clustering at opposite ends in a trade-off between 

competition and cooperation. On one end, lie highly cooperative communities, characterized by 

smaller genomes and multiple auxotrophies. At the other end, lie highly competitive communities, 

featuring larger genomes, overlapping nutritional requirements, and harboring more genes related 

to antimicrobial activity. While the latter are mainly present in soils, the former are found both in 

free-living and host-associated habitats. Community-scale flux simulations showed that, while the 

competitive communities can better resist species invasion but not nutrient shift, the cooperative 

communities are susceptible to species invasion but resilient to nutrient change. In accord, we 

show, through analyzing an additional dataset, that colonization by probiotic species is positively 

associated with the presence of cooperative species in the recipient microbiome. Together, our 
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analysis highlights the bifurcation between competitive and cooperative metabolism in the 

assembly of natural communities and its implications for community modulation.

Microbial communities are fundamental constituents of ecosystems across scales1–6. They 

play a crucial role in essential ecosystem functions like geochemical cycles7, and, as our 

microbial symbionts, contribute to our physiology and health8. The biological properties of 

microbial communities are determined by their compositional make-up, which, when 

perturbed, can also hamper their function. For example, multiple diseases have been linked 

to compositional changes in the gut microbiome5,8. Thus, an emerging challenge in these 

and other microbial ecosystems is modulation of communities towards repairing a perturbed 

state or achieving a new community-level function9. Yet, it remains difficult to predict which 

group of microbes would form a stable community or how a given community would 

respond to biotic and abiotic perturbations.

The nature of available nutrients is fundamental to the assembly of a community and the 

metabolic interactions therein10–12. Previous studies have assessed these using genome-scale 

metabolic models, which account for metabolic and biosynthetic capabilities of all 

community members13–15. While these studies attest to the potential of genome-scale 

modeling to gauge the degree of competition and cooperation in microbial communities, 

they remain limited in scope due to low numbers of species and habitats analyzed. 

Furthermore, most previous studies consider pair-wise co-occurrence as an indication of 

interaction. This limitation discounts the higher-order interactions, which signify the 

contingency of interactions between a set of species on other species in the community, and 

are known to play a role in ecosystem function 16–18. Thus, the assessment of the role of 

metabolic competition and cooperation in shaping community structure has hitherto been 

limited in scope.

Here, we investigated, through metabolic modelling and genomic analysis, resource 

competition and cross-feeding in thousands of communities co-occurring across diverse 

environments spanned by the Earth Microbiome Project (EMP)19. We particularly explored 

the hypothesis that metabolic competition and cooperation – which, from a biosynthetic 

perspective, are negatively correlated – will exhibit a trade-off in a habitat-dependent 

manner. The broad habitat coverage and consideration of large co-occurring groups allowed 

us to uncover the stark partitioning between competing and cooperating groups, and to 

suggest strategies to modulate these communities.

Results

Co-occurrence of multi-species groups is prevalent across microbial communities

We started by building metabolic models for individual species spanned by the EMP dataset. 

For this, we first mapped the 16S rRNA sequences to their closest reference genomes in the 

NCBI RefSeq database20 (97% sequence similarity cutoff; see Methods, Extended Data 1). 

We then used these genomes to build genome-scale metabolic models with CarveMe21. This 

resulted in a collection of unique models for 2986 species. Next, to uncover ecologically-

relevant patterns of interactions among these species, we systematically searched for groups 
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of significantly co-occurring species (i.e. groups of species that occur together across 

samples more often than expected by chance; see illustration in Figure 1a, and Methods for 

details). Although multiple methods have been proposed to compute co-occurring species in 

microbial samples, most are limited to species pairs14,22–24. On the other hand, experiments 

with synthetic communities have underlined the importance of higher-order interactions in 

community structure and dynamics. The emergent features of complex communities thereby 

cannot be inferred from pairwise interactions alone18. Supporting this, our previous work 

showed that the co-occurring communities could be distinguished from random species 

assemblies more clearly in three and four species groups15.

In this work, we tackled higher-order interactions at an unprecedented scale by introducing a 

new heuristic approach (Methods). In brief, the method begins by computing significantly 

co-occurring species pairs, and iteratively creates larger assemblies using a sampling 

approach based on roulette wheel selection. This heuristic approach allowed us to avoid 

combinatorial explosion and to uncover thousands of co-occurring communities with up to 

40 members. The higher-order co-occurring groups are prevalent across samples (Extended 

Data 2a): a 10-species group co-occurs, on average, in circa 1000 samples, while a 40-

species group co-occurs in circa 100 samples. Principal component analysis of the resulting 

co-occurrence structure in terms of species composition shows two main clusters of co-

occurring communities (Extended Data 2b). These clusters are closer to each other for the 2-

species groups (i.e. species pairs) but become increasingly distant for higher-order 

communities indicating a bipartite structure in community assembly.

Co-occurring communities are polarized in the competition-cooperation landscape

We next assessed the extent of resource competition and metabolic inter-dependencies in the 

identified co-occurring communities using SMETANA15, a constraint-based community 

modelling approach. Unlike other community simulation methods25–27, SMETANA does 

not assume any optimality at community or species level; the only assumption being that 

each species can survive using the available resources (abiotic or those shared by the fellow 

community members). Using SMETANA, we computed the metabolic resource overlap 

(MRO) and metabolic interaction potential (MIP) for all co-occurring communities 

(illustrated in Fig. 1a). As control groups to contrast against the co-occurring communities, 

random assemblies of the same size as the co-occurring communities were used (1000 

communities for each community size). While the MRO quantifies the similarity of the 

nutritional requirements between all species in a community, reflecting the intra-community 

risk for resource competition, the MIP indicates the number of metabolites that can be 

exchanged among the community members to decrease their dependency on the abiotic 

environment. In this work, we use the MIP value as a proxy measure for cooperative 

metabolism. MRO and MIP estimate the respective interaction metrics at their theoretical 

limit and thus do not require the information regarding the resources actually available in the 

habitat. The operating degree of competition and cooperation in a given community will be 

thus habitat dependent. The context-independent nature of MRO and MIP makes these 

suitable for application to co-occurring communities spanning multiple and diverse habitats. 

Further, the presence of several co-occurring groups of species in diverse habitats suggests 

that these communities are to some extent independent of their abiotic environment. We also 
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evaluated the ability of MIP to capture biologically meaningful interactions against the data 

from a systematic screen of pairwise co-cultures of E. coli mutants with engineered amino 

acid auxotrophies28. We observe that the MIP score is positively associated with higher co-

culture growth yields (Supp. Fig. 1). This result, together with the previous comparisons 

with experimental data15,29, support the relevance of SMETANA simulations.

The SMETANA simulation results revealed a trade-off between competition and cooperation 

(Fig. 1b). Species within communities with higher cooperation potential thereby have less 

resource overlap and vice-versa. When compared with the random assemblies, the co-

occurring communities not only showed a striking distinction in terms of both competition 

risk and cooperation potential but also a clear polarization at the opposite ends of the 

competition-cooperation trade-off spectrum (Fig. 1b). The distinction of the co-occurring 

groups is more prominent at large community sizes, attesting to the ecological role of 

higher-order interactions. The co-occurring communities thus segregate into highly 

competitive (green, Figure 1b–h) and highly cooperative (orange, Figure 1b–h) groups, 

which also coincide with the two main clusters observed based on species composition 

(Extended Data 2). This polarization between competitive and cooperative groups suggests 

adaptation of opposite metabolic strategies by the respective community members.

To check if the observed trade-off pattern results from any biases in the EMP data (such as 

the habitats covered, experimental protocols, or data processing pipelines), we computed co-

occurring communities using an independent collection of 16S amplicon data compiled from 

multiple sources by Chaffron and co-workers30. This analysis also showed a clear trade-off 

between competition and cooperation with the randomly-assembled communities distributed 

along the spectrum (Extended Data 3). However, in this case, the co-occurring communities 

are all located in the cooperative pole. This can be explained by the higher abundance cutoff 

used in this dataset which – as we discuss in the next section – is one of the distinguishing 

features between the cooperative and competitive communities.

Members of competitive and cooperative groups have different metabolism and fitness

To gain insights into ecological mechanisms underlying the divide of co-occurring 

communities between competitive and cooperative types, we compared the metabolic 

features of the respective members. We observed that the species present in cooperative 

communities have fewer metabolic genes as compared to all species representing the EMP 

dataset (mean 543 vs 723, Mann-Whitney U = 5.8e7, z = -223.3, p < 0.001) (Fig. 2a). We 

next compared the estimates of the minimal nutritional requirements of the species 

comprising the different groups (inorganic compounds were discounted, see Methods). In 

line with their small metabolic networks, species in cooperative communities have higher 

nutrient requirements than average (9.9 vs 6.8, Mann-Whitney U = 1.4e8, z = -239.0, p < 

0.001) (Fig. 2b). In contrast, species in the competitive communities have, on average, more 

metabolic genes (mean 919, Mann-Whitney U = 5.7e7, z = 223.6, p < 0.001) and fewer 

nutritional requirements (mean 5.0, Mann-Whitney U = 1.1e8, z = -225.8, p < 0.001).

The smaller resource overlap amongst the members of the cooperative communities despite 

each requiring more nutrients suggests diversification of nutrient requirements within a 

community. To test this, we calculated the network dissimilarity within each community 
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(defined as the average Jaccard distance between the metabolic networks of its member 

species). Indeed, the cooperative communities were found to be more dissimilar than 

expected by chance (10% more, Mann-Whitney U = 1.3e7, z = 91.2, p < 0.001) (Fig. 2c), 

explaining their lower resource overlap and higher cross-feeding potential. Conversely, the 

lower dissimilarity in competitive communities (20% lower, Mann-Whitney U = 6.9e6, z = 

-105.5, p < 0.001) is consistent with their high resource overlap. We also analyzed the nature 

of the compounds that different communities compete for or exchange within their member 

species (Extended Data 4). While the cooperative communities mainly require amino acids, 

the competitive communities showed a wider distribution of requirements, which include 

amino acids, carbohydrates, and pyrimidines. When comparing the two groups, cooperative 

communities showed a three-fold higher propensity for amino acid cross-feeding than the 

competitive communities (Mann-Whitney U = 1.1e8, z = 206.5, p < 0.001).

Stark differences in network size and nutrient requirements between the competitive and 

cooperative groups suggests differential metabolic costs for their member species. We 

therefore asked whether this difference is reflected in the fitness of the competitive or 

cooperative communities. To answer this, we calculated the total (relative) abundance of the 

species that participate in co-occurring communities and compared it with the abundance of 

random subsets with the same number of species (Fig. 2d). We find that the species forming 

cooperative communities are more abundant than expected by chance (median 21.6% vs 

0.5%, Mann-Whitney U = 3.9e12, z = 1796.0, p < 0.001), representing a large fraction of the 

total biomass in each sample. In contrast, species participating in competitive communities 

are only slightly more abundant than that expected by chance (median 1.2% Mann-Whitney 

U = 1.2e13, z = 1020.0, p < 0.001). Since a given species can be part of multiple co-

occurring communities, we analyzed how the fitness of an individual species (in terms of its 

relative abundance) is related to the total number of co-occurring partners present in each 

sample (Extended Data 5). While for the competitive species the number of co-occurring 

species present does not seem to influence their abundance (Spearman’s r = -0.02, p < 0.05), 

the species participating in cooperative communities have a higher abundance when more 

cooperative members are present in the same samples (Spearman’s r = 0.28, p < 0.001). 

Membership of a cross-feeding community thus seems to carry a substantial benefit in terms 

of increased fitness.

Members of competitive communities have larger potential for antimicrobial activity

Competition for nutrients would be expected to be linked with other, more direct, modes of 

competition such as production of antimicrobial compounds31. To test this, we annotated all 

species considered in this study with biosynthetic gene clusters from the antiSMASH 

database32. Supporting the hypothesis, a higher-than-expected number of genes were found 

to be associated with lanthipeptide production in species comprising competitive 

communities (odds ratio 1.7; p < 0.001, hypergeometric test and Benjamini–Hochberg 

correction for multiple testing). We also find that, across all species in the EMP dataset, the 

number of biosynthetic gene clusters encoded in the genome is correlated with the genome 

size (Spearman’s r = 0.67, p < 0.001) and with the number of metabolic genes (Spearman’s r 

= 0.57, p < 0.001). This supports the notion that the competition for resources and active 

antagonism are closely linked.
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Cooperative communities occupy more diverse habitats and maintain stable abundance

The evolution of metabolic competition and cooperation is expected to be driven by the 

degree of nutrient availability in the habitat. This in turn would lead to divergence in the 

habitats of the competitive and cooperative communities. We tested this by using the EMP 

ontology describing 17 types of habitats (9 free-living and 8 host-associated)19. When 

counting the number of distinct habitats in which all members of a given community co-

occur, we observed a notable difference between competitive and cooperative communities 

(Fig. 3). The competitive communities are mostly present in free-living environments, with 

over two-thirds of the respective samples coming from soil33–35. On the other hand, the 

cooperative communities are present both in free-living and host-associated habitats, 

including the human body, indoor environments, and wastewater treatment36–39. 

Interestingly, we noted several indoor environment samples where competitive and 

cooperative communities co-exist. These samples come from the Home Microbiome Project, 

a study that tracked the microbiome of 18 individuals and 4 pets at multiple body sites, as 

well as multiple indoor surfaces during 6 weeks. These samples thus likely represent 

encounters of bacteria from soil, pets, and humans during daily-life activity.

The high habitat diversity of the cooperative communities supports their advantage as a 

group, enabling movement between different environments as largely self-sufficient 

modules. However, to maintain their function, and exchange all required metabolic 

precursors in suitable amounts, these modules would need to maintain a stable composition 

in terms of the relative abundance of its members. To verify this, we queried the temporal 

stability of cooperative and competitive communities in the samples from the home 

microbiome project by using two different metrics: individual stability (i.e. how stable is the 

abundance of each species over time), and group stability (i.e. how stable is the relative 

abundance between community members over time) (Methods). The cooperative 

communities were found to be more stable than expected by chance (Extended Data 6), both 

in terms of individual stability (1.6-fold lower coefficient of variation in the abundance of 

each species, Mann-Whitney U = 0.0, z = -11.9, p < 0.001) and group stability (1.9-fold 

higher similarity of abundance profiles, Mann-Whitney U = 36, z = 11.8, p < 0.001). 

Competitive communities, on the other hand, showed no coherent trend. Previous theoretical 

work on community stability has shown that purely cooperative communities should be 

unstable and competitive interactions are required to re-establish stability40. Given that 

communities of co-occurring species exist as part of larger microbiomes, it is likely that 

competitive interactions with other species and/or resource limitations play a role in their 

stabilization. Together, the habitat preference analysis brings forward cooperative 

communities as functionally-coupled modules that can successfully migrate between 

different environments.

Evolution of division of labor in cooperative communities

We next investigated the loss (or gain) of genes involved in metabolism by the members of 

the competitive and cooperative groups. To address this, we reconstructed a phylogenetic 

tree spanning all species in the EMP dataset using 40 universal marker genes (Methods) and 

calculated the distance within the members of cooperative and competitive communities. 

Members of both competitive and cooperative groups are observed across the four main 
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phyla (Fig. 4a), indicating that polarization of metabolic strategies is a broadly distributed 

phenomenon. We also observe a broad distribution across multiple taxonomic levels (Supp. 

Fig. 2). Further, we observe that the species participating in cooperative communities are 

phylogenetically slightly more distant than expected by chance (1.04-fold, Mann-Whitney U 

= 3.1e7, z = 46.6, p < 0.001), whereas those in the competitive communities are closer (1.1-

fold, Mann-Whitney U = 1.6e7, z = -82.1, p < 0.001) (Fig. 2e). This agrees with metabolic 

dissimilarity as one of the distinguishing features between cooperative and competitive 

communities (Fig. 2c).

To gain insights into the link between phylogenetic relatedness and metabolic dependencies, 

we calculated cross-feeding scores between the 50 most frequently co-occurring species 

within each community type (Methods). As expected, we observe stronger interactions 

between species in cooperative communities (Fig. 4b). Notably, inter-phylum interactions 

seem to be a rule rather than an exception (3 times more frequent than intra-phylum 

interactions, Mann-Whitney U = 257, z = 11.6, p < 0.001). Cross-feeding interactions are 

predominant in Firmicutes with both Actinobacteria and Proteobacteria. In agreement, 

interactions between these phyla have been experimentally observed41 and reported in 

systematic reviews of microbial interactions42,43.

Our results identify amino acids as the most exchanged group of metabolites in cooperative 

communities (Extended Data 4). This agrees with previous experimental observations 

reporting amino acid exchange in various communities12,42,44. We also observe that the 

frequency of amino acid auxotrophies among members of cooperative communities is 

correlated with the respective amino acid production costs45 (Extended Data 7). This 

supports that our results are not biased due to differences in auxotrophy assessment across 

different species (in which case, there would be no link to the metabolic cost of amino 

acids). Moreover, engineered complementary amino acid auxotrophies have been shown to 

enable the stable assembly of synthetic microbial communities28,46. Spontaneous acquisition 

of amino acid auxotrophies and cross-feeding has also been observed during laboratory 

evolution of E. coli 47. However, there is still limited evidence for the co-evolution of amino 

acid exchanges within multi-species consortia in natura 48. Do complementary auxotrophies 

precede community assembly or are they a consequence of co-evolution?

To address this question, we assessed whether the amino acid auxotrophies in the members 

of the cooperative communities have been acquired after speciation or inherited from an 

ancestral species. For a reliable assessment, we used two complementary approaches; one 

based on taxonomy (fraction of auxotrophic species within the same genus), and the other on 

phylogeny (ancestral state reconstruction along the phylogenetic tree). While a majority of 

amino acid auxotrophies (81 out of 117) seem to have been inherited (Extended Data 8), we 

also observe a few cases (12 in total) indicative of recent auxotrophy acquisition (the 

remaining 24 are not conclusive). The former implies pre-existing auxotrophies that were 

acquired (or retained) due to the availability of the corresponding nutrients from either 

abiotic or biotic environment. The latter, together with the higher abundance of cooperative 

species (Fig. 2d), suggests adaptive gene loss and were found to be most frequent for proline 

(G. haemolysans, L. hominis, L. inners) and methionine (A. tetradius, M. luteus, R. 
dentocariosa). Thus, both the assembly of species with pre-existing auxotrophies and 

Machado et al. Page 7

Nat Ecol Evol. Author manuscript; available in PMC 2021 July 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



subsequent gene loss appear to have contributed to the establishment of natural 

communities.

We further explored whether autroxophy retention or acquisition was mainly driven by 

environmental availability or the secretion from co-occurring species. We measured the 

fraction of amino acid auxotrophies within a community that can be compensated for 

through other community members (Supp. Fig. 3) and observed that this fraction follows a 

saturation curve as a function of community size (i.e. for a sufficiently large community 

size, eventually all auxotrophies can be compensated for by other members). Furthermore, 

we observe that this curve saturates earlier for cooperative communities compared to 

competitive and randomly-assembled communities. Therefore, the amino acid auxotrophies 

between species present in cooperative communities are more complementary than expected 

by chance (Wilcoxon one-sided signed-rank test W = 433.0, p < 0.001), likely suggesting 

division of labor.

Cooperative and competitive communities show contrasting sensitivity to perturbations

We next asked whether the distinct metabolic characteristics of cooperative and competitive 

communities result in differential response to abiotic and biotic perturbations. To answer 

this, we created 100 community models of each type (with 10 members per community, 

randomly sampled from the most frequently co-occurring species) and simulated their 

response to abiotic (changes in nutrient availability) and biotic perturbations (introduction of 

a foreign, i.e., non-member, species) (Fig. 5a–b). In particular, we analyzed how sensitive 

the network of cross-feeding interactions is to introduced perturbations (Methods), with 

lower sensitivity values being an indicator of community resilience.

The competitive communities were found to be more sensitive to abiotic perturbations than 

either cooperative or randomly-assembled communities (1.5-fold more, Mann-Whitney U = 

3.4e5, z = 12.3, p < 0.001) (Fig. 5c). This was indeed expected as the former are mostly 

driven by competition for shared resources, and the introduction of different nutrients can 

result in niche expansion. In accord, the difference is less striking when the perturbations are 

performed in anaerobic environments (Extended Data 9). On the other hand, competitive 

communities are less likely to be perturbed by foreign species (1.3-fold less, Mann-Whitney 

U = 3.8e5, z = -9.30, p < 0.001) (Fig. 5d). In agreement with these results, Goldford et al 

have recently shown that the assembly of plant and soil-derived communities (the kind of 

habitats where we find competitive communities to be prevalent) is primarily determined by 

the carbon source, and is much less influenced by the species diversity in the inoculum49.

Cooperative communities, on the other hand, do not seem to be too sensitive to abiotic 

perturbations (only 1.04-fold higher than random controls, Mann-Whitney U = 4.6e5, z = 

3.48, p < 0.001), but quite sensitive to the introduction of foreign species (2-fold more than 

random controls, Mann-Whitney U = 2.3e5, z = 20.6, p < 0.001) (Fig. 5d). The median 

sensitivity of the response appears to linearly increase with the number of species introduced 

(R2 = 0.988, p < 0.001). This is consistent with these communities having multiple cross-

feeding interactions, which can be "intercepted" by the invading species. To test this, we 

analyzed the species invasion pattern in a recent study in which a host-specific response to 

colonization by probiotics was observed, with the identification of individuals as either 
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permissive or resistant to colonization50. In light of our results, we hypothesized that the 

microbiomes of the permissive and the resistant individuals will be characterized by the 

presence of cooperative and competitive species, respectively. Confirming this, the 

individuals permissive to colonization have an increased presence of cooperative species 

along the lower gastrointestinal (LGI) tract, both in terms of total number of species per 

location (Wilcoxon one-sided signed-rank test, W = 28.0, p < 0.01) and their relative 

abundance (Wilcoxon one-sided signed-rank test, W = 28.0, p < 0.01) (Extended Data 10). 

Notably, this difference is more striking in the early LGI tract (terminal ileum, cecum, 

ascending colon). Thus, supporting our hypothesis, the presence of cooperative species is 

linked with the colonization by probiotic species.

Discussion

In this work, we observe a competition-cooperation trade-off among microbial communities 

that, although intuitive, had not been reported before. This is most likely due to the limited 

scale of the previous studies in terms of the number of species, number of environments, and 

the degree of co-occurrence. For example, two early studies13,14 considered circa 150 

species. The latter study observed a positive correlation between co-occurrence and 

competition but not with cooperation, suggesting niche filtering as the main driver of species 

assembly. Further, as the polarization becomes more striking at higher-order co-occurrence 

(Figure 1b), it is not surprising that this pattern was not previously reported.

The polarization of co-occurring microbial communities into competitive and cooperative 

groups and its spread across the phylogenetic tree indicates two different, habitat-driven, 

evolutionary paths in community assembly. Competitive communities retain diverse 

metabolic capabilities to exploit the available nutrients, which indirectly antagonizes 

competitors, and to reduce dependencies on other species. The members of these 

communities also harbor more potential for antimicrobial compound production. 

Cooperative communities, on the other hand, harbor complementary auxotrophies and 

exhibit stable proportions across habitats, in line with inter-species dependencies. The 

advantage of the interdependencies in this group is reflected in their high relative abundance 

(Figure 2d). Our phylogenetic analysis indicates adaptive gene loss in metabolic networks. 

Consistent with an adaptive process, auxotrophies for amino acids with high biosynthetic 

costs are more common (Extended Data 7). Collectively, metabolic capabilities, 

antimicrobial production potential, phylogenetic analysis, and differences in habitat 

preference and relative abundances, highlight the evolutionary conflict and cooperation in 

the two co-occurring groups identified in our study.

Our analysis suggests joint role of abiotic habitat and evolutionary gene loss in determining 

whether a competitive or cooperative community will be established. The competitive 

species are generally restricted to free-living habitats wherein the resources are likely to be 

more scarce making competition more prevalent. In contrast, the nutritional richness of the 

host-associated habitats seems to support the cooperative species, which exhibit 

complementary auxotrophies, in part resulting from gene loss. This adaptation not only 

confers a fitness advantage but is also likely to facilitate the survival of these species during 

migration between the hosts and the external environment as a highly self-sufficient group. 
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The generally higher abundance and diverse habitat occupation of the cooperative highlight 

the advantages offered by the division of metabolic labor.. This dichotomy between 

competition and cooperation is in certain ways analogous to that between the red queen and 

the black queen hypotheses51,52. The former is reflected in competitive species as they tend 

to retain most biosynthetic capabilities and harbor genes useful for active antagonism; the 

latter is reflected in gene loss in cooperative species leading to dependencies on fellow 

community members. Our results provide evidence that both theories are operating in natura 
as two extremes in a metabolic trade-off between competition and cooperation.

The existence of the two community types with contrasting metabolic make-up and habitat 

preference means that the strategies to modulate or re-engineer these communities also need 

to be separately tailored. Our in silico results, with support from previously published 

experimental data49,50, show that the competitive and cooperative communities are more 

malleable through, respectively, abiotic and biotic perturbations. However, our results are 

still limited and subject to biases due to the exclusion of species without a reference genome 

assembly, and due to variable quality of gene annotations – on which the models are based – 

across different species. These findings could, in future, be further refined to consider 

metagenome-assembled genomes53, improving coverage at species and strain levels, and by 

accounting for viral54 and fungal55 interactions. Altogether, we conclude that devising 

intervention strategies tailored to communities according to their position in the 

competition-cooperation landscape would be key to the modulation of complex microbial 

ecosystems.

Methods

Mapping OTUs to reference genomes

The EMP dataset provides 16S tags with multiple lengths. The abundance table with the 

longest reads (150 bp) was downloaded from the EMP portal (http://

www.earthmicrobiome.org). All reference/representative bacterial genomes were 

downloaded from NCBI RefSeq (release 84). The 16S tags from the EMP data were mapped 

to those extracted from the reference genomes using diamond with a 97% identity threshold 

and a 95% alignment coverage. If multiple genomes were found, the ones with the highest 

alignment identity and length were selected. As expected, a large fraction of OTUs did not 

have a matching assembled genome (and some OTUs matched the same genomes). Overall, 

the diversity in each sample is reduced by almost an order of magnitude (from an average of 

990 OTUs per sample to an average of 159 genomes) (Extended Data 1a). Nevertheless, we 

observe an enrichment regarding species prevalence (7.4-fold increase, Mann-Whitney U-

test: p < 0.001) and abundance (2.5-fold increase, Mann-Whitney U-test: p < 0.001) 

(Extended Data 1b,c), indicating that the unmapped OTUs are associated with less prevalent 

and less abundant species. This was also reflected when we compared the fraction of OTUs 

covered per sample (mean 20.8%) to their respective abundance (mean 40.6%) (Extended 

Data 1d).
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Computing co-occurrence

We computed higher-order co-occurrence using an iterative algorithm that begins with small 

sizes (N=2) and gradually computes groups of larger sizes. At the beginning of each 

iteration, all combinations of species are evaluated for co-occurrence by counting the total 

number of samples in which they co-occur. We calculate the number of co-occurring 

observations expected by chance using a binomial distribution and the probability of 

observing each species individually. We also calculate FDR-corrected p-values (q = 0.05), 

and select all species combinations that: 1) co-occur in at least 10 samples; 2) co-occur at 

least twice more than expected by chance; 3) pass the FDR-correction test. The 1000 most 

frequently co-occurring sets of species are selected as the best solutions for this iteration. In 

the next iteration, larger sets are created by extending all sets with a new element from the 

complete list of species in a combinatorial manner. To cope with the combinatorial 

explosion, at each iteration we only propagate a population of 10,000 solutions to the next 

iteration. This population is selected using roulette wheel selection with a probability 

proportional to the co-occurrence frequency. The presence/absence of a species in any 

sample is evaluated with a relative abundance cutoff. In particular, using cutoff values of 

0.1% and 0.01% originated the two different community types analyzed in this study. We 

tried higher and lower cutoff values, without any observable differences in the results 

(Extended Data 2).

This method is implemented as a standalone python package, HiOrCo, openly available at 

https://github.com/cdanielmachado/hiorco.

Community simulation and media calculation

All community simulations and calculations of minimal media composition were performed 

using SMETANA v1.0. The mathematical formulation, as well as the description of the 

different scores, such as MIP and MRO, are described in the original publication15. The tool 

is implemented as a standalone python package, openly available at https://github.com/

cdanielmachado/smetana.

Phylogenetic analysis

A maximum likelihood-approximate phylogenetic tree of 2992 species of Prokaryotes was 

built using ETE3 toolkit56 with JTT model57 by aligning protein sequences of the 40 

conserved universal marker genes58,59 with default parameters in ClustalOmega aligner60 

and FastTree2 tree-builder61. A cophenetic distance matrix was constructed from the tree 

using the ape package62 in R (v3.4.4). Phylogenetic trees were visualized and exported with 

iTOL63.

To estimate the ancestral state of amino acid auxotrophies, we first calculated auxotrophies 

for all reference species using genome-scale metabolic models. We then used the 

make.simmap function from the phytools64 library in R (v.3.4.4) with 100 stochastic 

character mappings followed by the describe.simmap function to obtain posterior 

probabilities of auxotrophic ancestral state (considered as a discrete trait). This method relies 

on stochastic character mapping that is sampled from a Markov chain Monte Carlo Bayesian 

posterior probabilities distribution65.
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Simulating community response to perturbations

For each of the two types of communities (competitive and cooperative), we selected the 50 

most representative species (i.e., those that are most frequently present in all co-occurring 

communities), and used them to randomly generate 100 communities of 10 species each. 

Each community was subject to multiple random perturbations with N perturbation elements 

(up to 10). In the abiotic case, the perturbations consisted of 100 random perturbations per 

community adding N additional nutrients to the growth medium. The biotic case consisted of 

10 random perturbations per community, introducing N foreign species. The sensitivity to 

perturbations is calculated as follows:

sensitivity C = ∑
x, y ∈ C

∑
i = 1

N Sx, yi − Sx, y0 2

Sx, y0

where N is the number of perturbations, (x,y) is a pair of species in community C, and Sx,y is 

the SMETANA score for cross-feeding interactions between x and y, defined as:

Sx, y = SCSx, y ⋅ ∑
m ∈ M

MPSx, m ⋅ MUSy, m

where SCS (species coupling score), MPS (metabolite production score) and MUS 
(metabolite uptake score) are calculated as defined in Zelezniak et al.15, and M is the 

complete set of metabolites that can be produced and consumed.

Community stability analysis

Individual species stability was calculated as the coefficient of variation of the relative 

species abundance across all time points in a given sample:

xι =
1
N ∑t = 1

N xi, t − xi
2

xi

where xi,t is the relative abundance of species i at time point t and N is the number of time 

points.

Group stability was calculated as the average cosine distance Di,j between the time-course 

profiles of every pair of species in a group and is defined as:

stability = ∑
i, j

i < j < K
Di, j

2 K − 2 !
K!

where K is the number of species in the group. For each sample, we computed the stability 

of the competitive and cooperative subcommunities present in those samples as well as the 

stability of 100 randomly-assembled subcommunities.
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Statistical analysis

All statistical tests used in this manuscript were performed with SciPy version 1.2.1.

Extended Data

Extended Data Fig. 1. Mapping of OTUs to reference genomes.
a) comparison of sample diversity in terms of OTUs (blue) and genomes (orange); b) 

comparison of species prevalence in terms of OTUs and genomes across samples; c) species 

abundance distribution; d) total abundance of each sample that is captured by the mapped 

genomes in comparison to the ratio of genomes to OTUs.
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Extended Data Fig. 2. Summary of higher-order co-occurrence analysis.
a) Average number of samples where all species in a co-occurring community can be found 

together as a function of community size (computed for the threshold values used in this 

work); b) Principal component analysis of co-occurring communities computed using 

different abundance thresholds. Marker size indicates co-occurring community size (up to 30 

species) and marker shapes indicates independent runs of the algorithm (3 runs for each 

threshold). Numbers on x and y axis indicate percentage of explained variance for the 

respective principle component.
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Extended Data Fig. 3. Simulation results using an independent dataset.
Simulation results for competition (MRO score) and cooperation potential (MIP score) for 

microbial communities obtained from Chaffron et al.1. Blue dots represent co-occurring 

communities of different sizes (up to 1000 per size) and grey dots represent randomly-

assembled communities of similar size (1000 communities per size).
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Extended Data Fig. 4. Summary of metabolite requirements for growth and cross-fed 
metabolites.
a) compounds competed for in cooperative communities; b) compounds competed for in 

competitive communities; c) cross-fed compounds in cooperative communities; d) cross-fed 

compounds in competitive communities. Compound classification according to the Human 

Metabolome Database (HMDB). Only the ten most frequent compound classes are colored 

and labeled.
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Extended Data Fig. 5. Abundance of co-occurring species as a function of the total number of co-
occurring partners present in a sample.
The colored line denotes the average abundance for each type of community, the shadowed 

area indicates standard deviation, and the dashed grey line indicates the average species 

abundance across all species and samples (in all cases the average is calculated as the mean 

value in log-space, i.e. representing the geometric mean of the relative abundance values).
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Extended Data Fig. 6. Abundance stability in co-occurring communities.
Community stability measured in terms of: a) individual stability (lower coefficient of 

variation per species indicates higher stability); b) group stability (lower cosine distance 

indicates higher covariation of species abundance within each community).
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Extended Data Fig. 7. Auxotrophy frequency is associated with amino acid production cost.
Spearman correlation between amino acid production costs and their auxotrophy frequency 

across species participating in cooperative communities. The data on amino acid production 

costs was obtained from Barton et al (ref 45).
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Extended Data Fig. 8. Acquisition of amino acid auxotrophies.
Analysis of evidence for recent acquisition of amino acid auxotrophies using two 

complementary approaches: taxonomy based (T), measuring the fraction of auxotrophic 

species at genus level; phylogeny based (P), estimating the probability of the auxotrophy 

existing in the most recent ancestor of the species. Green color in both columns is indicative 

of a consensus.
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Extended Data Fig. 9. Sensitivity of co-occurring communities to different types of perturbations
This is an extended version of Figure 5 where the simulations are performed in aerobic and 

anaerobic environments separately. For abiotic perturbations we further test the effect of 

removal of compounds from the growth medium.
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Extended Data Fig. 10. Association between the presence cooperative species and colonization of 
the human gut microbiome.
Presence of cooperative species in the lower gastrointestinal (LGI) tract of patients 

permissive to probiotic colonization (P), patients resistant to colonization (R) and control 

patients (C). Asterisks indicate significance of Wilcoxon signed-rank test (p < 0.05).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Co-occurring microbial communities are polarized in the competition-cooperation 
landscape.
a) Schematic of the two main steps in our analysis: identification of frequently co-occurring 

communities across the Earth Microbiome project samples, followed by the calculation of 

metabolic resource overlap (MRO) and metabolic interaction potential (MIP) scores. While 

MRO estimates the degree of competition in terms of overlap in the resource requirements of 

the community members, MIP assesses cooperation potential as the number of metabolites 

that the members can provide each other with. b-g) The trade-off between the Competition 

(MRO) and cooperation (MIP) scores for different community sizes. Green and orange dots 

mark competitive and cooperative co-occurring communities, respectively. The grey dots 

represent random assemblies. h) Cooperation potential increases with community size more 

rapidly for the cooperative groups (orange) than for the competitive (green) or random (grey) 

communities. i) Competition potential as a function of community size. In h) and i), thick 

lines and shaded regions show average values and standard deviation, respectively. In b-i, 

1000 communities are included for each community size and type (random, competitive, and 

cooperative)
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Figure 2. Members of the cooperative and competitive communities show distinct genomic and 
phylogenetic characteristics, and have different abundance profiles.
Shown are the distributions of: a) the number of metabolic genes; b) the number of nutrients 

required (discounting non-organic compounds); c) the dissimilarity (Jaccard distance) 

between the metabolic networks of all species pairs; d) the abundance of community 

members across all the samples wherein the community occurs. The random assemblies in 

this case correspond to random subcommunities of equal size taken from the same samples; 

e) phylogenetic distance between all pairs of species within each community type. Each 

curve represents 1000 communities of a given size and community type.
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Figure 3. Cooperative communities occupy more diverse habitats.
Circle position indicates the total number of habitats (according to EMPO level 3) for given 

community size, and the circle size indicates the fraction of communities that live in that 

number of habitats (out of 1000 computed communities per size). The circle color indicates 

the ratio between host-associated and free-living habitats
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Figure 4. Members of both competitive and cooperative communities are observed across the 
four main phyla.
Shown are the phylogenetic trees for all the species in the EMP dataset that could be mapped 

to reference genomes (2986 species in total). a) distribution of competitive (green) and 

cooperative (orange) species across the four main phyla; b) predicted cross-feeding 

interactions between the 50 most frequently occurring species in competitive (green) and 

cooperative (orange) communities. The edge width represents the SMETANA score for each 

interaction (indicating the frequency and total number of exchanged compounds).
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Figure 5. Cooperative and competitive communities show contrasting sensitivity to 
perturbations.
a) schematic illustration of abiotic perturbations, changes in medium composition as 

simulated herein; b) schematic illustration of biotic perturbations, introduction of foreign 

species in the community as simulated herein; c-d) Simulation results, summarized as 

sensitivity of cooperative, competitive, and control (randomly-assembled) communities as a 

function of the number of abiotic (c) and biotic (d) perturbations. Each boxplot shows 

simulation results for 100 communities with 10 replicates per community. The box extends 

from the 1st to the 3rd quartile, with the line at the median, and the whiskers represent an 

interval of 1.5 * IQR (interquartile range).
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