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ABSTRACT
Background Recent evidence suggests a role for the 
microbiome in pancreatic ductal adenocarcinoma (PDAC) 
aetiology and progression.
Objective To explore the faecal and salivary microbiota 
as potential diagnostic biomarkers.
Methods We applied shotgun metagenomic and 16S rRNA 
amplicon sequencing to samples from a Spanish case–control 
study (n=136), including 57 cases, 50 controls, and 29 
patients with chronic pancreatitis in the discovery phase, and 
from a German case–control study (n=76), in the validation 
phase.
Results Faecal metagenomic classifiers performed 
much better than saliva- based classifiers and identified 
patients with PDAC with an accuracy of up to 0.84 
area under the receiver operating characteristic curve 
(AUROC) based on a set of 27 microbial species, with 
consistent accuracy across early and late disease stages. 
Performance further improved to up to 0.94 AUROC 
when we combined our microbiome- based predictions 
with serum levels of carbohydrate antigen (CA) 19–9, the 
only current non- invasive, Food and Drug Administration 
approved, low specificity PDAC diagnostic biomarker. 
Furthermore, a microbiota- based classification model 
confined to PDAC- enriched species was highly disease- 
specific when validated against 25 publicly available 
metagenomic study populations for various health 
conditions (n=5792). Both microbiome- based models 
had a high prediction accuracy on a German validation 
population (n=76). Several faecal PDAC marker species 
were detectable in pancreatic tumour and non- tumour 
tissue using 16S rRNA sequencing and fluorescence in 
situ hybridisation.
Conclusion Taken together, our results indicate that 
non- invasive, robust and specific faecal microbiota- based 
screening for the early detection of PDAC is feasible.

Significance of this study

What is already known about this subject?
 ► Pancreatic ductal adenocarcinoma (PDAC) is on the 
rise worldwide, posing a high disease burden and 
mortality rate, yet accurate, non- invasive diagnostic 
options remain unavailable.

 ► Alterations in the oral, faecal and pancreatic 
microbiome composition have been associated 
with an increased risk of PDAC.

What are the new findings?
 ► Stool microbiota- based classifiers are described 
that predict PDAC with high accuracy and 
specificity, independent of disease stage, with 
potential as agents for non- invasive diagnostics.

 ► A faecal metagenomic classifier identified 
PDAC with an accuracy of 0.84 area under the 
receiver operating characteristic curve (AUROC) 
in a Spanish cohort, based on 27 species. The 
accuracy improved to up to 0.94 AUROC when 
combined with the less specific carbohydrate 
antigen (CA) 19–9 serum marker.

 ► The classifier was validated in an independent 
German PDAC cohort (0.83 AUROC), and PDAC 
disease specificity was confirmed against 25 
publicly available metagenomic study populations 
with various health conditions (n=5792).

 ► The presence of marker taxa enriched in 
faecal samples (Veillonella, Streptococcus, 
Akkermansia) and also taxa with differential 
abundance in healthy and tumour pancreatic 
tissues (Bacteroides, Lactobacillus, 
Bifidobacterium) was validated by fluorescence 
in situ hybridisation.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the most common 
form of pancreatic cancer and a major cause of cancer- related 
deaths despite relatively low incidence rates.1 2 The high lethality 
of PDAC is a consequence of both late diagnosis and limited 
therapeutic options3: symptoms are unspecific and often emerge 
only during late disease stages, at which point tumours can be 
either locally non- resectable or present as metastatic disease. At 
present, PDAC is diagnosed using imaging tests.4 Sensitive and 
affordable tests for an early detection of PDAC could therefore 
improve outcome. PDAC markers have been explored in pancre-
atic tissue,5 urine6 7 and serum.8 9 Yet to date, the sole Food and 
Drug Administration (FDA)- approved PDAC biomarker remains 
serum carbohydrate antigen (CA) 19- 9. CA19- 9 has limited 
disease specificity as levels can be elevated in several other 
concomitant conditions (eg, biliary obstruction) and is there-
fore mostly used as a marker for PDAC surveillance, rather than 
screening or diagnosis.10–14

PDAC has a complex aetiology, with established risk factors 
that include age, chronic pancreatitis, diabetes mellitus, obesity, 
asthma, blood group and lifestyle (eg, smoking and heavy alcohol 
consumption).15 16 The role of these risk factors in PDAC aeti-
ology may also be complemented—or sometimes indeed medi-
ated—by alterations in the microbiome. For example, poor oral 
hygiene and periodontitis have been associated with an increased 
PDAC risk,17 an observation that also extends to periodontitis- 
and caries- associated microbial species.18 19 Shifts in these species 
are sometimes part of wider compositional changes in the oral 
microbiome20 21 or have been explored as PDAC risk factors 
in their own right.22 Similarly, microbial composition in the 
gut23–25 and duodenum,26 27 quantified via 16S rRNA amplicon 
sequencing, have previously been linked to PDAC risk.

The human pancreas harbours a microbiome that shares 
species with the mouth and the gut,25 28–32 although its exact 
composition has remained elusive owing to the challenges asso-
ciated with contamination control in low bacterial biomass 
samples.33 In murine models, microbes originating from the 
intestine can contribute to carcinogenesis in the pancreatic 
duct,25 30 suggesting a role for the microbiome in PDAC aeti-
ology and progression that was recently extended to fungi.34 
Moreover, the pancreatic tumour microbiome may also be 
associated with disease progression and long- term survival in 
patients with PDAC.31

However, the translation of these advances into PDAC- 
specific microbiome signatures for clinical applications has 
so far remained largely unexplored. Here, we present the 
identification of robust, specific microbial PDAC signatures 
based on a metagenomic survey of a Spanish (ES) study popu-
lation of 57 newly diagnosed and treatment- naïve patients 

with PDAC, 29 patients with chronic pancreatitis (CP), and 
50 matched controls. We sampled saliva, faeces, pancreatic 
normal and tumour tissue and assessed microbial composi-
tion using whole- genome shotgun metagenomics, 16S rRNA 
amplicon sequencing, and fluorescence in situ hybridisation 
(FISH) assays. The best discrimination between patients with 
PDAC and non- PDAC subjects was achieved by statistical 
models based on a set of 27 faecal microbial species that could 
be quantified in a targeted manner in a diagnostic setting. 
The prediction accuracy of microbiome- based models was 
confirmed in an independent German (DE) PDAC validation 
population including 44 patients with PDAC and 32 controls 
and was further improved when combined with serum levels of 
CA19- 9. We further validated the disease specificity of these 
models against existing data from 25 studies (n=5792) of 
nine diseases.35–59 Several of the PDAC- enriched species were 
also detected in cancer tissue, with possible links to oral and 
intestinal populations, supporting their potential role in PDAC 
pathogenesis, as previously reported.25 30 31 34

METHODS
Subject recruitment and sample collection
A case–control design was applied. Subjects were prospectively 
recruited between 2016 and 2019 from the Hospital Ramón 
y Cajal in Madrid and Hospital Vall d’Hebron in Barcelona, 
Spain, using the same protocols for biological sample collection, 
processing and storage. Subjects with newly diagnosed PDAC 
(n=57), aged >18 years, were identified prior to any cancer treat-
ment. Subjects in whom PDAC was suspected were recruited, and 
sampling was done before any treatment. Patients with chronic 
pancreatitis (CP, n=29) were recruited from the same hospitals. 
Controls matched for age, gender and hospital were selected 
from inpatients with a primary diagnosis for hospital admission 
not related to PDAC risk factors. Participants incapable of partic-
ipating in the study owing to impairment of physical ability were 
excluded. Institutional review board ethical approval (CEI PI 
26 2015- v7) and written informed consent were obtained from 
participating centres and study participants, respectively. Epide-
miological and lifestyle data were collected by trained monitors 
during face- to- face interviews through a structured question-
naire. Clinical data, including stage of the diseases and follow- up 
data, were retrieved from hospital charts by the same monitors, 
likewise using structured questionnaires. Recorded jaundice 
status was additionally confirmed and extended by direct bili-
rubin measurements from blood samples in CNIO, Madrid. All 
data were entered, edited and managed using REDCap. Missing 
lifestyle and medication values in the metadata (missing overall 
in 3.1%) were imputed using a random forest- based algorithm 
for missing data imputation called missForest (n=100 trees).60 
The imputation accuracy was high according to the imputation 
error estimate (mean out- of- bag error=0.12). Serum CA19- 9 
levels were analysed by electrochemiluminescence immunoassay 
(ECLIA, Roche Diagnostics, Germany) following the manu-
facturer's instructions in the Institute of Laboratory Medicine 
and Pathobiochemistry, Marburg, Germany. Each sample was 
assayed in duplicate, with positive controls assayed in each plate 
(online supplemental table S1).

Stool and saliva (mouthwash) samples were preserved in 
RNALater and stored at 4°C immediately for 12 hours, then 
transferred to −20°C for another 24 hours, and then stored at 
−80°C until DNA extraction. Tumour and non- affected tissue 
samples were collected during surgery for a subset of individuals, 
immediately flash- frozen in liquid nitrogen after pathological 

Significance of this study

How might it impact on clinical practice in the foreseeable 
future?

 ► Faecal microbiome- based detection of PDAC may provide 
a non- invasive, cost- effective and robust approach to early 
PDAC diagnosis.

 ► The presented PDAC- specific microbiome signatures, 
including links between microbial populations across tissues, 
provide novel microbiome- related hypotheses regarding 
disease aetiology, prevention and possible therapeutic 
intervention.
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assessment, and preserved at −80°C. All the samples were 
shipped on dry ice.

An independent validation population was recruited at the 
Department of Surgery, University Hospital of Erlangen (32 
PDAC and 32 control samples) and Section for Translational 
Hepatology, Department of Internal Medicine I, Goethe Univer-
sity Clinic, Frankfurt (12 PDAC samples) using the same proto-
cols for biological sample collection, processing and storage. 
Matched controls were selected from inpatients with a primary 
diagnosis for hospital admission not related to PDAC risk 
factors. The study was approved by the local ethics commit-
tees (SGI- 3–2019, 451_18 B), and written informed consent 
from study participants was obtained. Clinical data, including 
disease stage and follow- up data, were retrieved from the clinical 
records of the hospital charts of the respective patients (online 
supplemental table S2). Serum CA19- 9 levels were analysed by 
a routine immunoassay (Roche Diagnostics, Germany) following 
the manufacturer's instructions. Stool samples were preserved 
in OMNIgene- Gut OM- 200 vials (Steinbrenner Laborsysteme 
GmbH, Germany) and stored at −80°C immediately until DNA 
extraction.

Sample processing
Faecal and salivary samples were thawed on ice, aliquoted, 
and genomic DNA was extracted using the Qiagen Allprep 
PowerFecal DNA/RNA kit according to the manufactur-
er’s instructions (Qiagen, Hilden, Germany). Genomic DNA 
from pancreatic tumorous and non- tumoral tissue samples 
was extracted using the Qiagen DNeasy blood and tissue kit 
in a protocol modified from Del Castillo et al26: cells were 
lysed mechanically (with 5 mm stainless steel beads at 25 Hz 
for 150 s), followed by lysozyme treatment (20 mg/mL) and 
protease and RNAse digestion (56°C for 2 h). All samples were 
randomly assigned to extraction batches. To account for poten-
tial bacterial contamination of extraction, polymerase chain 
reaction (PCR) and sequencing kits, we included negative 
controls (extraction blanks) with each tissue DNA extraction 
batch (online supplemental figure 1).

16S rRNA amplicon sequencing
Pancreatic tissue DNA was enriched for 16S rRNA in a preampli-
fication PCR using primers 331F (5’-TCCTACGGGAGGCAG-
CAGT- 3’)61 and 979R (5’-GGTTCTKCGCGTTGCWTC- 3’).62 
The cycling conditions consisted of an initial template denatur-
ation at 98°C for 2 min, followed by 30 cycles of denaturation at 
98°C for 10 s, annealing at 65°C for 20 s, extension at 72°C for 
30 s and a final extension at 72°C for 10 min. This was followed 
by a size- selective cleanup using SPRIselect magnetic beads (0.8 
left- sized; Beckman Coulter, Brea, California, USA). Faecal and 
salivary DNA were not preamplified.

Targeted amplification of the 16S rRNA V4 region (primer 
sequences F515 5’-GTGCCAGCMGCCGCGGTAA- 3’ and 
R806 5’- GGACTACHVGGGTWTCTAAT- 3’),63 was performed 
using the KAPA HiFi HotStart PCR mix (Roche, Basel, Swit-
zerland) in a two- step barcoded PCR protocol (NEXTflex 16S 
V4 Amplicon- Seq Kit; Bioo Scientific, Austin, Texas, USA) with 
minor modifications from the manufacturer’s instructions. PCR 
products were pooled, purified using size- selective SPRIselect 
magnetic beads (0.8 left- sized) and then sequenced at 2×250 bp 
on an Illumina MiSeq (Illumina, San Diego, California, USA) at 
the Genomics Core Facility, European Molecular Biology Labo-
ratory, Heidelberg.

16S rRNA amplicon data processing
Raw reads were quality trimmed, denoised and filtered against 
chimeric PCR artefacts using DADA2.64 The resulting exact 
amplicon sequence variants (ASVs) were taxonomically classified 
and mapped to a reference set of operational taxonomic units 
(OTUs) at 98% sequence similarity using MAPseq.65 Reads that 
did not confidently map to the reference were aligned to bacte-
rial and archaeal secondary structure- aware small subunit rRNA 
models using Infernal66 and clustered into OTUs with 98% 
average linkage using HPC- CLUST,67 as described previously.68 
As a result, we obtained taxa tables at two resolutions: 100% 
identical ASVs and 98% open- reference OTUs; unless otherwise 
indicated, analyses in the main text refer to OTUs.

Count tables were noise filtered by removing samples retaining 
less than 500 reads and taxa observed in fewer than five samples; 
this removed 2.5% of total reads from the dataset. For 18 sali-
vary samples, technical replicates were merged after confirming 
that they strongly correlated with community composition. For 
pancreatic tissue and tumour samples, ASVs observed in negative 
control samples were removed, as were reads mapping to known 
reagent kit contaminants.33 After these steps, we retained 308 
16S rRNA amplicon samples from 143 subjects for further anal-
yses (130 salivary, 118 faecal, 20 of unaffected pancreatic tissue, 
23 of tumour tissue with 17 matching PDAC tissue samples).

Shotgun metagenomic sequencing
Metagenomic libraries for 212 faecal and 100 salivary samples 
were prepared using the NEB Ultra II and SPRI HD kits, depending 
on the concentration of starting material, with a targeted insert 
size of 350, and sequenced on an Illumina HiSeq 4000 platform 
(Illumina, San Diego, California, USA) in 2×150 bp paired- end 
setup to a target depth of 8 Gbp per sample at the Genomics 
Core Facility, European Molecular Biology Laboratory, Heidel-
berg. Sequencing statistics for each sample are provided in the 
associated git repository (https://github.com/psecekartal/PDAC. 
git). For three salivary and one faecal samples, technical repli-
cates were merged after confirming that they strongly correlated 
in community composition.

Metagenome data processing
Metagenomic data were processed using established workflows 
in NGLess v0.7.1.69 Raw reads were quality trimmed (≥45 bp at 
Phred score ≥25) and filtered against the human genome (version 
hg19, mapping at ≥90% identity across ≥45 bp). The resulting 
filtered reads were mapped (≥97% identity across ≥45 bp) 
against the representative genomes of 5306 species- level genome 
clusters obtained from the proGenomes database v2.70

Taxonomic profiles were obtained using the mOTU profiler 
v2.571 and filtered to retain only species observed at a relative 
abundance ≥10−5 in ≥2% of samples. Gene functional profiles 
were obtained from mappings against a global microbioal gene 
catalogue (GMGCv1, Coelho et al72, http://gmgc.embl.de/), by 
summarising read counts from eggNOG v4.573 annotations to 
orthologous groups and KEGG modules. Features with a rela-
tive abundance of ≥10−5 in ≥15% of samples were retained for 
further analyses.

Microbiome data statistical analyses
All data analyses were conducted in the R Statistical Computing 
framework v3.4 or higher.

Rarefied per- sample taxa diversity (‘alpha diversity’, averaged 
over 100 rarefaction iterations) was calculated as the effective 
number of taxa with Hill coefficients of q=0 (ie, taxa richness), 
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q=1 (exponential of Shannon entropy) and q=2 (inverse 
Simpson index), and evenness measures as ratios thereof. Unless 
otherwise stated, results in the main text refer to taxa richness. 
Differences in alpha diversity were tested using analysis of 
variance (ANOVA) followed by post hoc tests and Benjamini- 
Hochberg correction, as specified in the main text.

Between- sample differences in community composition (‘beta 
diversity’) were quantified as Bray- Curtis dissimilarity on raw 
or square- root transformed counts, abundance- weighted Jaccard 
index, and abundance- weighted and unweighted TINA index, as 
described previously.74 Trends between these indices were gener-
ally consistent, unless otherwise stated. Results are reported for 
Bray- Curtis dissimilarities on non- transformed data. Associations 
of community composition to microbiome- external factors were 
quantified using the ‘adonis2’ implementation of PERMANOVA 
and distance- based redundancy analysis in the R package vegan 
v2.5.75 To quantify potentially confounding univariate links 
between the abundance of individual taxa and subject- specific 

variables (see main text), we performed either ANOVA or non- 
parametric Kruskal- Wallis tests, depending on abundance distri-
butions (online supplemental figure 2- 3 and online supplemental 
table S4- S5). Bilirubin levels were measured from blood samples, 
and jaundice status was confirmed by clinical records. Owing 
to missing jaundice status for several individuals, values used 
for further analysis were imputed from existing data (figure 1, 
online supplemental table S1- S3).

Multivariable statistical modelling and model evaluation
In order to train multivariable statistical models for the predic-
tion of pancreatic cancer, we first removed taxa with low overall 
abundance and prevalence (abundance cut- off point: 0.001). 
Then, features were normalised by log10 transformation (to 
avoid infinite values from the logarithm, a pseudo- count of 
1e- 05 was added to all values) followed by standardisation as 
centred log- ratio ( log. clr). Data were randomly split into test and 

Figure 1 Community analysis of Spanish faecal microbiome data. (A) Study population overview. Grey bands between the bar plots indicate 
samples of matching body sites within individuals. (B) Bray- Curtis distance- based redundancy analysis (dbRDA) of pancreatic ductal adenocarcinoma 
(PDAC), chronic pancreatitis (CP) and control (CTR) faecal microbiome data in a Spanish (ES) cohort. PDAC samples are shown as red coloured 
circles, patients with CP as green and controls as blue. Richness, exponential Shannon (exp(Shannon)) and inverse Simpson (inv(Simpson)) diversity 
measures are also visualised with arrows similarly to tested metadata variables. The distance of the meta- variable from the centre represents the 
confounding effect size (see ‘Methods’). (C) Wilcoxon test results of ES faecal microbiome data to test enriched taxa between PDAC and control 
cases (see ‘Methods’). Y- axis is log10(FDR corrected p values), X- axis is generalised fold change, and dot size represents the relative abundance of a 
given species. Red dots represent significantly differentially abundant species in either group, while black dots show non- significant species after FDR 
correction. Green and brown- coloured species are selected in metagenomic model- 1 as predictors of PDAC. FDR, false discovery rate.
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training sets in a 10 times repeated 10- fold cross- validation. For 
each test fold, the remaining folds were used as training data 
to train an L1- regularised (LASSO) logistic regression model76 
using the implementation within the LiblineaR R package v2.10. 
77 The trained model was then used to predict the left- out test set 
and finally, all predictions were used to calculate the area under 
the receiver operating characteristics curve (AUROC) (figure 2).

In a second approach, features were filtered within the cross- 
validation (that is, for each training set) by first calculating the 
single- feature AUROC and then removing features with an 
AUROC <0.5, thereby selecting features enriched in PDAC 
(‘enrichment- constrained’ model).

In order to combine the predictions from the microbiome- 
based machine learning models with the CA19- 9 marker, 

Figure 2 Predictive microbiome signatures of pancreatic ductal adenocarcinoma (PDAC). (A) Normalised abundance of 27 selected species in the 
faecal microbiome across samples shown as a heat map. The right panel represents the contribution of each selected feature to the overall model- 1, 
and the robustness (the percentage of models in which the feature is included as predictor) of each feature is presented as percentage. Classification 
scores from cross- validation of each individual and condition for tested meta- variables are displayed at the bottom of the panel, yellow representing 
missing information. (B–D) Internal cross- validation results of unconstrained model- 1 (without feature selection), enrichment- constrained model- 2 
(constrained to positive features) and combination of carbohydrate antigen (CA)19- 9 (using a threshold of 37 μL/mL) with microbial features (see 
‘Methods’) are shown as receiver operating characteristic (ROC) curve with 95% CI shaded in corresponding colour. True positive rates (TPRs) 
are given as a percentage at a 90% specificity cut- off. Validation of all models on an independent German (DE) PDAC test population (n=76) is 
represented as well. Published CA19- 9 accuracy from a meta- study shown in orange. The yellow dots represent observed CA19- 9 accuracies in our 
populations (data available for 33/50 controls (CTRs) and 44/57 patients with PDAC in the Spanish (ES) and for 8/32 CTRs and 44/44 patients with 
PDAC in the German (DE) population) (D) TPRs of all models at different PDAC progression stages and in addition, the false- positive rate for patients 
with chronic pancreatitis and controls at a 90% specificity cut- off are shown as bar plots. Stages I and II and stages III and IV are combined owing to 
the overall low sample size. The number of predicted cases compared with the total is also shown on the top of each bar. DE- Val, German validation 
population.
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the coded CA19- 9 marker (1 for positive, 0 for negative or 
not available) was added to the mean predictions from the 
repeated cross- validation runs, resulting in an OR combina-
tion. Alternatively, the AND combination was calculated by 
multiplying the predictions with the CA19- 9 marker. ROC 
curves and AUROC values were calculated for both combi-
nations using the pROC R package v1.15.78 The 95% CI 
is shaded in corresponding colour and specified in figure 
legends for each ROC curve.

The trained ES metagenomic classifiers for PDAC were then 
applied to the DE dataset after applying a data normalisation 
routine, which selects the same set of features and uses the 
same normalisation parameters (for example, the mean of a 
feature for standardisation by using the frozen normalisation 
functionality in SIAMCAT) as in the normalisation procedure 
from the ES pancreatic cancer dataset. For this analysis, the 
cut- off point for the predictions was set to a false- positive 
rate of 10% among controls in the initial ES PDAC study 
population (figure 2).

All steps of data preprocessing (filtering and normalisa-
tion), model training, predictions and model evaluation were 
performed using the SIAMCAT R package v.1.5.079 (https:// 
siamcat.embl.de/).

External validation of the metagenomic classifiers
To assess the disease specificity of the trained models, we 
obtained predictions for samples from other gut metagenomic 
datasets (online supplemental table S6) for the full list, including 
accession numbers). We performed a literature search to iden-
tify publicly available datasets of faecal metagenomes in case–
control or cohort studies for relevant diseases. For a total set of 
25 studies covering 5792 samples across nine disease states, raw 
sequencing data were downloaded from the European Nucleo-
tide Archive and taxonomically profiled as described above.35–59

The trained metagenomic classifiers for PDAC were then 
applied to each external dataset after applying a data normal-
isation routine which selects the same set of features and uses 
the same normalisation parameters (for example, the mean 
of a feature for standardisation by using frozen normalisation 
functionality in SIAMCAT) as in the normalisation proce-
dure from the pancreatic cancer dataset. Then, predictions 
were assessed for disease specificity because high prediction 
scores for samples from other disease samples would indi-
cate that the classifier relies on general features of dysbiosis 
in contrast to signals specific to pancreatic cancer, which 
would not result in elevated false- positive rates on samples 
from other diseases. For this analysis, the cut- off point for 
the predictions was set at a false- positive rate of 10% among 
controls in the initial PDAC study population (figure 3). The 
effect of age, sex and sequencing depth of 25 populations on 
prediction score were tested by using the  cor. test function 
(Spearman method) in the car R package v3.0–3.

Subspecies and strain-level analyses
Metagenomic reads were mapped against species- representative 
genomes from the proGenomes v1 database80 (see above). 
Microbial single nucleotide variants were called from uniquely 
mapping reads using metaSNV,81 and within- species allele 
distances between samples were calculated as described previ-
ously.82 Associations between allele distance and PDAC disease 
state were quantified using PERMANOVA after stratifying for 
potential confounders (including sampled body site).

Oral- intestinal transmission of strains was quantified as 
described previously.83 In short, the overlap between microbial 
single nucleotide variants in salivary and faecal samples within 
subjects was contrasted with a between- subject background to 
compute a quantitative oral- faecal transmission score and p 
value. Associations of species- and subject- specific transmission 
scores with clinical factors were tested using ANOVA and post 
hoc tests, followed by a Benjamini- Hochberg correction for 
multiple tests.

Fluorescence in situ hybridisation microscopy
FISH analyses were performed using probes specifically targeting 
the 16S rRNA sequence unique to a particular taxon of bacteria 
(figure 4). All probes were selected based on a literature search 
and the corresponding taxa are displayed in online supplemental 
table S7).

Pancreatic tumour and normal pancreas samples were 
obtained from the pathology department and immediately 
frozen in liquid nitrogen within less than 30 min of surgical exci-
sion. Sterile material was used to dissect the different samples. 
The minimum size of tissue for freezing was approximately 
0.125 cm3 (0.5×0.5×0.5 cm). Samples were transferred from 
the temporary liquid nitrogen transport container and kept in a 
locked freezer at –80°C. Before analysis they were transported 
on dry ice, moved to an optimal cutting temperature mould in 
liquid nitrogen and immediately cut on a cryotome to obtain 10 
sections of 3–5 µm each. All material was sterilised with ethanol 
after each sample handling.

Tissue sections of 5 µm thickness were mounted on posi-
tively charged slides (SuperFrost, Thermo Scientific). Briefly, 
tissues were postfixed in freshly prepared 4% paraformalde-
hyde. After enhancement of the bacteria wall permeabilisa-
tion by lysozyme treatment (10 g/L Tris HCl 6.5M), samples 
were hybridised for 1 hour at 45°C in the presence of the 
specific probe in a hybridiser machine (DAKO). Hybridisa-
tion was done in 20 µL of hybridisation buffer (20 nM Tris, 
pH 8.0. 0.9 M NaCl, 0.02% sodium dodecyl sulfate, 30% 
formamide) added to 100 ng of the probe. Finally, the tissues 
were washed in washing solution (70% formamide, 10 mM 
Tris pH7.2 and 01% bovine serum albumin), dehydrated in a 
series of ethanol samples, air- dried and stained with 0.5 µg/
mL DAPI (4',6,-diamidino- 2- phenylindole)/antifade solution 
(Palex Medical). FISH images were captured using a Leica 
DM5500B microscope with a CCD camera (Photometrics 
SenSys) connected to a PC running the CytoVision software 
7.2 image analysis system (Applied Imaging). Images were 
analysed blind and scored based on the intensity of the probe 
signal.

RESULTS
PDAC is associated with moderate shifts in microbiome 
composition when controlling for confounding factors in 
shotgun metagenomic data
We studied 57 newly diagnosed, treatment- naïve patients 
with PDAC, 29 patients with chronic pancreatitis (CP), and 
50 controls matched for age, gender and hospital. Partic-
ipants were prospectively recruited from two hospitals in 
Barcelona and Madrid, Spain, between 2016 and 2018, using 
the same standards (see subject characteristics in figure 1A 
and online supplemental table S1- S3 for the clinical data for 
each subject). We obtained faecal shotgun metagenomes for 
all subjects and salivary metagenomes for 45 patients with 
PDAC, 12 with CP, and 43 controls (see ‘Methods’). The 
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analysis workflow is detailed in online supplemental figure 
1.

As several PDAC risk factors, such as tobacco smoking, 
alcohol consumption, obesity or diabetes, are themselves 
associated with microbiome composition84, we first sought 
to establish potential confounders of microbiome signatures 
in our study population, in order to adjust analyses accord-
ingly. For a total of 26 demographic and clinical variables, 
we quantified marginal effects on microbiome community- 
level diversity (online supplemental table S4). Faecal and 
salivary microbiome richness (as a proxy for alpha diver-
sity) were not univariately associated with any tested vari-
able, or with PDAC status, when accounting for the most 
common PDAC risk factors and applying a false discovery 
rate threshold of 0.05 (online supplemental figure 2, online 
supplemental table S4).

Microbiome community composition, in contrast, varied 
with age at diagnosis (PERMANOVA on between- sample 
Bray- Curtis dissimilarities, R2=0.01, Benjamini- Hochberg- 
corrected p=0.03), diabetes (R2=0.01, p=0.04) and jaun-
dice status (R2=0.02, p=0.009) in faeces, and with aspirin/
paracetamol use (R2=0.02, p=0.04) in saliva, albeit at 
very low effect sizes (online supplemental table S5). Even 
though cases and controls were matched for age and sex, 
we included these factors as strata for subsequent analyses. 
Under such adjustment, subject disease status was mildly 
but statistically significantly associated with community 
composition in faeces (R2=0.02, p=0.001), but not in saliva 
(R2=0.01, p=0.5) (figure 1B, online supplemental figure 
3–4, online supplemental table S5). Indeed, the faecal micro-
biome composition of patients with PDAC differed from that 
of both controls (R2=0.02, p≤0.0001) and patients with CP 

Figure 3 External validation of the disease specificity of pancreatic ductal adenocarcinoma (PDAC) faecal microbiome models. False positive 
rate (FPR) of metagenomic unconstrained model- 1 and enrichment- constrained model- 2 in 25 external test sets is shown as a bar plot (see online 
supplemental table S4 for a list of all studies included). Validation datasets were profiled and normalised in the same way as the initial dataset (see 
‘Methods’). Each study was stratified according to health status and models were tested to predict in the given group at a 90% specificity cut- off. 
A low FPR on metagenomes from patients with other disorders and healthy individuals indicates that the model is specific to PDAC. The number 
of subjects in each group is displayed as colour coded circles below. BRCA, breast cancer; CRC, colorectal cancer; CD, Crohn’s disease; CP, chronic 
pancreatitis;, CTR, controls; LD, liver disease; NAFLD, non- alcoholic fatty liver disease; PC, pancreatic cancer; T1D, type 1 diabetes; T2D, type 2 diabetes; 
UC, ulcerative colitis; ES, Spanish; DE, German.
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(R2=0.02, p=0.003), although likewise at very small effect 
sizes.

High-accuracy metagenomic classifiers capture specific faecal 
microbiome signatures in patients with PDAC
Having established the presence of a gut microbiome signal for 
PDAC at the coarse level of overall community composition, 
we next identified nine species with disease- specific univariate 
associations (Wilcoxon test of relative abundances in PDAC 
cases vs controls, Benjamini- Hochberg- corrected p<0.05; see 
figure 1c). Most prominently, Veillonella atypica, Fusobacte-
rium nucleatum/hwasookii and Alloscardovia omnicolens were 
enriched in faeces of patients with PDAC, whereas Romboutsia 
timonensis, Faecalibacterium prausnitzii, Bacteroides coprocola 
and Bifidobacterium bifidum species clusters were depleted. In 
contrast, we did not detect any species with significantly differ-
ential abundance in the salivary microbiome when correcting for 

multiple tests, including previously reported associations, such 
as Porphyromonas gingivalis, Aggregatibacter actinomycetem-
comitans,22 Neisseria elongata or Streptococcus mitis18 (online 
supplemental figure 5).

Among the univariately associated faecal species, several were 
by themselves moderately predictive of PDAC state (online 
supplemental figure 5). To coalesce such individual signals into 
an overarching model, we next built multispecies metagenomic 
classifiers by fitting LASSO logistic regression models in 10- fold 
cross- validation (see ‘Methods’). When applying no further 
constraints, the obtained model discriminated between patients 
with PDAC and controls with high accuracy in our study popula-
tion (‘model- 1’; AUROC=0.84; Figure 2). The most prominent 
positive marker species in the model were Methanobrevibacter 
smithii, Alloscardovia omnicolens, Veillonella atypica and 
Bacteroides finegoldii. We note that by design, LASSO regres-
sion selects representative features among inter- correlated sets; 

Figure 4 Presence of microbiomes in different sections of the pancreas with different conditions. (A) Presence of different genera in four different 
body sites including faecal, saliva, pancreatic tumour and healthy tissue samples, as inferred by 16S amplicon data. Circle size corresponds to the 
total number of subjects available for each comparison (grey, bottom row) or with intra- individually matched amplicon sequence variants (coloured); 
matched sample types are connected by lines. The first column shows the total number of samples per site in which the genus was detected. (B) Seven 
selected pancreatic tissue samples (five tumour and two non- tumour) to show bacterial presence/absence with both 16S amplicon and fluorescence 
in situ hybridisation (FISH) methods. Validation of bacterial presence with both 16S amplicon sequencing and FISH is shown in blue. Samples showing 
bacterial presence according to 16S only are displayed in green. Bacterial presence validated only by FISH is shown in orange, and samples not 
subjected to FISH validation owing to lack of tissue material are shown in purple. (C) Representative microscopy images for Bacteroides (intranuclear, 
tumour tissue), Bifidobacterium (extranuclear, tumour tissue), Lactobacillus (extranuclear, non- tumour tissue), Streptococcus (extranuclear, non- 
tumour tissue), Veillonella (extranuclear, tumour tissue). Fluorescein isothiocyanate (FITC) and Cy3 fluorescent dyes were used as indicated, and DAPI 
(4',6,-diamidino- 2- phenylindole; blue) was used to label the nucleus.
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therefore, these species may be representatives of larger species 
sets with highly correlated abundances. None of the 26 demo-
graphic and epidemiological variables describing our study 
population were selected as predictive features by the model, and 
the microbiome signature was more informative than any other 
feature (see online supplemental figure 6 and 7). Further, none 
of these variables were individually associated with the microbial 
species represented in the model, ruling them out as potential 
confounders. This indicates that the classifier captured a diag-
nostic gut microbiome signature of PDAC that is probably inde-
pendent of other disease risk factors and potential confounders.

An analogous model built to differentiate patients with CP 
from controls had no predictive power (AUROC=0.5; online 
supplemental figure 8), consistent with the observation that these 
groups were compositionally largely indistinguishable. Similarly, 
no robust PDAC signature was detected for the salivary micro-
biome (AUROC=0.48; online supplemental figure 9). However, 
a faecal model to distinguish patients with PDAC from those with 
CP performed better with an AUC of 0.75, but model robustness 
was limited by the low sample size in the group with CP (online 
supplemental figure 8). We further explored predictive associations 
at the higher resolution of functional microbiome profiles. Models 
based on the abundances of KEGG modules (online supplemental 
figure 10) achieved an accuracy of up to AUROC=0.74, but feature 
selection was likewise not robust across validation folds, as a conse-
quence of fitting a high number of variables (modules) against a 
limited set of samples. We therefore pursued the species- based clas-
sifiers, as they provided stable models.

The initial gut microbiome- based classifier included several 
species depleted in PDAC relative to controls, such as Faecalibac-
terium prausnitzii, Bacteroides coprocola, Bifidobacterium bifidum 
or Romboutsia timonensis (figure 2B). For some of these species, 
it was previously suggested that depletion is linked to intestinal 
inflammation, in general, rather than to specific diseases.85 We 
therefore retrained a classifier with the constraint that positively 
associated (enriched) microbial features were exclusively selected 
in each cross- validation fold. The resulting enrichment- constrained 
model (model- 2) discerned patients with PDAC with an accuracy 
of AUROC=0.71. The difference with the unconstrained model, 
model- 1, was mostly attributable to a penalty on sensitivity—that 
is, a decrease in confident detections of patients with PDAC, in line 
with expectations when training on sparse data.

Combination of metagenomic classifiers with antigen CA19-9 
levels increases accuracy
Blood serum levels of the antigen CA19- 9 are routinely used to 
monitor PDAC progress,86 87 but have also been suggested as a poten-
tial marker for early diagnosis of PDAC, although with moderate 
reported sensitivity (0.80, 95% CI 0.72 to 0.86) and specificity 
(0.75, 95% CI 0.68 to 0.80).12 CA19- 9 serum levels were available 
for a subset of 77 individuals (33/50 controls and 44/57 patients 
with PDAC) in our Spanish population (online supplemental 
figure S11). Given that CA19- 9 is directly secreted by tumours, we 
hypothesised that the readouts provided by CA19- 9 serum levels 
and by our microbiome classifiers were complementary, and that 
their combination could improve the accuracy of PDAC predic-
tion. Indeed, accounting for CA19- 9 increased the accuracy of our 
unconstrained model- 1 from AUROC=0.84 to 0.94, driven mostly 
by an increase in sensitivity (figure 2B). More strikingly, when we 
amended the enrichment- constrained model- 2 with CA19- 9 infor-
mation, we observed a large increase in accuracy from AUC=0.71 to 
0.89, likewise driven by a significant improvement in sensitivity, 
thereby essentially abolishing the performance penalty relative to 

model- 1 (figure 2C, online supplemental figure S11). There was no 
significant bias towards higher CA19- 9 levels in later disease stages 
in either the ES or DE populations (online supplemental figure S11).

Our Spanish study population included 25 patients with 
PDAC in early disease stages (T1, T2) and 32 subjects in later 
stages (T3, T4). Disease stage did not affect the performance of 
either microbiome- based model (figure 2D); in particular, recall 
was not biased towards later stages.

Performance of metagenome-based classifiers generalises to 
independent validation cohorts
To test whether the observed microbiome signatures generalise 
beyond our focal Spanish study population, we next challenged 
our models in two validation scenarios. First, we tested prediction 
accuracy in an independent study population of 44 patients with 
PDAC and 32 matched controls, recruited from two hospitals in 
Erlangen and Frankfurt am Main, Germany (see figure 1, Methods 
and online supplemental table S3), with the samples being processed 
identically to those of the Spanish population. On this DE valida-
tion population, both the unconstrained model- 1 (figure 2B) and 
the enrichment- constrained model- 2 (figure 2C) performed with 
comparable or indeed superior accuracies to the training popula-
tion, both with and without complementation by CA19- 9 levels, 
and with similar trends across disease stages (figure 2D).

Next, to confirm that our metagenomic classifiers captured 
PDAC- specific signatures, rather than unspecific, more general 
disease- associated variation, we further validated them against 
independent, external metagenomic datasets on various health 
conditions. In total, we classified 5792 publicly available gut 
metagenomes from 25 studies across 18 countries, including 
subjects with CP (this study), type 1 or type 2 diabetes, colorectal 
cancer, breast cancer, liver diseases, non- alcoholic fatty liver 
disease, including Crohn’s disease and ulcerative colitis, as well 
as healthy controls (figure 3 and online supplemental table S6).

When tuned to 90% specificity (allowing for 10% false positive 
predictions) in our focal ES study population, the unconstrained 
model- 1 showed a recall of 56% of patients with PDAC in the 
ES population and 48% in the DE validation population (with 
6% false- positive rate), and up to 64% when complemented 
with information on CA19- 9 levels (available for 8/32 controls 
and 43/44 patients with cases in the DE cohort). The disease 
specificity of model- 1, however, was limited, with predictions 
of PDAC state for 15% of control subjects on average across 
all external datasets. Most of these false positive calls were 
observed in two Chinese populations of patients with Crohn’s 
disease48 or liver cirrhosis.44 Crohn’s disease has been associ-
ated with depletion signatures similar to those observed in our 
model (in particular of F. prausnitzii,88) whereas liver diseases 
share some physiological characteristics with impaired pancreas 
function. However, all other liver disease and Crohn's disease 
sets showed lower false detection rates, indicating that the effect 
was probably attributable, in part, to technical and demographic 
effects between studies. Indeed, we note that subjects in these 
two Chinese study populations were significantly younger than 
our populations (50±11 years for Qin_2014; 28.5±8 years 
for He_2017; 70±12 y ears for our ES population). This age 
effect was systematic: across all validation sets, PDAC predic-
tion scores were associated with subject age (ANOVA p=0.007; 
ρSpearman = 0.16), as well as with the sex of the subject (p<10-6;) 
and sequencing depth (p=0.0008; ρSpearman = 0.1) (online supple-
mental figure S12, online supplemental table S6).

The enrichment- constrained model- 2 showed lower detection 
rates in patients with PDAC in both populations, although recall 
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was reinstated for CA19- 9 combined models. Model- 2 was highly 
specific for PDAC with, on average, just 0–5% PDAC predictions 
in almost all external populations, at a maximum of 17% predic-
tions among the aforementioned44 population with liver disease. 
In particular, the detected microbiome signatures were also robust 
against misclassification of patients with type 2 diabetes (<2% false- 
positive rate); this is relevant to potential screening applications, as 
these patients are a major PDAC risk group (figure 3).

PDAC harbours characteristic bacteria, consistent with oral 
and gut microbiome communities
Alterations in pancreatic secretion, as a consequence of tumour 
growth in the pancreatic duct, can affect digestive function 
and may thus plausibly underlie characteristic gut microbiome 
signatures, such as those described above. This would imply 
that PDAC progression can indirectly cause microbiome shifts 
(ie, reverse causation). In addition, the pancreatic duct directly 
communicates with the duodenum, providing an anatomical 
link for bacteria25 30 89 and fungi34 to colonise the pancreas and 
contribute to carcinogenesis.31

We therefore hypothesised that several gut microbial taxa asso-
ciated with PDAC should be detectable in pancreatic tumours. 
We taxonomically profiled all faecal and salivary samples, as well 
as biopsies of tumours (n=23) and adjacent healthy pancreatic 
tissue (n=20) of patients with PDAC from our study popula-
tion using 16S rRNA amplicon sequencing, applying strict filters 
to exclude putative reagent contaminants often seen in samples 
of low bacterial biomass33 90 (see ‘Methods’). We observed a 
surprisingly rich and diverse pancreas microbiome, with at 
least 13 bacterial genera present in ≥25% of samples, prom-
inently including taxa with characteristic PDAC signatures in 
the faecal microbiome91 (figure 4A, online supplemental figure 
13). Among these, Lactobacillus spp, Akkermansia muciniphila 
and Bacteroides spp were enriched in tumours relative to non- 
tumour pancreatic tissue (Wilcoxon test, false discovery rate- 
corrected p<0.006).

In a subset of five tumour and two non- tumoral pancreatic 
tissue samples, we could further verify the prevalence of Akker-
mansia spp, Lactobacillus spp, Bifidobacterium spp, Veillonella 
spp, Bacteroides spp and Streptococcus spp using FISH assays 
with genus- specific primers (online supplemental figure 4, online 
supplemental table S7). Generally, amplicon and FISH data were 
concordant, though amplicon- based detection appeared more 
sensitive probably due to the amount of tissue analysed. Intrigu-
ingly, however, Akkermansia spp, although observed by ampl-
icon sequencing in 26/30 subjects, were not detectable using 
FISH in any of the tested samples (figure 4B–C, online supple-
mental figure 14).

Links between oral, intestinal and pancreatic microbiomes
We next traced exact amplicon sequence variants (ASVs) across 
salivary, faecal, tumour and healthy tissue samples within subjects 
(figure 4A), at the highest taxonomic resolution attainable using 
16S rRNA data. Veillonella spp, characteristically enriched in 
stool of patients with PDAC, were highly prevalent in both sali-
vary (100% of subjects) and faecal (87.5%) samples across the 
entire study population, while oral and faecal types also matched 
tumour and non- tumour tissue ASVs. Interestingly, we found no 
intraindividual match in Veillonella ASVs between tumour and 
adjacent tissue samples, indicating that tumor- dwelling Veil-
lonella spp may be distinct from those in healthy tissue. In addi-
tion, our data confirm previous reports that Lactobacillus spp26 
and Bifidobacterium spp25 are present in both PDAC tumour 

and non- tumour tissue. For both genera, we found that tumour 
types corresponded to either oral or faecal ASVs, but not both, 
whereas no ASVs from healthy tissue were matched with faecal 
samples, indicating that distinct pancreatic subpopulations may 
be linked to the mouth and the gut.

Using paired salivary and faecal shotgun metagenomes, 
we further confirmed that strains of faecal PDAC- associated 
microbes may be sourced from the oral cavity (online supple-
mental results).

DISCUSSION
Early detection of PDAC remains a formidable challenge, at the 
heart of ongoing efforts to mitigate the burden of this cancer. 
Currently, the sole FDA- approved biomarker for PDAC is 
serum CA19- 9, mostly used for disease monitoring rather than 
screening, due to inherent limits of sensitivity and specificity: 
CA19- 9 levels can be elevated in several conditions unrelated to 
pancreatic cancer, while subjects lacking the Lewis- A antigen do 
not produce CA19- 9 at all.10–12 Small- scale studies have proposed 
PDAC markers based on pancreatic tissue,5 urine6 7 and blood 
serum8 9 with limited applicability. Yet there are currently no 
screening tools for PDAC in the clinic—in particular, for early 
disease stages.

In a prospectively recruited study population of newly 
diagnosed, treatment- naïve patients and matched controls 
for whom oral, faecal and tissue microbiomes were anal-
ysed (figure 1A), we developed metagenomic classifiers that 
robustly and accurately predict PDAC solely based on char-
acteristic faecal microbial species (figure 2). PDAC signa-
tures captured by our multispecies models were orthogonal 
to well- established PDAC risk factors (figures 1B and 2A). 
This suggests that, in practice, the faecal microbiome may be 
used to screen for PDAC, complementary to other testable 
markers, with added diagnostic accuracy in combined tests, as 
has been proposed for colorectal cancer.39 Indeed, a combi-
nation of our microbiome classifiers with CA19- 9 data, avail-
able for a subset of our population, significantly enhanced the 
accuracy of PDAC detection (figure 2B–D).

Previous studies have explored links between PDAC and 
the oral18–22 26 92 93 or faecal23 24 microbiome at the limited 
taxonomic resolution of 16S rRNA sequencing, but provided 
conflicting reports regarding the association patterns of indi-
vidual taxa, probably due to heterogeneous experimental and 
analytical approaches. The non- availability of raw sequence 
and patient- level clinical data for several PDAC datasets has 
made comparisons between studies challenging, and thus a 
consensus on PDAC- associated microbiome signatures has so 
far failed to emerge. Several previously reported univariate 
PDAC associations of oral taxa including P. gingivalis, A. acti-
nomycetemcomitans, S. thermophilus and Fusobacterium spp 
were not confirmed in our study population (online supple-
mental figure 4); we generally did not observe any salivary 
PDAC signature either for individual species or for multispe-
cies models.

We carefully checked our analyses for demographic, lifestyle, 
and clinical confounders, as these can show stronger micro-
biome associations than disease states.84 We moreover validated 
our metagenomic classifiers against the independently sampled, 
yet consistently processed, DE population (figure 2B–D) and 
against external populations of various health states from 25 
different studies (n=5792)35–59 (figure 3). Both confounder 
control and external validation are essential when assessing the 
disease specificity of predictive models, in particular for diseases 
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like PDAC with low incidence in the general population. This 
was confirmed in our analyses: among our two metagenomic 
classifiers, model- 1 showed a high accuracy of AUROC=0.84 
in our ES study population, driven by a high recall of patients 
with PDAC. However, model- 1 showed only limited disease 
specificity in external validations, capturing non- specific species 
depletion signals discriminative between cases and controls in 
our population, but also shared by subjects with other diseases. 
These included generic inflammation signatures—for example, 
a depletion of F. prausnitzii, E. rectale or B. bifidum. Published 
metagenomic classifiers for various diseases, and in particular 
previously reported signatures for PDAC, share similar limita-
tions: highly tuned accuracy on the focal population, but non- 
specific features shared with other diseases. This lack of specificity 
limits their translation into clinical practice. In contrast, our 
model- 2, constrained to PDAC- enriched features, achieved only 
moderate accuracy within our populations (AUC=0.71 on ES, 
AUC=0.85 on DE) due to a penalty on sensitivity, but was highly 
PDAC- specific with very low false prediction rates in external 
populations, including known PDAC risk groups such as those 
with type 2 diabetes. In particular, PDAC- enriched features in 
both model- 1 and model- 2 showed little overlap with charac-
teristic faecal microbiome features for other cancer types, such 
as colorectal cancer, indicating that a combination of our micro-
biome models with CA19- 9 levels (highly sensitive, but not 
specific to PDAC) is promising. We note that the residual false 
positive rate among external populations may partly be due to 
technical heterogeneity, as all external populations were sampled 
and processed using independent protocols, and that univariate 
PDAC associations of individual species may be informative, 
but not disease- specific (Supplementary Discussion). The panel 
of PDAC- enriched species in model- 2 thus shows potential for 
microbiome- based PDAC screening, given that a combination 
with complementary information on serum CA19- 9 significantly 
increased accuracy (AUC=0.89 and 0.92).

Our models showed comparable performance across PDAC 
disease stages, with no bias towards later stages (figure 2B–D). 
This indicates that characteristic microbiome signatures 
emerge early during progression of the disease and that the 
faecal microbiome can serve for the early detection of PDAC.

Our data are strictly observational and cross- sectional. 
Nevertheless, there are strong indications that the identi-
fied faecal microbiome shifts are not merely a consequence 
of impaired pancreatic function or systemic effects thereof, 
although indirect effects cannot be ruled out. Several taxa 
could be traced between the gut and pancreas, with univar-
iate enrichment in tumours relative to adjacent healthy tissue, 
indicating direct associations of PDAC with the gut micro-
biome. We confirmed previous observations25 30 31 89 91 that 
the human pancreas harbours a microbiome, both by ampl-
icon sequencing, and by FISH for the most comprehensive 
panel of taxa to date (figure 4). Pancreatic tissue and tumours 
contain only low bacterial biomass and are therefore prone 
to contamination in 16S rRNA amplicon data33, whereas 
FISH testing requires specific hypotheses, so a compre-
hensive cataloguing of the healthy and diseased pancreatic 
microbiome composition is still emerging. In our study, we 
carefully filtered our dataset against known kit contaminants 
and confirmed the presence of various key genera using FISH 
assays. We moreover observed an intraindividual overlap of 
exact amplicon sequence variants between oral, faecal and 
tissue samples, confirming a shared presence across multiple 
sites for several species at the highest attainable taxonomic 
resolution for amplicon data.

Faecal populations of characteristic PDAC- associated taxa 
could thus be traced back to pancreatic tumours. Similarly, 
we observed significantly increased levels of oral- intestinal 
strain transmission in patients with PDAC, in particular of 
PDAC signature taxa, indicating that these may be sourced 
intraindividually, from the oral cavity (online supplemental 
results). These findings suggest that the oral, intestinal and 
pancreatic microbiomes may be intricately linked, and that 
multibody site study designs such as presented here will be 
necessary to disentangle their respective roles and interac-
tions in PDAC aetiology.

In summary, the described faecal microbiome signatures 
enabled robust metagenomic classifiers for PDAC detection at 
high disease specificity, complementary to existing markers, 
and with potential towards cost- effective PDAC screening 
and monitoring. Furthermore, in view of previous reports on 
microbe- mediated pancreatic carcinogenesis in murine models 
and humans,25 30 94 we believe that the presented panel of PDAC- 
associated bacterial species may be relevant beyond their use for 
diagnosis, providing promising future entry points for disease 
prevention and therapeutic intervention.

Author affiliations
1Structural and Computational Biology Unit, European Molecular Biology Laboratory, 
Heidelberg, Germany
2Collaboration for joint PhD degree, European Molecular Biology Laboratory and 
Heidelberg University, Heidelberg, Germany
3Genetic and Molecular Epidemiology Group, Spanish National Cancer Research 
Centre (CNIO), Madrid, Spain
4Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
5Molecular Cytogenetics Unit, Spanish National Cancer Research Centre (CNIO), 
Madrid, Spain
6Member of the German Center for Lung Research (DZL) and the Universities of 
Giessen and Marburg Lung School (UGMLC), Philipps University Marburg Faculty of 
Medicine, Marburg, Germany
7Medical Oncology Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain
8University of Alcala de Henares, Alcala de Henares, Spain
9Translational Hepatology Department of Internal Medicine I, Goethe- Universitat 
Frankfurt am Main, Frankfurt am Main, Germany
10Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Hessen, 
Germany
11Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, 
Germany
12Department of Surgery, Erlangen University Hospital, Erlangen, Germany
13Department of Surgery, University of Greifswald, Greifswald, Germany
14Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Barcelona, Spain
15Universitat Autònoma de Barcelona, Barcelona, Spain
16Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas 
(CIBEREHD), Madrid, Spain
17EF Clif, European Foundation for the Study of Chronic Liver Failure, Barcelona, 
Spain
18Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), 
Madrid, Spain
19Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 
Barcelona, Spain
20Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, 
Germany
21Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
22Max Delbrück Centre for Molecular Medicine, Berlin, Germany

Twitter Ece Kartal @ps_ecekartal, Thomas S B Schmidt @TSBSchm, Oleksandr 
M Maistrenko @o__maistrenko, Georg Zeller @ZellerGroup, Jonel Trebicka @
JonelTrebicka, Nuria Malats @nmalats and Peer Bork @BorkLab

Acknowledgements We thank members of the Bork, Malats and Zeller groups 
for inspiring discussions and all contributions. Additionally, we thank the EMBL 
Genomics Core Facility for sequencing support.

Collaborators PanGenEU Study Investigators. Spanish National Cancer Research 
Centre (CNIO), Madrid, Spain: Núria Malats, Francisco X Real, Evangelina López 
de Maturana, Paulina Gómez- Rubio, Esther Molina- Montes, Lola Alonso, Mirari 
Márquez, Roger Milne, Ana Alfaro, Tania Lobato, Lidia Estudillo. Verona University, 
Italy: Rita Lawlor, Aldo Scarpa, Stefania Beghelli. National Cancer Registry Ireland, 
Cork, Ireland: Linda Sharp, Damian O’Driscoll. Hospital Madrid- Norte- Sanchinarro, 

 on M
arch 11, 2022 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2021-324755 on 8 M

arch 2022. D
ow

nloaded from
 

https://dx.doi.org/10.1136/gutjnl-2021-324755
https://dx.doi.org/10.1136/gutjnl-2021-324755
https://twitter.com/ps_ecekartal
https://twitter.com/TSBSchm
https://twitter.com/o__maistrenko
https://twitter.com/ZellerGroup
https://twitter.com/JonelTrebicka
https://twitter.com/JonelTrebicka
https://twitter.com/nmalats
https://twitter.com/BorkLab
http://gut.bmj.com/


12 Kartal E, et al. Gut 2022;0:1–14. doi:10.1136/gutjnl-2021-324755

Gut microbiota

Madrid, Spain: Manuel Hidalgo, Jesús Rodríguez Pascual. Hospital Ramon y Cajal, 
Madrid, Spain: Alfredo Carrato, Alejandra Caminoa, Carmen Guillén- Ponce, Mercedes 
Rodríguez- Garrote, Federico Longo- Muñoz, Reyes Ferreiro, Vanessa Pachón, M 
Ángeles Vaz. Hospital del Mar, Barcelona, Spain: Mar Iglesias, Lucas Ilzarbe, Cristina 
Álvarez- Urturi, Xavier Bessa, Felipe Bory, Lucía Márquez, Ignasi Poves, Fernando 
Burdío, Luis Grande, Javier Gimeno. Hospital Vall dHebron, Barcelona, Spain: 
Xavier Molero, Luisa Guarner, Joaquin Balcells, Mayte Salcedo. Technical University 
of Munich, Germany: Christoph Michalski, Irene Esposito, Jörg Kleeff, Bo Kong. 
Karolinska Institute, Stockholm, Sweden: Matthias Löhr, Jiaqui Huang, Caroline 
Verbeke, Weimin Ye, Jingru Yu. Hospital 12 de Octubre, Madrid, Spain: José Perea, 
Pablo Peláez. Hospital de la Santa Creu i Sant Pau, Barcelona, Spain: Antoni Farré, 
Josefina Mora, Marta Martín, Vicenç Artigas, Carlos Guarner, Francesc J Sancho, 
Mar Concepción, Teresa Ramón y Cajal. The Royal Liverpool University Hospital, UK: 
William Greenhalf, Eithne Costello. Queen’s University Belfast, UK: Michael O’Rorke, 
Liam Murray, Marie Cantwell. Laboratorio de Genética Molecular, Hospital General 
Universitario de Elche, Spain: Víctor M Barberá, Javier Gallego. Instituto Universitario 
de Oncología del Principado de Asturias, Oviedo, Spain: Adonina Tardón, Luis Barneo. 
Hospital Clínico Universitario de Santiago de Compostela, Spain: Enrique Domínguez 
Muñoz, Antonio Lozano, Maria Luaces. Hospital Clínico Universitario de Salamanca, 
Spain: Luís Muñoz- Bellvís, J.M. Sayagués Manzano, M.L. Gutíerrrez Troncoso, A. Orfao 
de Matos. University of Marburg, Department of Gastroenterology, Phillips University 
of Marburg, Germany: Thomas Gress, Malte Buchholz, Albrecht Neesse. Queen Mary 
University of London, UK: Tatjana Crnogorac- Jurcevic, Hemant M Kocher, Satyajit 
Bhattacharya, Ajit T Abraham, Darren Ennis, Thomas Dowe, Tomasz Radon. Scientific 
advisors of the PanGenEU Study: Debra T Silverman (NCI, USA) and Douglas 
Easton (U. of Cambridge, UK).MAGIC (MicrobiotA- focused German Interdisciplinary 
Collaboration) Study Investigators. Section for Translational Hepatology, Department 
of Internal Medicine I, Frankfurt Cancer Institute, Goethe University Frankfurt: 
Jonel Trebicka, Hans- Peter Erasmus, Fabian Finkelmeier, Robert Schierwagen, 
Wenyi Gu, Olaf Tyc, Frank Erhard Uschner, Stefan Zeuzem. Department of Surgery, 
University Greifswald: Stephan Kersting, Melanie Langheinrich. Department of 
Surgery, University Erlangen: Robert Grützmann, Georg F. Weber, Christian Pilarsky. 
Department of Internal Medicine, University Erlangen: Stefan Wirtz.

Contributors EK designed the study, conducted experimental work, acquired and 
analysed data, wrote the first manuscript draft and the revised manuscript.TSBS 
designed the study, acquired and analysed data, wrote the first manuscript draft and 
the revised manuscript.EM- M designed the study, contributed to patient recruitment 
and the collection of biomaterials and clinical data, acquired and analysed data, 
and wrote the first manuscript draft.SR- P contributed to patient recruitment and 
the collection of biomaterials and clinical data and conducted experimental work.
JW, OMM, WAA, BAA, AC, HP- E, FF, PG- R, SKe, ML, MM, XM, RT- R, JT contributed 
to patient recruitment and the collection of biomaterials and clinical data. RJA, AF, 
AMG, KZ contributed to data analysis. LE contributed to patient recruitment and the 
collection of biomaterials and clinical data and conducted experimental work. RH, 
FJ, SKa, AT conducted experimental work and acquired data. AO, TvR contributed 
to data analysis. MSI, PSI contributed to patient recruitment. VB acquired data. GZ 
designed the study and contributed to data analysis. FXR designed the study and 
contributed to data analysis and wrote the first manuscript draft. NM conceived the 
study, designed the study, contributed to patient recruitment and the collection of 
biomaterials and clinical data and wrote the first manuscript draft. PB conceived 
of the study, designed the study, contributed to data analysis and wrote the first 
manuscript draft. All authors reviewed, edited and approved the final version of the 
manuscript.

Funding We acknowledge funding from EMBL, CNIO, World Cancer Research 
(#15–0391), the European Research Council (ERC- AdG- 669830 MicrobioS), the 
BMBF- funded Heidelberg CenterCentre for Human Bioinformatics (HD- HuB) within 
the German Network for Bioinformatics Infrastructure (de.NBI #031A537B), Fondo 
de Investigaciones Sanitarias (FIS), Instituto de Salud Carlos III- FEDER, Spain (grant 
numbers PI15/01573, PI18/01347, FIS PI17/02303); Red Temática de Investigación 
Cooperativa en Cáncer, Spain (grant numbers RD12/0036/0034, RD12/0036/0050, 
RD12/0036/0073); III beca Carmen Delgado/Miguel Pérez- Mateo de AESPANC- 
ACANPAN; EU- 6FP Integrated Project (#018771- MOLDIAG- PACA); EU- FP7- HEALTH 
(#259737- CANCERALIA). Funders had no involvement in the study design, patient 
enrolment, analysis, manuscript writing or reviewing.

Competing interests EK, TSBS, JW, OMM, EM- M, GZ, LE, SR- P, FXR, NM and PB 
have a pending patent application (application number: EP21382876.7) for early 
detection of pancreatic cancer based on microbial biomarkers. The other authors 
declare no conflicts of interest.

Patient consent for publication Not applicable.

Ethics approval Participants were prospectively recruited from the Hospital 
Ramón y Cajal in Madrid and Hospital Vall dHebron in Barcelona, Spain. Institutional 
review board ethical approval (CEI PI 26 2015- v7) and written informed consent 
was obtained from participating centres and study participants, respectively. An 
independent validation population was recruited at the Department of Surgery, 
University Hospital of Erlangen (32 PDAC and 32 control samples) and Section for 

Translational Hepatology, Department of Internal Medicine I, Goethe University Clinic 
Frankfurt (12 PDAC samples). The study was approved by the local ethics committees 
(SGI- 3- 2019, 451_18 B). Clinical data, including disease stage and follow- up data, 
were retrieved from the clinical records of the hospital charts of the respective 
patients.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available in a public, open access 
repository. All data relevant to the study are included in the article or uploaded as 
supplementary information. The raw sequencing data for the samples are made 
available in the European Nucleotide Archive (ENA) under the study identifiers 
PRJEB38625 and PRJEB42013. Metadata for these samples are available as 
Supplementary Tables S1 and S2. Filtered taxonomic and functional profiles used as 
input for the statistical modelling pipeline are available in Supplementary Data S1 
and S2. Analysis code and results available under https://github.com/psecekartal/ 
PDAC.git.

Supplemental material This content has been supplied by the author(s). 
It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not 
have been peer- reviewed. Any opinions or recommendations discussed are 
solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all 
liability and responsibility arising from any reliance placed on the content. 
Where the content includes any translated material, BMJ does not warrant the 
accuracy and reliability of the translations (including but not limited to local 
regulations, clinical guidelines, terminology, drug names and drug dosages), and 
is not responsible for any error and/or omissions arising from translation and 
adaptation or otherwise.

Open access This is an open access article distributed in accordance with the 
Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits 
others to copy, redistribute, remix, transform and build upon this work for any 
purpose, provided the original work is properly cited, a link to the licence is given, 
and indication of whether changes were made. See: https://creativecommons.org/ 
licenses/by/4.0/.

ORCID iDs
Ece Kartal http://orcid.org/0000-0002-7720-455X
Thomas S B Schmidt http://orcid.org/0000-0001-8587-4177
Esther Molina- Montes http://orcid.org/0000-0002-0428-2426
Sandra Rodríguez- Perales http://orcid.org/0000-0001-7221-3636
Jakob Wirbel http://orcid.org/0000-0002-4073-3562
Oleksandr M Maistrenko http://orcid.org/0000-0003-1961-7548
Wasiu A Akanni http://orcid.org/0000-0002-2075-2387
Bilal Alashkar Alhamwe http://orcid.org/0000-0002-7120-0013
Renato J Alves http://orcid.org/0000-0002-7212-0234
Alfredo Carrato http://orcid.org/0000-0001-7749-8140
Lidia Estudillo http://orcid.org/0000-0003-3891-3713
Anthony Fullam http://orcid.org/0000-0002-0884-8124
Ferris Jung http://orcid.org/0000-0002-5534-7832
Stefanie Kandels http://orcid.org/0000-0002-4194-4927
Stephan Kersting http://orcid.org/0000-0002-2124-3103
Melanie Langheinrich http://orcid.org/0000-0002-0120-9135
Askarbek Orakov http://orcid.org/0000-0001-6823-5269
Thea Van Rossum http://orcid.org/0000-0002-3598-5001
Raul Torres- Ruiz http://orcid.org/0000-0001-9606-0398
Anja Telzerow http://orcid.org/0000-0001-9855-0809
Konrad Zych http://orcid.org/0000-0001-7426-0516
Vladimir Benes http://orcid.org/0000-0002-0352-2547
Georg Zeller http://orcid.org/0000-0003-1429-7485
Jonel Trebicka http://orcid.org/0000-0002-7028-3881
Francisco X Real http://orcid.org/0000-0001-9501-498X
Nuria Malats http://orcid.org/0000-0003-2538-3784
Peer Bork http://orcid.org/0000-0002-2627-833X

REFERENCES
 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7–30. 

doi:10.3322/caac.21442
 2 Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN 

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 
Cancer J Clin 2018;68:394–424. doi:10.3322/caac.21492

 3 Kamisawa T, Wood LD, Itoi T, et al. Pancreatic cancer. The Lancet 2016;388:73–85. 
doi:10.1016/S0140-6736(16)00141-0

 4 Park W, Chawla A, O’Reilly EM. Pancreatic cancer: a review. JAMA 2021;326. 
doi:10.1001/jama.2021.13027

 5 Wang Y, Li Z, Zheng S, et al. Expression profile of long non- coding RNAs in pancreatic 
cancer and their clinical significance as biomarkers. Oncotarget 2015;6:35684–98. 
doi:10.18632/oncotarget.5533

 on M
arch 11, 2022 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2021-324755 on 8 M

arch 2022. D
ow

nloaded from
 

https://github.com/psecekartal/PDAC
https://github.com/psecekartal/PDAC
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-7720-455X
http://orcid.org/0000-0001-8587-4177
http://orcid.org/0000-0002-0428-2426
http://orcid.org/0000-0001-7221-3636
http://orcid.org/0000-0002-4073-3562
http://orcid.org/0000-0003-1961-7548
http://orcid.org/0000-0002-2075-2387
http://orcid.org/0000-0002-7120-0013
http://orcid.org/0000-0002-7212-0234
http://orcid.org/0000-0001-7749-8140
http://orcid.org/0000-0003-3891-3713
http://orcid.org/0000-0002-0884-8124
http://orcid.org/0000-0002-5534-7832
http://orcid.org/0000-0002-4194-4927
http://orcid.org/0000-0002-2124-3103
http://orcid.org/0000-0002-0120-9135
http://orcid.org/0000-0001-6823-5269
http://orcid.org/0000-0002-3598-5001
http://orcid.org/0000-0001-9606-0398
http://orcid.org/0000-0001-9855-0809
http://orcid.org/0000-0001-7426-0516
http://orcid.org/0000-0002-0352-2547
http://orcid.org/0000-0003-1429-7485
http://orcid.org/0000-0002-7028-3881
http://orcid.org/0000-0001-9501-498X
http://orcid.org/0000-0003-2538-3784
http://orcid.org/0000-0002-2627-833X
http://dx.doi.org/10.3322/caac.21442
http://dx.doi.org/10.3322/caac.21492
http://dx.doi.org/10.3322/caac.21492
http://dx.doi.org/10.1016/S0140-6736(16)00141-0
http://dx.doi.org/10.1001/jama.2021.13027
http://dx.doi.org/10.18632/oncotarget.5533
http://gut.bmj.com/


13Kartal E, et al. Gut 2022;0:1–14. doi:10.1136/gutjnl-2021-324755

Gut microbiota

 6 Blyuss O, Zaikin A, Cherepanova V, et al. Development of PancRISK, a urine biomarker- 
based risk score for stratified screening of pancreatic cancer patients. Br J Cancer 
2020;122:692–6. doi:10.1038/s41416-019-0694-0

 7 Debernardi S, Massat NJ, Radon TP, et al. Noninvasive urinary miRNA biomarkers 
for early detection of pancreatic adenocarcinoma. Am J Cancer Res 
2015;5:3455–66.

 8 Seifert AM, Reiche C, Heiduk M, et al. Detection of pancreatic ductal adenocarcinoma 
with galectin- 9 serum levels. Oncogene 2020;39:3102–13. doi:10.1038/s41388-020-
1186-7

 9 Melo SA, Luecke LB, Kahlert C, et al. Glypican- 1 identifies cancer exosomes 
and detects early pancreatic cancer. Nature 2015;523:177–82. doi:10.1038/
nature14581

 10 Goonetilleke KS, Siriwardena AK. Systematic review of carbohydrate antigen 
(CA 19- 9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J 
Surg Oncol 2007;33:266–70 http://www.sciencedirect.com/science/article/pii/ 
S0748798306003763 doi:10.1016/j.ejso.2006.10.004

 11 Gui J- C, Yan W- L, Liu X- D. CA19- 9 and CA242 as tumor markers for the diagnosis 
of pancreatic cancer: a meta- analysis. Clin Exp Med 2014;14:225–33. doi:10.1007/
s10238-013-0234-9

 12 Xing H, Wang J, Wang Y, et al. Diagnostic value of CA 19- 9 and carcinoembryonic 
antigen for pancreatic cancer: a meta- analysis. Gastroenterol Res Pract 
2018;2018:1–9. doi:10.1155/2018/8704751

 13 Hasan S, Jacob R, Manne U, et al. Advances in pancreatic cancer biomarkers. Oncol 
Rev 2019;13:410. doi:10.4081/oncol.2019.410

 14 Qader G, Aali M, Smail SW, et al. Cardiac, hepatic and renal dysfunction and IL- 18 
polymorphism in breast, colorectal, and prostate cancer patients. Asian Pac J Cancer 
Prev 2021;22:131–7. doi:10.31557/APJCP.2021.22.1.131

 15 Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global 
trends, etiology and risk factors. World J Oncol 2019;10:10–27. doi:10.14740/
wjon1166

 16 Wood LD, Yurgelun MB, Goggins MG. Genetics of familial and sporadic 
pancreatic cancer. Gastroenterology 2019;156:2041–55. doi:10.1053/j.
gastro.2018.12.039

 17 Michaud DS, Lu J, Peacock- Villada AY, et al. Periodontal disease assessed using 
clinical dental measurements and cancer risk in the ARIC study. J Natl Cancer Inst 
2018;110:843–54. doi:10.1093/jnci/djx278

 18 Farrell JJ, Zhang L, Zhou H, et al. Variations of oral microbiota are associated with 
pancreatic diseases including pancreatic cancer. Gut 2012;61:582–8. doi:10.1136/
gutjnl-2011-300784

 19 Michaud DS, Izard J, Wilhelm- Benartzi CS, et al. Plasma antibodies to oral bacteria 
and risk of pancreatic cancer in a large European prospective cohort study. Gut 
2013;62:1764–70. doi:10.1136/gutjnl-2012-303006

 20 Olson SH, Satagopan J, Xu Y, et al. The oral microbiota in patients with pancreatic 
cancer, patients with IPMNs, and controls: a pilot study. Cancer Causes Control 
2017;28:959–69. doi:10.1007/s10552-017-0933-8

 21 Lu H, Ren Z, Li A, et al. Tongue coating microbiome data distinguish patients with 
pancreatic head cancer from healthy controls. J Oral Microbiol 2019;11:1563409. doi:
10.1080/20002297.2018.1563409

 22 Fan X, Alekseyenko AV, Wu J, et al. Human oral microbiome and prospective 
risk for pancreatic cancer: a population- based nested case- control study. Gut 
2018;67:120–7. doi:10.1136/gutjnl-2016-312580

 23 Ren Z, Jiang J, Xie H, et al. Gut microbial profile analysis by MiSeq sequencing 
of pancreatic carcinoma patients in China. Oncotarget 2017;8:95176–91. 
doi:10.18632/oncotarget.18820

 24 Half E, Keren N, Reshef L, et al. Fecal microbiome signatures of pancreatic cancer 
patients. Sci Rep 2019;9:16801. doi:10.1038/s41598-019-53041-4

 25 Pushalkar S, Hundeyin M, Daley D, et al. The pancreatic cancer microbiome promotes 
oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 
2018;8:403–16. doi:10.1158/2159-8290.CD-17-1134

 26 Del Castillo E, Meier R, Chung M, et al. The microbiomes of pancreatic and duodenum 
tissue overlap and are highly subject specific but differ between pancreatic cancer 
and noncancer subjects. Cancer Epidemiol Biomarkers Prev 2019;28:370–83. 
doi:10.1158/1055-9965.EPI-18-0542

 27 Mei Q- X, Huang C- L, Luo S- Z, et al. Characterization of the duodenal bacterial 
microbiota in patients with pancreatic head cancer vs. healthy controls. Pancreatology 
2018;18:438–45. doi:10.1016/j.pan.2018.03.005

 28 Geller LT, Barzily- Rokni M, Danino T, et al. Potential role of intratumor bacteria in 
mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 
2017;357:1156–60. doi:10.1126/science.aah5043

 29 Mitsuhashi K, Nosho K, Sukawa Y, et al. Association of Fusobacterium species 
in pancreatic cancer tissues with molecular features and prognosis. Oncotarget 
2015;6:7209–20. doi:10.18632/oncotarget.3109

 30 Thomas RM, Gharaibeh RZ, Gauthier J, et al. Intestinal microbiota enhances 
pancreatic carcinogenesis in preclinical models. Carcinogenesis 2018;39:1068–78. 
doi:10.1093/carcin/bgy073

 31 Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition 
influence pancreatic cancer outcomes. Cell 2019;178:795–806. doi:10.1016/j.
cell.2019.07.008

 32 Gaiser RA, Halimi A, Alkharaan H, et al. Enrichment of oral microbiota in early cystic 
precursors to invasive pancreatic cancer. Gut 2019;68:2186–94. doi:10.1136/
gutjnl-2018-317458

 33 Salter SJ, Cox MJ, Turek EM, et al. Reagent and laboratory contamination can critically 
impact sequence- based microbiome analyses. BMC Biol 2014;12:87. doi:10.1186/
s12915-014-0087-z

 34 Aykut B, Pushalkar S, Chen R, et al. The fungal mycobiome promotes pancreatic 
oncogenesis via activation of MBL. Nature 2019;574:264–7. doi:10.1038/s41586-
019-1608-2

 35 Heintz- Buschart A, May P, Laczny CC, et al. Integrated multi- omics of the human gut 
microbiome in a case study of familial type 1 diabetes. Nat Microbiol 2017;2:16180.

 36 Dhakan DB, Maji A, Sharma AK, et al. The unique composition of Indian gut 
microbiome, gene catalogue, and associated fecal metabolome deciphered using 
multi- omics approaches. Gigascience 2019;8:giz004. doi:10.1093/gigascience/giz004

 37 Feng Q, Liang S, Jia H, et al. Gut microbiome development along the colorectal 
adenoma- carcinoma sequence. Nat Commun 2015;6:6528. doi:10.1038/
ncomms7528

 38 Wirbel J, Pyl PT, Kartal E, et al. Meta- analysis of fecal metagenomes reveals global 
microbial signatures that are specific for colorectal cancer. Nat Med 2019;25:679–89. 
doi:10.1038/s41591-019-0406-6

 39 Zeller G, Tap J, Voigt AY, et al. Potential of fecal microbiota for early- stage detection of 
colorectal cancer. Mol Syst Biol 2014;10:766. doi:10.15252/msb.20145645

 40 Brito IL, Yilmaz S, Huang K, et al. Mobile genes in the human microbiome are 
structured from global to individual scales. Nature 2016;535:435–9. doi:10.1038/
nature18927

 41 Vaughn BP, Vatanen T, Allegretti JR, et al. Increased intestinal microbial diversity 
following fecal microbiota transplant for active Crohn’s disease. Inflamm Bowel Dis 
2016;22:2182–90. doi:10.1097/MIB.0000000000000893

 42 Forslund K, Hildebrand F, Nielsen T, et al. Disentangling type 2 diabetes and metformin 
treatment signatures in the human gut microbiota. Nature 2015;528:262–6. 
doi:10.1038/nature15766

 43 Liu W, Zhang J, Wu C, et al. Unique features of ethnic Mongolian gut microbiome 
revealed by metagenomic analysis. Sci Rep 2016;6:34826. doi:10.1038/srep34826

 44 Qin N, Yang F, Li A, et al. Alterations of the human gut microbiome in liver cirrhosis. 
Nature 2014;513:59–64. doi:10.1038/nature13568

 45 Kuang Y- S, Lu J- H, Li S- H, et al. Connections between the human gut microbiome and 
gestational diabetes mellitus. Gigascience 2017;6:1–12.

 46 Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women 
with normal, impaired and diabetic glucose control. Nature 2013;498:99–103. 
doi:10.1038/nature12198

 47 Hoyles L, Fernández- Real J- M, Federici M, et al. Molecular phenomics and 
metagenomics of hepatic steatosis in non- diabetic obese women. Nat Med 
2018;24:1070–80. doi:10.1038/s41591-018-0061-3

 48 Quing H, Gao Y, Jie Z, et al. Two distinct metacommunities characterize the gut 
microbiota in Crohn’s disease patients. Gigascience 2017;6:gix050. doi:10.1093/
gigascience/gix050

 49 Franzosa EA, Sirota- Madi A, Avila- Pacheco J, et al. Gut microbiome structure and 
metabolic activity in inflammatory bowel disease. Nat Microbiol 2019;4:293–305. 
doi:10.1038/s41564-018-0306-4

 50 Yu J, Feng Q, Wong SH, et al. Metagenomic analysis of faecal microbiome as a tool 
towards targeted non- invasive biomarkers for colorectal cancer. Gut 2017;66:70–8. 
doi:10.1136/gutjnl-2015-309800

 51 Zeevi D, Korem T, Zmora N, et al. Personalized nutrition by prediction of glycemic 
responses. Cell 2015;163:1079–94. doi:10.1016/j.cell.2015.11.001

 52 Zhu J, Liao M, Yao Z, et al. Breast cancer in postmenopausal women is associated 
with an altered gut metagenome. Microbiome 2018;6:136. doi:10.1186/s40168-018-
0515-3

 53 Yachida S, Mizutani S, Shiroma H, et al. Metagenomic and metabolomic analyses 
reveal distinct stage- specific phenotypes of the gut microbiota in colorectal cancer. 
Nat Med 2019;25:968–76. doi:10.1038/s41591-019-0458-7

 54 Vogtmann E, Hua X, Zeller G, et al. Colorectal cancer and the human gut 
microbiome: reproducibility with whole- genome shotgun sequencing. PLoS One 
2016;11:e0155362. doi:10.1371/journal.pone.0155362

 55 Sankaranarayanan K, Ozga AT, Warinner C, et al. Gut microbiome diversity 
among Cheyenne and Arapaho individuals from Western Oklahoma. Curr Biol 
2015;25:3161–9. doi:10.1016/j.cub.2015.10.060

 56 Qin J, Li Y, Cai Z, et al. A metagenome- wide association study of gut microbiota in 
type 2 diabetes. Nature 2012;490:55–60. doi:10.1038/nature11450

 57 Lloyd- Price J, Mahurkar A, Rahnavard G, et al. Strains, functions and dynamics in the 
expanded human microbiome project. Nature 2017;550:61–6.

 58 Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the human gut microbiome to 
inflammatory cytokine production capacity. Cell 2016;167:1125–36. doi:10.1016/j.
cell.2016.10.020

 59 Xie H, Guo R, Zhong H, et al. Shotgun metagenomics of 250 adult twins reveals 
genetic and environmental impacts on the gut microbiome. Cell Syst 2016;3:572–84. 
doi:10.1016/j.cels.2016.10.004

 60 Stekhoven DJ, Bühlmann P. MissForest--non- parametric missing value imputation for 
mixed- type data. Bioinformatics 2012;28:112–8. doi:10.1093/bioinformatics/btr597

 on M
arch 11, 2022 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2021-324755 on 8 M

arch 2022. D
ow

nloaded from
 

http://dx.doi.org/10.1038/s41416-019-0694-0
http://www.ncbi.nlm.nih.gov/pubmed/26807325
http://dx.doi.org/10.1038/s41388-020-1186-7
http://dx.doi.org/10.1038/nature14581
http://dx.doi.org/10.1016/j.ejso.2006.10.004
http://dx.doi.org/10.1016/j.ejso.2006.10.004
http://www.sciencedirect.com/science/article/pii/S0748798306003763
http://www.sciencedirect.com/science/article/pii/S0748798306003763
http://dx.doi.org/10.1007/s10238-013-0234-9
http://dx.doi.org/10.1155/2018/8704751
http://dx.doi.org/10.4081/oncol.2019.410
http://dx.doi.org/10.4081/oncol.2019.410
http://dx.doi.org/10.31557/APJCP.2021.22.1.131
http://dx.doi.org/10.31557/APJCP.2021.22.1.131
http://dx.doi.org/10.14740/wjon1166
http://dx.doi.org/10.1053/j.gastro.2018.12.039
http://dx.doi.org/10.1093/jnci/djx278
http://dx.doi.org/10.1136/gutjnl-2011-300784
http://dx.doi.org/10.1136/gutjnl-2012-303006
http://dx.doi.org/10.1007/s10552-017-0933-8
http://dx.doi.org/10.1080/20002297.2018.1563409
http://dx.doi.org/10.1136/gutjnl-2016-312580
http://dx.doi.org/10.18632/oncotarget.18820
http://dx.doi.org/10.1038/s41598-019-53041-4
http://dx.doi.org/10.1158/2159-8290.CD-17-1134
http://dx.doi.org/10.1158/1055-9965.EPI-18-0542
http://dx.doi.org/10.1016/j.pan.2018.03.005
http://dx.doi.org/10.1126/science.aah5043
http://dx.doi.org/10.18632/oncotarget.3109
http://dx.doi.org/10.1093/carcin/bgy073
http://dx.doi.org/10.1016/j.cell.2019.07.008
http://dx.doi.org/10.1136/gutjnl-2018-317458
http://dx.doi.org/10.1186/s12915-014-0087-z
http://dx.doi.org/10.1038/s41586-019-1608-2
http://dx.doi.org/10.1038/nmicrobiol.2016.180
http://dx.doi.org/10.1093/gigascience/giz004
http://dx.doi.org/10.1038/ncomms7528
http://dx.doi.org/10.1038/s41591-019-0406-6
http://dx.doi.org/10.15252/msb.20145645
http://dx.doi.org/10.1038/nature18927
http://dx.doi.org/10.1097/MIB.0000000000000893
http://dx.doi.org/10.1038/nature15766
http://dx.doi.org/10.1038/srep34826
http://dx.doi.org/10.1038/nature13568
http://dx.doi.org/10.1093/gigascience/gix058
http://dx.doi.org/10.1038/nature12198
http://dx.doi.org/10.1038/s41591-018-0061-3
http://dx.doi.org/10.1093/gigascience/gix050
http://dx.doi.org/10.1038/s41564-018-0306-4
http://dx.doi.org/10.1136/gutjnl-2015-309800
http://dx.doi.org/10.1016/j.cell.2015.11.001
http://dx.doi.org/10.1186/s40168-018-0515-3
http://dx.doi.org/10.1038/s41591-019-0458-7
http://dx.doi.org/10.1371/journal.pone.0155362
http://dx.doi.org/10.1016/j.cub.2015.10.060
http://dx.doi.org/10.1038/nature11450
http://dx.doi.org/10.1038/nature23889
http://dx.doi.org/10.1016/j.cell.2016.10.020
http://dx.doi.org/10.1016/j.cels.2016.10.004
http://dx.doi.org/10.1093/bioinformatics/btr597
http://gut.bmj.com/


14 Kartal E, et al. Gut 2022;0:1–14. doi:10.1136/gutjnl-2021-324755

Gut microbiota

 61 Nadkarni MA, Martin FE, Jacques NA, et al. Determination of bacterial load by 
real- time PCR using a broad- range (universal) probe and primers set. Microbiology 
2002;148:257–66. doi:10.1099/00221287-148-1-257

 62 Kramski M, Gaeguta AJ, Lichtfuss GF, et al. Novel sensitive real- time PCR for 
quantification of bacterial 16S rRNA genes in plasma of HIV- infected patients as a 
marker for microbial translocation. J Clin Microbiol 2011;49:3691–3. doi:10.1128/
JCM.01018-11

 63 Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a 
depth of millions of sequences per sample. Proc Natl Acad Sci U S A 2011;108 Suppl 
1:4516–22. doi:10.1073/pnas.1000080107

 64 Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high- resolution sample inference 
from illumina amplicon data. Nat Methods 2016;13:581–3. doi:10.1038/nmeth.3869

 65 Matias Rodrigues JF, Schmidt TSB, Tackmann J, et al. MAPseq: highly efficient k- mer 
search with confidence estimates, for rRNA sequence analysis. Bioinformatics 
2017;33:3808–10. doi:10.1093/bioinformatics/btx517

 66 Nawrocki EP, Eddy SR. Infernal 1.1: 100- fold faster RNA homology searches. 
Bioinformatics 2013;29:2933–5. doi:10.1093/bioinformatics/btt509

 67 Matias Rodrigues JF, von Mering C. HPC- CLUST: distributed hierarchical clustering 
for large sets of nucleotide sequences. Bioinformatics 2014;30:287–8. doi:10.1093/
bioinformatics/btt657

 68 Schmidt TSB, Matias Rodrigues JF, von Mering C. Limits to robustness and 
reproducibility in the demarcation of operational taxonomic units. Environ Microbiol 
2015;17:1689–706. doi:10.1111/1462-2920.12610

 69 Coelho LP, Alves R, Monteiro P, et al. NG- meta- profiler: fast processing of 
metagenomes using NGLess, a domain- specific language. Microbiome 2019;7:84.

 70 Mende DR, Letunic I, Maistrenko OM, et al. proGenomes2: an improved database for 
accurate and consistent habitat, taxonomic and functional annotations of prokaryotic 
genomes. Nucleic Acids Res 2020;48:D621- D625. doi:10.1093/nar/gkz1002

 71 Milanese A, Mende DR, Paoli L, et al. Microbial abundance, activity and population 
genomic profiling with mOTUs2. Nat Commun 2019;10. doi:10.1038/s41467-019-
08844-4

 72 Coelho LP, Alves R, Del Río Álvaro Rodríguez, del Río Á.R, et al. Towards the 
biogeography of prokaryotic genes. Nature 2021. doi:10.1038/s41586-021-04233-4. 
[Epub ahead of print: 15 Dec 2021].

 73 Huerta- Cepas J, Szklarczyk D, Forslund K, et al. eggNOG 4.5: a hierarchical orthology 
framework with improved functional annotations for eukaryotic, prokaryotic and viral 
sequences. Nucleic Acids Res 2016;44:D286–93. doi:10.1093/nar/gkv1248

 74 Schmidt TSB, Matias Rodrigues JF, von Mering C. A family of interaction- adjusted 
indices of community similarity. ISME J 2017;11:791–807.

 75 Oksanen J, Blanchet FG, Friendly M. Vegan: community ecology package, 2019. 
Available: https://CRAN.R-project.org/package=vegan

 76 Tibshirani R. Regression shrinkage and selection via the LASSO. Journal of the Royal 
Statistical Society: Series B 1996;58 http://doi.wiley.com/

 77 Helleputte T. LiblineaR: linear predictive models based on the LIBLINEAR C/C++ 
library, 2015. R package version, 2015: 1–94.

 78 Robin X, Turck N, Hainard A, et al. pROC: an open- source package for R and 
S+ to analyze and compare ROC curves. BMC Bioinformatics 2011;12:77. 
doi:10.1186/1471-2105-12-77

 79 Wirbel J, Zych K, Essex M, et al. Microbiome meta- analysis and cross- disease 
comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol 
2021;22:93.

 80 Mende DR, Letunic I, Huerta- Cepas J, et al. proGenomes: a resource for consistent 
functional and taxonomic annotations of prokaryotic genomes. Nucleic Acids Res 
2017;45:D529–34. doi:10.1093/nar/gkw989

 81 Costea PI, Munch R, Coelho LP, et al. metaSNV: a tool for metagenomic strain level 
analysis. PLoS One 2017;12:e0182392. doi:10.1371/journal.pone.0182392

 82 Costea PI, Coelho LP, Sunagawa S, et al. Subspecies in the global human gut 
microbiome. Mol Syst Biol 2017;13:960. doi:10.15252/msb.20177589

 83 Schmidt TS, Hayward MR, Coelho LP, et al. Extensive transmission of microbes along 
the gastrointestinal tract. Elife 2019;8. doi:10.7554/eLife.42693. [Epub ahead of 
print: 12 02 2019].

 84 Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to 
modulation. Cell 2018;172:1198–215. doi:10.1016/j.cell.2018.02.044

 85 Duvallet C, Gibbons SM, Gurry T, et al. Meta- analysis of gut microbiome studies 
identifies disease- specific and shared responses. Nat Commun 2017;8:1784. 
doi:10.1038/s41467-017-01973-8

 86 Azizian A, Rühlmann F, Krause T, et al. CA19- 9 for detecting recurrence of pancreatic 
cancer. Sci Rep 2020;10:1332. doi:10.1038/s41598-020-57930-x

 87 Winter JM, Yeo CJ, Brody JR. Diagnostic, prognostic, and predictive biomarkers in 
pancreatic cancer. J Surg Oncol 2013;107:15–22. doi:10.1002/jso.23192

 88 Cao Y, Shen J, Ran ZH. Association between Faecalibacterium prausnitzii reduction 
and inflammatory bowel disease: a meta- analysis and systematic review of the 
literature. Gastroenterol Res Pract 2014;2014:1–7. doi:10.1155/2014/872725

 89 Poore GD, Kopylova E, Zhu Q, et al. Microbiome analyses of blood and tissues suggest 
cancer diagnostic approach. Nature 2020;579:567–74. doi:10.1038/s41586-020-
2095-1

 90 de Goffau MC, Lager S, Sovio U, et al. Human placenta has no microbiome but can 
contain potential pathogens. Nature 2019;572:329–34. doi:10.1038/s41586-019-
1451-5

 91 Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of 
tumor type- specific intracellular bacteria. Science 2020;368:973–80. doi:10.1126/
science.aay9189

 92 Torres PJ, Fletcher EM, Gibbons SM, et al. Characterization of the salivary microbiome 
in patients with pancreatic cancer. PeerJ 2015;3:e1373. doi:10.7717/peerj.1373

 93 Vogtmann E, Han Y, Caporaso JG, et al. Oral microbial community composition 
is associated with pancreatic cancer: a case- control study in Iran. Cancer Med 
2020;9:797–806. doi:10.1002/cam4.2660

 94 Sethi V, Kurtom S, Tarique M, et al. Gut microbiota promotes tumor growth in mice 
by modulating immune response. Gastroenterology 2018;155:33–7. doi:10.1053/j.
gastro.2018.04.001

 on M
arch 11, 2022 by guest. P

rotected by copyright.
http://gut.bm

j.com
/

G
ut: first published as 10.1136/gutjnl-2021-324755 on 8 M

arch 2022. D
ow

nloaded from
 

http://dx.doi.org/10.1099/00221287-148-1-257
http://dx.doi.org/10.1128/JCM.01018-11
http://dx.doi.org/10.1073/pnas.1000080107
http://dx.doi.org/10.1038/nmeth.3869
http://dx.doi.org/10.1093/bioinformatics/btx517
http://dx.doi.org/10.1093/bioinformatics/btt509
http://dx.doi.org/10.1093/bioinformatics/btt657
http://dx.doi.org/10.1111/1462-2920.12610
http://dx.doi.org/10.1186/s40168-019-0684-8
http://dx.doi.org/10.1093/nar/gkz1002
http://dx.doi.org/10.1038/s41467-019-08844-4
http://dx.doi.org/10.1038/s41586-021-04233-4
http://dx.doi.org/10.1093/nar/gkv1248
http://dx.doi.org/10.1038/ismej.2016.139
https://CRAN.R-project.org/package=vegan
http://doi.wiley.com/
http://dx.doi.org/10.1186/1471-2105-12-77
http://dx.doi.org/10.1186/s13059-021-02306-1
http://dx.doi.org/10.1093/nar/gkw989
http://dx.doi.org/10.1371/journal.pone.0182392
http://dx.doi.org/10.15252/msb.20177589
http://dx.doi.org/10.7554/eLife.42693
http://dx.doi.org/10.1016/j.cell.2018.02.044
http://dx.doi.org/10.1038/s41467-017-01973-8
http://dx.doi.org/10.1038/s41598-020-57930-x
http://dx.doi.org/10.1002/jso.23192
http://dx.doi.org/10.1155/2014/872725
http://dx.doi.org/10.1038/s41586-020-2095-1
http://dx.doi.org/10.1038/s41586-019-1451-5
http://dx.doi.org/10.1126/science.aay9189
http://dx.doi.org/10.7717/peerj.1373
http://dx.doi.org/10.1002/cam4.2660
http://dx.doi.org/10.1053/j.gastro.2018.04.001
http://gut.bmj.com/

	A faecal microbiota signature with high specificity for pancreatic cancer
	Abstract
	Introduction
	Methods
	Subject recruitment and sample collection
	Sample processing
	16S rRNA amplicon sequencing
	16S rRNA amplicon data processing
	Shotgun metagenomic sequencing
	Metagenome data processing
	Microbiome data statistical analyses
	Multivariable statistical modelling and model evaluation
	External validation of the metagenomic classifiers
	Subspecies and strain-level analyses
	Fluorescence in situ hybridisation microscopy

	Results
	PDAC is associated with moderate shifts in microbiome composition when controlling for confounding factors in shotgun metagenomic data
	High-accuracy metagenomic classifiers capture specific faecal microbiome signatures in patients with PDAC
	Combination of metagenomic classifiers with antigen CA19-9 levels increases accuracy
	Performance of metagenome-based classifiers generalises to independent validation cohorts
	PDAC harbours characteristic bacteria, consistent with oral and gut microbiome communities
	Links between oral, intestinal and pancreatic microbiomes

	Discussion
	References


