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Abstract Biogeographical studies have traditionally focused on readily visible organisms, but 
recent technological advances are enabling analyses of the large-scale distribution of microscopic 
organisms, whose biogeographical patterns have long been debated. Here we assessed the global 
structure of plankton geography and its relation to the biological, chemical, and physical context 
of the ocean (the ‘seascape’) by analyzing metagenomes of plankton communities sampled across 
oceans during the Tara Oceans expedition, in light of environmental data and ocean current trans-
port. Using a consistent approach across organismal sizes that provides unprecedented resolution 
to measure changes in genomic composition between communities, we report a pan-ocean, size-
dependent plankton biogeography overlying regional heterogeneity. We found robust evidence for 
a basin-scale impact of transport by ocean currents on plankton biogeography, and on a character-
istic timescale of community dynamics going beyond simple seasonality or life history transitions of 
plankton.

Editor's evaluation
Richter and colleagues present an impressive analysis of metagenomic, OTU and imaging data 
collected from >100 ocean locations worldwide, with the purpose of elucidating the role of large-
scale currents on global-scale marine plankton biogeography. The topic is exciting and timely.

Introduction
Plankton communities are constantly on the move, transported by ocean currents. Transport involves 
both advection and mixing. While being advected by currents, plankton can be influenced by multiple 
processes, both physicochemical (fluxes of heat, light,and nutrients Moore et al., 2013) and biolog-
ical (species interactions, life cycles, behavior, and acclimation/adaptation [Armbrust, 2009; Flynn 
et al., 2015]), which act across various spatial and temporal scales. In turn, plankton impact seawater 
physicochemistry while they are being advected (Moore et  al., 2013). The community composi-
tion and biogeochemical properties of a water mass at a given site are also partially dependent on 
its history of mixing with neighboring water masses during transport. These intertwined processes 
occurring along transport by currents form the pelagic seascape (Pittman, 2017; Figure 1—figure 
supplement 1a). Due to logistical and analytical constraints, previous studies on plankton distribution 
have tended to be geographically or taxonomically restricted (Hanson et al., 2012; Martiny et al., 
2006; McGowan and Walker, 1979; Reygondeau and Dunn, 2019; Roux et al., 2016), to focus on 
individual factors such as nutrient or light availability (Longhurst, 2006; Tagliabue et al., 2017), or 
have investigated the influence of transport on specific nutrients (Letscher et al., 2016) or types of 
planktonic organisms (Hellweger et al., 2014; Villarino et al., 2018; Wilkins et al., 2013). We set 
out to test for the first time at genomic resolution the hypotheses that a global-scale plankton bioge-
ography exists and that it is closely linked to transport via large-scale ocean currents. To do this, we 

https://doi.org/10.7554/eLife.78129
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integrated metagenomic data from epipelagic samples collected during the Tara Oceans expedition 
(Karsenti et al., 2011) with in situ and satellite environmental metadata and large-scale ocean circu-
lation simulations. Our sampling largely focused on open ocean sites located in the main gyres, but 
also included other areas with distinct oceanographic features, such as coastal upwelling zones and 
lagoons (Figure 1—figure supplement 1b). We chose to study biogeographic patterns along large-
scale currents in the principal oceanic gyres, with counterpoints to other oceanographic features in 
which the influence of ocean transport by the main currents is likely to be relatively weaker, such as 
upwellings. Our analyses focus on the sunlit (epipelagic) layer of the ocean (subsurface and deep 
chlorophyll maximum [DCM] samples); at lower depths (the mesopelagic and below), the relationship 
between plankton community composition and ocean transport may be different than at the surface. 
The use of DNA as a primary proxy for global plankton diversity has several important advantages 
over classical morphology-based analyses, notably because methods can be standardized and applied 
across the entire range of plankton sizes, from viruses through prokaryotes and protists to animals.

Results
DNA sequence data was obtained from samples collected at 113 worldwide stations during the 
Tara Oceans expedition. Each plankton community sample was sequenced for up to six operational 
size fractions: one virus-enriched (0–0.22 μm; Roux et  al., 2016), one prokaryote-enriched (either 
0.22–1.6 or 0.22–3 μm; Sunagawa et al., 2015), and four eukaryote-enriched (0.8–5 μm, 5–20 μm, 
20–180 μm, and 180–2000 μm; de Vargas et al., 2015; Figure 1—figure supplement 1b). These 
size fractions are operational in that each contains the organisms captured between two physical 
filters of a given size (either filters or nets, depending on size fraction [Pesant et  al., 2015]). We 
estimated the average percentage of metagenomic sequence reads in samples from the prokaryote-
enriched 0.22–1.6/3  µm size fractions that were of eukaryotic origin to be 12%, and the average 
percentage of reads in eukaryote-enriched size fractions that were of prokaryote origin as follows: 
0.8–5 μm: 39%, 5–20 μm: 23%, 20–180 μm: 3%, 180–2000 μm: 5% (see Materials and methods). The 
Tara Oceans project produced a total of 24.2 terabases of metagenomic sequence reads (Supple-
mentary Table 1). To account for uneven sequencing depth among samples, we analyzed a subset 
of 11.9 terabases, after testing that this subset accurately represented the complete data set (see 
Materials and methods). We also analyzed operational taxonomic units (OTUs, representing groups 

eLife digest Oceans are brimming with life invisible to our eyes, a myriad of species of bacteria, 
viruses and other microscopic organisms essential for the health of the planet. These ‘marine plankton’ 
are unable to swim against currents and should therefore be constantly on the move, yet previous 
studies have suggested that distinct species of plankton may in fact inhabit different oceanic regions. 
However, proving this theory has been challenging; collecting plankton is logistically difficult, and it 
is often impossible to distinguish between species simply by examining them under a microscope. 
However, within the last decade, a research schooner called Tara has travelled the globe to gather 
thousands of plankton samples. At the same time, advances in genomics have made it possible to 
identify species based only on fragments of their DNA sequence.

To understand the hidden geography of plankton communities in Earth’s oceans, Richter et al. 
pored over DNA from the Tara Oceans expedition. This revealed that, despite being unable to resist 
the flow of water, various planktonic species which live close to the surface manage to occupy distinct, 
stable provinces shaped by currents. Different sizes of plankton are distributed in different sized 
provinces, with the smallest organisms tending to inhabit the smallest areas. Comparing DNA similar-
ities and speeds of currents at the ocean surface revealed how these might stretch and mix plankton 
communities.

Plankton play a critical role in the health of the ocean and the chemical cycles of planet Earth. 
These results could allow deeper investigation by marine modellers, ecologists, and evolutionary 
biologists. Meanwhile, work is already underway to investigate how climate change might impact this 
hidden geography.

https://doi.org/10.7554/eLife.78129
https://figshare.com/articles/dataset/Data_from_Genomic_evidence_for_global_ocean_plankton_biogeography_shaped_by_large-scale_current_systems/11303177?file=20034092
https://figshare.com/articles/dataset/Data_from_Genomic_evidence_for_global_ocean_plankton_biogeography_shaped_by_large-scale_current_systems/11303177?file=20034092
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of genetically related organisms), consisting of previously published viral populations (Brum et al., 
2015) previously derived bacterial 16S miTAGs (Sunagawa et  al., 2015), and 738  million 18S V9 
ribosomal DNA marker sequences in the eukaryote-enriched size fractions, enlarging a previously 
described Tara Oceans data set (de Vargas et al., 2015). We used metagenomic data and OTUs 
independently to compute pairwise comparisons of plankton community dissimilarity (as proxies for 
β-diversity). Metagenomic dissimilarity highlighted, at species and subspecies resolution, differences 
in the genomic identity of organisms between stations. Our metagenomic sampling resulted in pair-
wise metagenomic dissimilarities that likely represent an overestimate of β-diversity (Appendix 1). 
However, we applied an identical procedure to compute metagenomic dissimilarity for all size fractions 
(correlations among fractions ranged Spearman’s ρ 0.6–0.9, p≤10−4, Figure 1—figure supplement 
2). The more thoroughly sampled OTU dissimilarity, in contrast, incorporated more numerous rare 
taxa within the plankton, but at genus or higher-level taxonomic resolution (de Vargas et al., 2015). 
Metagenomic and OTU dissimilarities were correlated for all size fractions (Spearman’s ρ 0.53–0.97, 
p≤10−4, Figure  1—figure supplement 2), indicating that both proxies, although characterized by 
different sampling levels and taxonomic resolution, provided coherent and complementary estimates 
of β-diversity (Appendix 1). We performed subsequent analyses using both measures, which produced 
consistent results. The taxonomic composition of these Tara Oceans samples, not discussed here, is 
instead presented in a parallel analysis of the spatial dynamics of planktonic eukaryotes, based on the 
same environmental data and large-scale ocean circulation simulations (Sommeria-Klein et al., 2021).

We focus on analyses of metagenomic dissimilarity here, with accompanying results for OTU dissim-
ilarity presented in Supplementary Figures, and validation by comparison to abundance differences 
among metagenome-assembled genomes (MAGs; Delmont et al., 2022a) and to more traditional 
imaging data presented independently below.

Globally, we observed substantial metagenomic dissimilarities (average pairwise dissimilarity >80%) 
between sampled stations (including adjacent sites) across all size fractions (Figure 1—figure supple-
ment 3a, Appendix 1). The resulting portrait is of a heterogeneous oceanic ecosystem at all scales 
separating Tara Oceans sampling sites (even those separated by only a few kilometers), dominated 
by a small number of abundant and cosmopolitan taxa, with a much larger number of less abundant 
taxa found at fewer sampling sites (Figure 1—figure supplement 3b-e), corroborating other studies 
(de Vargas et al., 2015).

Overlying this heterogeneity, we found robust evidence for the existence of large-scale biogeo-
graphical patterns within all plankton size classes using two complementary analyses of dissimilarity 
among samples (Figure  1a, Figure  1—figure supplement 4a-f, Figure  1—figure supplement 5, 
Appendix 2). First, we grouped metagenomic samples within each size fraction into ‘genomic prov-
inces’ via hierarchical clustering (Figure 1—figure supplement 6). Second, we derived colors for each 
sample based on a principal coordinates analysis (PCoA-RGB; see Materials and methods) in order 
to visualize transitions in community composition within and between genomic provinces. Genomic 
provinces were mostly composed of geographically clustered stations (consistent with previous 
studies documenting patterns in plankton biogeography [Hanson et  al., 2012; Martiny et  al., 
2006; McGowan and Walker, 1979; Roux et al., 2016; Figure 1a, Figure 1—figure supplement 
4a-f]). Although the large majority of our samples were located in oceanic gyres, samples located 
in physically distant zones but with shared environmental conditions, such as oceanic upwellings, 
also grouped together (e.g. genomic province B6 in the bacterial-enriched size fraction). Genomic 
provinces of smaller plankton (viruses, bacteria, and eukaryotes <20 µm), with some exceptions (e.g. 
genomic province B5), tended to be limited to a single ocean basin and to approximately corre-
spond to Longhurst biogeochemical provinces (BGCPs; Longhurst, 2006; Figure 1—figure supple-
ment 4a-d; Appendix 3). In contrast, provinces of larger plankton (micro- and mesoplankton, >20 µm) 
spanned multiple basins (Figure 1—figure supplement 4e-f, Appendix 4).

These large-scale biogeographical patterns derived from metagenomes were linked to environ-
mental parameters including nutrients and temperature. Seawater surface temperature was signifi-
cantly different among genomic provinces for all plankton size classes (Kruskal-Wallis test, p<10−5), 
corroborating previous results for prokaryotes (Sunagawa et al., 2015), whereas other environmental 
conditions were significantly different only with respect to specific size classes (Figure  1—figure 
supplement 7). The geography of combined nutrient and temperature variations resembled the 
biogeography of smaller plankton size classes (Figure 1a–b, Figure 1—figure supplement 4a-d,h), 

https://doi.org/10.7554/eLife.78129
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Figure 1. Plankton biogeography, environmental variation, and ocean transport among Tara Oceans stations. 
Major currents are represented by solid arrows. (a) Genomic provinces of Tara Oceans surface samples for the 
0.8–5 µm size fraction, each labeled with a letter prefix (‘C’ represents the 0.8–5 µm size fraction) and a number; 
samples not assigned to a genomic province are labeled with ‘-’. Maps of all six size fractions and including deep 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.78129
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whereas temperature alone more closely matched the distribution of larger plankton (Figure  1—
figure supplement 4e,f,i), potentially reflecting different ecological constraints.

Plankton biogeographical patterns suggested a particular role for large-scale surface transport (a 
core component of the seascape) in the emergence of spatial patterns of plankton community compo-
sition (as previously proposed [Clayton et  al., 2013]), as many genomic provinces were spatially 
consistent with ocean basin-scale circulation patterns (such as western boundary currents or major 
subtropical gyres [Talley et al., 2011; Figure 1a, Figure 1—figure supplement 4a-f]). To investigate 
whether plankton dynamics are related to ocean current timescales, we analyzed community metag-
enomic composition differences between sampled stations in light of the corresponding transit time, 
which has previously been suggested as the relevant factor for studying dispersal mechanisms (Wilkins 
et al., 2013). We inferred the characteristic timescale of main transport paths between stations from 
trajectories computed with the physically well-constrained MITgcm ocean model (see Materials and 
methods), which takes into account directionalities (Watson et al., 2010) and meso- to large-scale 
circulation, potential dispersal barriers, and mixing effects (Goetze et  al., 2017; Mousing et  al., 
2016). For this we used the minimum travel time (Jönsson and Watson, 2016; Tmin) between pairs 
of Tara stations. These trajectories corresponded to the dominant paths that transport the majority 
of water volume and its contents (e.g. heat, nutrients, and plankton; Figure 1c). For all plankton size 
classes, community composition differences between stations were significantly correlated to travel 
time (Figure 2—figure supplement 1).

Because the relationships between metagenomic dissimilarities and Tmin are complex (Figure 2—
figure supplement 1), global correlations do not necessarily accurately summarize the relationship 
between communities and currents. To provide more detail on the relationship, we examined cumu-
lative correlation, namely, correlations between community dissimilarity and Tmin computed for an 
increasing range of Tmin, which can directly reveal the time window during which plankton dynamics are 
strongly correlated to ocean current timescales. Cumulative correlation values were maximal for pairs 
of stations separated by Tmin <~1.5 years for all size classes, with correlation values (Spearman’s ρ 
0.45–0.71 depending on size class, p≤10–4; Figure 2a, Figure 3—figure supplement 1) far exceeding 
those based on previous studies of morphological and/or metabarcode data (Villarino et al., 2018) or 
considering geographic distance rather than travel time (Louca et al., 2016). These high correlations 
between metagenomic dissimilarity and Tmin for travel times up to 1.5 years, which correspond well 
with the average time to travel across a basin or gyre (Lumpkin and Johnson, 2013), hence reveal 
measurable plankton community dynamics on time scales far longer than typical plankton growth rates 
or life cycles. In contrast, no such unimodal pattern was found for correlations between metagenomic 

chlorophyll maximum samples are available in Figure 1—figure supplement 4. Station colors are derived from 
an ordination of metagenomic dissimilarities; more dissimilar colors indicate more dissimilar communities (see 
Materials and methods). (b) Stations colored based on an ordination of temperature and the ratio of NO3 + NO2 to 
PO4 (replaced by 10−6 for three stations where the measurement of PO4 was 0) and of NO3 + NO2 to Fe. Colors do 
not correspond directly between maps; however, the geographical partitioning among stations is similar between 
the two maps. (c) Simulated trajectories corresponding to the minimum travel time (Tmin) for pairs of stations (black 
dots) connected by Tmin <1.5 years. Directionality of trajectories is not represented.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The seascape, plankton transport, and community metagenomic samples of Tara Oceans 
stations.

Figure supplement 2. Scatter plots comparing β-diversity estimates from metagenomic, operational taxonomic 
unit (OTU)-based, and imaging-based dissimilarity.

Figure supplement 3. Global dissimilarity and operational taxonomic unit (OTU) occupancy.

Figure supplement 4. Genomic provinces in comparison to previous ocean divisions and to metagenome-
assembled genome (MAG) abundance variation, and ordination maps of environmental parameters.

Figure supplement 5. Biogeography based on an ordination of operational taxonomic unit (OTU) dissimilarity.

Figure supplement 6. Hierarchical trees illustrating how samples were partitioned into genomic provinces.

Figure supplement 7. Environmental parameters that distinguish genomic provinces.

Figure 1 continued

https://doi.org/10.7554/eLife.78129
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Figure 2. Metagenomic dissimilarity and travel time of plankton are maximally correlated up to ~1.5 years. (a) Spearman rank-based correlation by 
size fraction between metagenomic dissimilarity and minimum travel time along ocean currents (Tmin) for pairs of Tara Oceans samples separated by 
a minimum travel time less than the value of Tmin on the x-axis. Brown line: 0–0.2 µm size fraction, red: 0.22–1.6/3 µm, blue: 0.8–5 µm, green: 5–20 µm, 
purple: 20–180 µm, orange: 180–2000 µm. Shaded colored areas represent 95% CI. Tmin >1.5 years is shaded in gray. See plots for operational taxonomic 
unit (OTU) dissimilarity in Figure 3—figure supplement 1. (b) Pairs of Tara stations connected by Tmin <1.5 years in blue/black and >1.5 years in gray. 
Shading reflects metagenomic similarity from the 0.8–5 μm size fraction. (c) The relationship of metagenomic similarity to Tmin with an exponential fit 
(black line, gray 95% CI), for pairs of surface samples in the 0.8–5 μm size fraction within the North Atlantic and Mediterranean current system (see map 
and plots for other size fractions and OTUs in Figure 2—figure supplement 2, and Appendix 1 for a discussion of metagenomic similarity).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Global correlations of dissimilarity with minimum travel time (Tmin).

Figure supplement 2. Plankton community composition turnover through the North Atlantic.

https://doi.org/10.7554/eLife.78129
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dissimilarity and geographic distance (without 
traversing land; Figure  3—figure supplement 
1f).

We compared our analyses of metage-
nomic data to those based on more traditional 
zooplankton imaging data collected for the 
same Tara Oceans samples. β-diversity calcu-
lated from zooplankton imaging was correlated 
with metagenomic dissimilarity (Spearman’s ρ 
between 0.32 and 0.60; Figure 1—figure supple-
ment 2), indicating that the two data sources 
provide concordant measurements of variation 
in plankton community composition. However, 
correlations with ocean transport time were 
far weaker for zooplankton imaging data than 
for metagenomic data from all organismal size 
fractions (Figure  3—figure supplement 1). We 
interpret this as being a result of the expected 
significantly lower resolution in imaging data as 
compared to metagenomic data (a similar differ-
ence of resolution in OTU data versus metage-
nomic data is discussed in Appendix 1). Finally, we 
also confirmed our metagenome sequence read 
comparison-based results by comparing them to 
β-diversity among sampling sites using a collec-
tion of MAGs, which are likely to represent the 
most abundant genomes, from the 20–180  µm 
size fraction (the size fraction in which the largest 
proportion of metagenomic reads were mapped 
to MAGs, 18.4%; Delmont et  al., 2022a). 
Metagenomic and MAG β-diversity were highly 
correlated (Spearman’s ρ 0.94) and consequently 
they displayed similar biogeographical patterns 
(Figure 1—figure supplement 4e,g).

Up to ~1.5 years of travel time, the timescale of 
large-scale transport is therefore the appropriate 
framework for studying differences in plankton 
genomic community composition (Figure 2b). The 
fact that simulated transport times and metag-
enomic dissimilarity were correlated despite a 
3-year pan-season sampling campaign, which 
could be considered to weaken our inference, 
suggests instead that a large-scale impact of the 
seascape promotes the existence of a biogeo-
graphical structure at a large spatial scale that is resilient to seasonal or other smaller spatiotemporal 
variations (across all size fractions, genomic provinces consist of stations sampled over an average of 
4.7±2.8 different months and 2.7±1.2 different seasons, adjusted for hemisphere). Consistent with 
our results, seasonal variations have previously been shown to have minor effects on the boundary 
positions of BGCPs based on satellite data, but not enough to affect the overall pattern of ocean 
regionalization (Reygondeau et al., 2013).

Differences in environmental conditions for pairs of stations also covaried (although less strongly) 
with transit time for Tmin <~1.5 years (Figure 3). This indicates that changes in environmental conditions 
and plankton community composition are concurrent along large-scale oceanic current systems. In our 
data, beyond ~1.5 years of transport, correlations of Tmin with metagenomic dissimilarity decreased 
(Figures 2a and 3, Figure 3—figure supplement 1a-e), meaning the signature of transport in the 

Figure 3. Plankton travel time, metagenomic 
dissimilarity, and environmental differences show 
different temporal patterns of pairwise correlation. 
Spearman rank-based correlations between 
metagenomic dissimilarity and minimum travel time 
(Tmin, blue), metagenomic dissimilarity and differences 
in NO3 + NO2, PO4, and Fe (purple), metagenomic 
dissimilarity and differences in temperature (turquoise), 
Tmin and differences in NO3 + NO2, PO4, and Fe (purple, 
dashed), and Tmin and differences in temperature 
(turquoise, dashed) for pairs of Tara Oceans samples 
separated by a minimum travel time less than the value 
of Tmin on the x-axis. Shaded regions represent SEM. 
Correlations represent averages across four of six size 
fractions represented in Figure 2a; the 0–0.2 µm and 
5–20 µm size fractions are excluded due to a lack of 
samples at the global level. Individual size fractions, 
partial correlations, and correlations with operational 
taxonomic unit data are in Figure 3—figure 
supplement 1. Color palette is from microshades 
(https://github.com/KarstensLab/microshades) (Dahl 
et al., 2022).

The online version of this article includes the following 
figure supplement(s) for figure 3:

Figure supplement 1. Plankton travel time, 
dissimilarity, environmental distance, and geographic 
distance show different temporal patterns of pairwise 
correlation.

https://doi.org/10.7554/eLife.78129
https://github.com/KarstensLab/microshades
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timescale of large-scale diversity changes weakened and travel time therefore becomes a less appro-
priate context to study β-diversity. A similar trend was observed for the correlation between Tmin and 
nutrient concentrations, whereas temperature, the gradients of which are mostly dictated by Earth-
scale processes that are unaffected by plankton communities, remained well correlated for longer 
transit times (Figure 3).

Together, these analyses suggest the existence in the seascape of biogeochemical continua 
stretched by currents on the basin scale with predictable, interlinked changes in environmental condi-
tions and plankton community composition (Appendix 5). It has previously been posited that trans-
port could generate continuous transitions between niches based on physical processes (Lévy et al., 
2014), but it was not anticipated that plankton dynamics would be governed on the time and length 
scales of main ocean currents. Moreover, beyond ~1.5 years, the correlation of metagenomic dissim-
ilarity with differences in temperature increased while that with differences in nutrients decreased 
(Figure 3, Figure 3—figure supplement 1a-e), although both of these correlations with metage-
nomic dissimilarity remained strong on these time scales. This might be related to distant Tara Oceans 
stations experiencing similar oceanographic phenomena (notably temperature), e.g., upwelling zones 
(stations 67, 92, and 135; Figure 1—figure supplement 1), producing generally similar environmental 
conditions.

Discussion
We present the following hypothesis as a potential mechanism for the partitioning of the global ocean 
into genomic provinces. The relatively large separation (in terms of transport time and season) among 
sampling stations allowed us to detect the large-scale effects of ocean circulation, which are super-
imposed on smaller-scale effects such as local patchiness and seasonality (as previously observed 
Longhurst, 2006; Reygondeau et al., 2013). Within ocean basins, as the intertwined dynamics of 
plankton and chemistry continuously occur along transport, smooth variations have emerged due to 
the periodic recirculation of within-basin currents. This leads to stable, continuous patterns of changes 
in community structure and nutrient concentrations, and also explains how temporally stable genomic 
provinces can exist in the face of ocean currents. Among ocean basins, depending on the sensi-
tivity to the environment of a plankton community, higher heterogeneity in environmental conditions 
across different circulation patterns can disrupt the equilibrium of seascape processes within a given 
continuum, leading to a global delimitation into distinguishable ecological continua among different 
large-scale current systems, resulting in the genomic provinces that we detected.

The existence of a size-class-dependent (smaller or larger than 20 µm) structure of plankton geog-
raphy indicates that the continua that we observe vary among size fractions because of different 
reactions of organisms within the seascape (i.e. the interplay among organismal biology, nutrients, 
and local environmental conditions), in agreement with a parallel survey based on taxonomic groups 
(Sommeria-Klein et al., 2021). In the case of the North Atlantic current system (including the Medi-
terranean Sea), a simple exponential fit of metagenomic dissimilarity along Tmin for Tmin <~1.5 years 
(Figure 2c) revealed that the smaller size classes (<20 µm) had a shorter metagenomic turnover time 
(ca. 1 year) than larger plankton (ca. 2 years; Figure 2—figure supplement 2, Appendix 6). At global 
geographical scales, the genomic provinces of small size classes, which are enriched in phytoplankton 
(de Vargas et  al., 2015; Frémont et  al., 2022; Sommeria-Klein et  al., 2021; Sunagawa et  al., 
2015), corresponded in our data with differences in environmental parameters such as nutrient levels 
(Figure 1b, Figure 1—figure supplement 7) that are often constrained by regional oceanographic 
processes (Sarmiento and Gruber, 2006). On the other hand, genomic provinces of larger plankton, 
enriched in heterotrophic and symbiotic organisms (de Vargas et al., 2015; Frémont et al., 2022; 
Sommeria-Klein et al., 2021), were less coupled with geochemical parameters and were more related 
to global scale gradients and circulation patterns, notably major latitudinal temperature zones (Martin 
et  al., 2021) or the separation between Atlantic and Indo-Pacific large-scale surface circulations 
(Figure 1—figure supplement 4e,f,i). These divergent effects were also evident in comparisons of 
metagenomic dissimilarity with variations in either nutrient concentrations or temperature (Figure 3—
figure supplement 1b). For smaller plankton, correlations with differences in nutrient concentrations 
were strongest, at Tmin up to ~1.5 years, while for larger plankton, correlations were strongest with 
temperature variations, for Tmin beyond ~1.5 years. Larger plankton are dominated by eukaryotes, 
often multicellular, with much longer life cycles, potentially leading to slower community turnover. 

https://doi.org/10.7554/eLife.78129
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Organisms with long life cycles, on the order of several months or years, can be transported through 
basins spanning multiple biogeochemical niches in which they may encounter strong environmental 
variability; this trend was also detected in a taxonomy-based analysis accounting for differences in 
both body size and ecology among groups (Sommeria-Klein et al., 2021). As observed here, their 
biogeography is less affected by nutrient limitation and rather depends on large-scale temperature 
gradients among basins. This dependence may be linked to the known correlation between body size 
and organismal metabolic rate (Ikeda, 1985). Conversely, variants within populations of organisms 
with short life cycles have the capacity to increase their relative abundance within restricted ecolog-
ical niches to which they are adapted. This difference, detectable at genomic resolution, may not be 
picked up in analyses performed using biological traits with less resolution. These results indicate a 
significant size-based decoupling within planktonic food webs. For example, large size predators will 
encounter different prey when transiting through the genomic provinces of small sized organisms (see 
Appendix 4).

In this study, we provide genomic evidence for an organism size-dependent global-scale open 
ocean plankton biogeography shaped by currents. Using analysis of standardized metagenomic data 
together with environmental and physical data, we reveal that, in a background of significant local 
patchiness, the integration of seascape physical, chemical, and biological processes over time and 
space produces a quasi-stationary biological partitioning of the oceans that supersedes short-term 
variability and seasonal cycles, ultimately generating global biogeographical patterns. Although the 
strong cross-coupling among our metagenomic, environmental, and physical data prevents a system-
atic disentangling of their various influences, we hypothesize that transport by ocean currents acts 
essentially as a conveyor on which interacting environmental and biological effects are layered. In 
this hypothesis, direct effects of currents (such as turbulent diffusivity) on plankton composition are 
secondary, and instead environmental and biological effects occurring during transport result in the 
emergence of a global plankton biogeography in the surface ocean. Future studies both on smaller 
spatiotemporal scales or specific oceanographic features (e.g. coastal regions) and on the global-
scale constraints and influences on the seascape itself could lead to a more detailed understanding of 
plankton dynamics. The ocean is a three-dimensional system in which the primary axis of variation is 
depth. Our metagenomic data and simulations were limited to the sunlit layer of the ocean and there-
fore capture one part of seascape dynamics. At greater ocean depths (i.e. in the mesopelagic and 
below), the relationship between ocean transport and plankton community composition may differ 
from the one we describe at the surface. In addition, an understanding of plankton biogeography is 
a key component of future studies on the function of the genes they express; analyses that synergize 
both characterizations will refine the definition and ecological interpretation of plankton communities 
within genomic provinces. Overall, our work shows that studies of the dynamics of plankton commu-
nities must consider the critical influence of ocean currents in stretching, on the scale of basins, the 
distribution of both planktonic organisms and the physicochemical nature of the water mass in which 
they reside. We also demonstrate that the combination of ocean circulation modeling with the use 
of metagenomic DNA as a tracer of plankton communities provides a resolution above the minimum 
necessary for assessing the role of transport in community turnover over time and space. The open 
ocean planktonic ecosystem is fundamentally different in many ways from other major planetary 
ecosystems, and this study provides a basis to understand and potentially predict the structuring of 
the ocean ecosystem in a scenario of rapid environmental and current system changes (Beaugrand 
et al., 2002; Caesar et al., 2018; Frémont et al., 2022).

Materials and methods
Sampling, sequencing, and environmental parameters
Sampling, size fractionation, measurement of environmental parameters and associated metadata, 
DNA extraction, and metagenomic sequencing were conducted as described previously (Alberti 
et al., 2017; Pesant et al., 2015). Samples were collected at 113 Tara Oceans stations for up to six 
size fractions (0–0.2, 0.22–1.6/3, 0.8–5, 5–20, 20–180, 180–2000 µm; Figure 1—figure supplement 
1b; Supplementary Table 1) and two depths (subsurface and DCM). The prokaryote-enriched size 
fraction was collected either a 0.22–1.6 µm or 0.22–3 µm filter (Pesant et al., 2015; Sunagawa et al., 

https://doi.org/10.7554/eLife.78129
https://figshare.com/articles/dataset/Data_from_Genomic_evidence_for_global_ocean_plankton_biogeography_shaped_by_large-scale_current_systems/11303177?file=20034092
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2015). For technical reasons, not all size fractions were sequenced for all stations (see Appendix 7 for 
a summary of why this does not affect our principal conclusions).

We used physicochemical data measured in situ during the Tara Oceans expedition (depth of 
sampling, temperature, chlorophyll a, phosphate, nitrate + nitrite concentrations), supplemented with 
simulated values for iron and ammonium (using the MITgcm Darwin model described below in ‘Ocean 
circulation simulations’), day length, and 8-day averages calculated for photosynthetically active radi-
ation (PAR) in surface waters (AMODIS, https://modis.gsfc.nasa.gov). In order to obtain PAR values at 
the DCM, we used the following formula (Morel et al., 2007):

PAR(Z) = PAR(0) × exp(−k × Z),
x = log(Chl),
log(Z) = 1.524 – 0.426x − 0.0145x^2 + 0.0186x^3,
k = –ln (0.01)/Z,
in which k is the attenuation coefficient, and Z is the depth of the DCM (in meters). Other data, such 

as silicate and the (nitrate + nitrite)/phosphate ratio, were extracted from the World Ocean Atlas 2013 
(WOA13 version 2, https://www.nodc.noaa.gov/OC5/woa13/), by retrieving the annual mean values 
at the closest available geographical coordinates and depths to Tara sampling stations. For tempera-
ture and nitrate + nitrite, we calculated seasonality indexes (SI) from monthly WOA13 data. For each 
sample, the index is the annual variation of the parameter (max - min) at this location divided by the 
highest variation value among all samples.

A list of samples, metagenomic and metabarcode sequencing information, and associated environ-
mental data are available in Supplementary Tables 1–2.

Calculation of metagenomic community dissimilarity
Metagenomic community distance between pairs of samples was estimated using whole shotgun 
metagenomes for all six size fractions. We used a metagenomic comparison method (Simka Benoit 
et al., 2016) that computes standard ecological distances by replacing species counts by counts of 
DNA sequence k-mers (segments of length k). Within Simka, we filtered regions of low complexity 
with read-shannon-index set to 1.5. K-mers of 31 base pairs (bp) derived from the first 100 million 
reads sequenced in each sample (or the first 30 million reads for the 0–0.2 µm size fraction) were 
used to compute a similarity measure between all pairs of samples within each organismal size frac-
tion. Based on a benchmark of Simka, we selected 100 million reads per sample (or 30 million for the 
0–0.2 µm fraction) because increasing this number did not produce a qualitatively different set of 
results, and to ensure that the same number of reads was used in each pairwise comparison within a 
size fraction. Nearly all samples in our data set had at least 100 million reads (or at least 30 million for 
the 0–0.2 µm fraction; Supplementary Table 1).

We estimated β-diversity for metagenomic reads with the following equation within Simka:
Metagenomic β-diversity = (b + c)/(2a + b + c)
where a is the number of distinct k-mers shared between two samples, and b and c are the 

number of distinct k-mers specific to each sample. We represented the distance between each pair 
of samples on a heatmap using the heatmap.2 function of the R-package (R Core Team T, 2017) 
gplots_2.17.0 (Warnes et al., 2015). The dissimilarity matrices we produced for each plankton size 
fraction (on a scale of 0 = identical to 100 = completely dissimilar) are available as Supplementary 
Tables 3–8.

Calculation of OTU-based community dissimilarity
Within the 0–0.2 µm size fraction, we used previously published viral populations (equivalent to OTUs; 
Brum et al., 2015) and viral clusters (analogous to higher taxonomic levels; Roux et al., 2016) based on 
clustering of protein content. For the 0.22–1.6/3 µm size fraction, we used previously derived miTAGs 
based on metagenomic matches to 16S ribosomal DNA loci and processed them as described (Suna-
gawa et al., 2015). For the four eukaryotic size fractions, we added additional samples to a previously 
published Tara Oceans metabarcoding data set and processed them using the same methods (de 
Vargas et al., 2015; also described at DOI: 10.5281/zenodo.15600).

We calculated OTU-based community dissimilarity for all size fractions as the Jaccard index based 
on presence/absence data using the vegdist function implemented in vegan 2.4–0 (Oksanen et al., 

https://doi.org/10.7554/eLife.78129
https://modis.gsfc.nasa.gov
https://www.nodc.noaa.gov/OC5/woa13/
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2019) in the software package R. The dissimilarity matrices we produced for each plankton size frac-
tion (on a scale of 0 = identical to 100 = completely dissimilar) are available as Supplementary Tables 
9–14.

Calculating distances of environmental parameters
We calculated Euclidean distances (Legendre and Legendre, 2012) for physicochemical parameters. 
Each were scaled individually to have a mean of 0 and a variance of 1 and thus to contribute equally 
to the distances. Then the Euclidean distance between two stations i and j for parameters P was 
computed as follows:

	﻿‍
ED

(
i, j, P

)
=
√∑

p∈P

(
xip − xjp

)2

‍�

RGB encoding of environmental positions
We color-coded the position of stations in environmental space for Figure 1b and Figure 1—figure 
supplement 4h as follows. First, environmental variables were power-transformed using the Box-Cox 
transformation to have Gaussian-like distributions to mitigate the effect of outliers and scaled to have 
zero mean and unit variance. We then performed a principal components analysis (PCA) with the R 
command prcomp from the package stats 3.2.1 (R Core Team T, 2017) on the matrix of transformed 
environmental variables and kept only the first three principal components. Finally, we rescaled the 
scores in each component to have unit variance and decorrelated them using the Mahalanobis trans-
formation. Each component was mapped to a color channel (red, green, or blue) and the channels 
were combined to attribute a single composite color to each station. The components (x, y, z) were 
mapped to color channel values (r, g, b) between 0 and 255 as r = 128 × (1 + x/max[abs(x)]), and simi-
larly for g and b. This map ensures that the global dispersion is equally distributed across the three 
components and composite colors span the whole color space.

Definition of genomic provinces
We used a hierarchical clustering method on the metagenomic pairwise dissimilarities produced by 
Simka for all surface and DCM samples, and multiscale bootstrap resampling for assessing the uncer-
tainty in hierarchical cluster analysis. We focused on metagenomic dissimilarity due to its higher reso-
lution, and confirmed that the patterns found in metagenomic data were consistent when using OTU 
data (Figure 1—figure supplement 5). We used UPGMA (unweighted pair-group method using arith-
metic averages) clustering, as it has been shown to have the best performance to describe clustering 
of regions for organismal biogeography (Kreft and Jetz, 2010). The R-package pvclust_1.3–2 (Suzuki 
and Shimodaira, 2006), with average linkage clustering and 1000 bootstrap replications, was used to 
construct dendrograms with the approximately unbiased p-value for each cluster (Figure 1—figure 
supplement 6). Because the number of genomic provinces by size fraction was not known apriori, 
we applied a combination of visualization and statistical methods to compare and determine the 
consistency within clusters of samples. First, the Silhouette method (Rousseeuw, 1987) was used 
to measure how similar a sample was within its own cluster compared to other clusters using the R 
package cluster_2.0.1 (Maechler et al., 2015). The Silhouette coefficient s for a single sample is given 
as:

	﻿‍ s = (b − a)/max(a, b)‍�

where a is the mean distance between a sample and all other points in the same class and b is the 
mean distance between a sample and all other points in the next nearest cluster. We used the value 
of s, in addition to bootstrap values, to partition each tree into genomic provinces (see Appendix 
2 for further details on statistical validation of genomic provinces). Additionally, we used the Radial 
Reingold-Tilford Tree representation from the JavaScript library ​D3.​js (https://d3js.org/) (Bostock 
et al., 2011) to visualize sample partitions from the dendrogram. Single samples were not considered 
as genomic provinces.

In a complementary approach, we performed a PCoA with the R command cmdscale (eig = TRUE, 
add = TRUE) from the package stats 3.2.1 (R Core Team T, 2017) on the matrices of pairwise metag-
enomic dissimilarities calculated by Simka (or OTU dissimilarity measured with the Jaccard index) 

https://doi.org/10.7554/eLife.78129
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within each size fraction and kept only the first three principal coordinates. We then converted those 
coordinates to a color using the RGB encoding described above, with one modification: scaling 
factors λr, λg, and λb were calculated as the ratios of the second and third eigenvalues to the first 
(dominant) eigenvalue to ensure that the dispersion of stations along each color channel reproduced 
the dispersion of the stations along the corresponding principal component (the ratio for the color 
corresponding to the dominant eigenvalue is 1). The components (x, y, z) were then mapped to color 
channel values (r, g, b) between 0 and 255 as r = 128 × (1 + λcx/max[abs(x)]), where λc is the ratio of 
the eigenvalue of color c to the dominant eigenvalue.

We represented number and PCoA-RGB color of genomic provinces for each sample on a world 
map (Figure  1, Figure  1—figure supplement 4a-f) generated with the R packages maps_3.0.0.2 
(Becker et al., 2018), mapproj 1.2–4 (McIlroy et al., 2015), gplots_2.17.0 (Warnes et al., 2015), 
and mapplots_1.5 (Gerritsen, 2014). We also plotted phosphate and temperature (Figure 1—figure 
supplement 4a-f) obtained from the Csiro Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.​
au/cars) using the ​phosphate_​cars2009.​nc and ​temprerature_​cars2009a.​nc files and the R package 
RNetCDF (Ridgway et al., 2002).

Comparison of genomic provinces to previous ocean divisions
To evaluate the spatial similarity between the clusters obtained in our study for each size fraction and 
previous biogeographic divisions, we performed an analysis of similarity (ANOSIM, Fathom toolbox, 
MATLAB). First, we collected coordinates for three spatial divisions at a resolution of 0.5 × 0.5°: 
biomes, BGCPs (Longhurst, 2006; Reygondeau et al., 2013), and objective global ocean biogeo-
graphic provinces (OGOBPs; Oliver and Irwin, 2008). Second, we assigned Tara Oceans stations 
to biomes, BGCPs, and OGOBPs based on their GPS coordinates. Third, for each size fraction we 
performed an ANOSIM with the metagenomic dissimilarity matrix calculated by Simka, using biogeo-
graphic clusters (biome, BGCP, and OGOBP) as group membership for each station. Each ANOSIM 
was bootstrapped 1000 times to evaluate the interval of confidence around the strength of the rela-
tionships we detected (Figure 1—figure supplement 4a-f).

Environmental differences among genomic provinces
For each size fraction, we tested which environmental parameters significantly discriminated among 
genomic provinces (Figure 1—figure supplement 7). A total of 12 parameters characterizing each 
sample, grouped by genomic provinces, were evaluated with a Kruskal-Wallis test within each size 
fraction with a significance threshold of p<10–5. One such parameter, sunshine duration (day length) 
does not map unambiguously to season, as day lengths coincide in spring and autumn. Ocean biology, 
chemistry, and stratification often differ between spring and autumn. As such, we provide season-
ality indices for temperature and for nitrate + nitrite (described above in the Methods, ‘Sampling, 
sequencing, and environmental parameters’), which represent annual variation in these environmental 
parameters, and can help interpret the effects of seasonality on genomic provinces. Selected param-
eters for each size fraction were then used to perform a PCA of the samples using the R package 
vegan_1.17–11 (Oksanen et al., 2019). Samples were plotted with the same PCoA-RGB colors used 
in the genomic province maps above and each genomic province surrounded by a gray polygon. In 
analyses where Southern Ocean (including Antarctic) stations were considered independently from 
other stations, the following were considered Southern Ocean stations: 82, 83, 84, 85, 86, 87, 88, and 
89.

Ocean circulation simulations
We derived travel times from the MITgcm Darwin simulation (Clayton et al., 2016) based on an opti-
mized global ocean circulation model from the ECCO2 group (Menemenlis et al., 2008). The hori-
zontal resolution of the model was approximately 18 km, with 1,103,735 total ocean cells. We ran the 
model for six continuous years in order to smooth anomalies that might occur during any single year. 
We used surface velocity simulation data to compute trajectories of floats originating in ocean cells 
containing all Tara Oceans stations and applied the following stitching procedure to generate a large 
number of trajectories for each initial position. (The use of surface velocity data implies that Ekman 
transport also influences trajectories within the simulation.)

https://doi.org/10.7554/eLife.78129
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First, we precomputed a set of monthly trajectories: for each of the 72 months in the data set, we 
released floats in every ocean cell of the model grid and simulated transport for 1 month. We used a 
fourth-order Runge-Kutta method with trilinearly interpolated velocities and a diffusion of 100 m²/s.

Second, following previous studies (Hellweger et al., 2014), we stitched together monthly trajec-
tories to create 10,000-year trajectories: for each float released within a 200  km radius of a Tara 
station, we constructed 1000 trajectories, each 10,000 years long. To avoid seasonal effects, we began 
by selecting a random starting month. We followed the trajectory of a float released within that 
month to the grid cell containing its end point at the end of the month. Next, we randomly selected a 
trajectory starting on the following month (e.g. February would follow January) from that grid cell and 
repeated until reaching a 10,000-year trajectory.

We searched the resulting 50.8 million trajectories for those that connected pairs of Tara Oceans 
stations. To ensure robustness of our results, we only included pairs of stations that were connected 
by more than 1000 trajectories. For each pair of stations, Tmin was defined as the minimum travel time 
of all trajectories (if any) connecting the two stations.

The source code for ocean circulation simulations can be found at https://mitgcm.org/source-​
code/, which contains installation instructions for the GitHub repository available at https://github.​
com/MITgcm/MITgcm; Losch, 2022. General configuration information for the high-resolution 
global calculation can be found in the CVS directory of user contributions: http://wwwcvs.mitgcm.​
org/viewvc/MITgcm/MITgcm_contrib/ under ‘hi_res_cube’. The specific simulation configuration we 
used followed (Clayton et al., 2013) and is available at http://wwwcvs.mitgcm.org/viewvc/MITgcm/​
MITgcm_contrib/high_res_cube/README.cs510?view=log. The travel time matrix we produced 
(measured in years) is available as Supplementary Table 15. Standard minimum geographic distance 
without traversing land (Rattray et al., 2016) is available as Supplementary Table 16.

Correlations of β-diversity, Tmin, and environmental parameters
Our correlation analyses were restricted to Tara Oceans samples collected at the surface and did not 
include DCM samples. We excluded stations that were not from open ocean locations from correlation 
analyses to avoid sites impacted by coastal processes (those numbered 54, 61, 62, 79, 113, 114, 115, 
116, 117, 118, 119, 120, and 121). In analyses where Southern Ocean (including Antarctic) stations 
were considered independently from other stations, the following were considered Southern Ocean 
(including Antarctic) stations: 82, 83, 84, 85, 86, 87, 88, and 89. We calculated rank-based Spearman 
correlations between β-diversity, Tmin, and environmental parameters (either differences in tempera-
ture or the Euclidean distance composed of differences in NO3 + NO2, PO4, and Fe, see above) for 
surface samples with a Mantel test with 1000 permutations and a nominal significance threshold of 
p<0.01. For the correlations presented in Figures 2a and 3 and Figure 3—figure supplement 1, 
correlation values were derived from pairs of stations connected by Tmin up to the value on the x-axis. 
We calculated partial correlations of metagenomic and OTU dissimilarity and Tmin by controlling for 
differences in temperature and for differences in nutrient concentrations, and partial correlations of 
dissimilarity with temperature or nutrient variation by controlling for Tmin. We calculated rank-based 
Spearman partial correlations using the standard formula for two variables x1 and x2 and a controlling 
variable x3: (cor[x1,x2] − cor[x1,x3] × cor[x1,x3])/(sqrt[1 − cor(x1,x3)^2] × sqrt[1 − cor(x2,x3)^2]).

Community turnover in the North Atlantic
Tara Oceans stations numbered 72, 76, 142, 143, 144, and all stations from 146 to 151 were located 
along the main current system connecting South Atlantic and North Atlantic oceans and continuing 
to the strait of Gibraltar. In addition, we included stations 4, 7, 18, and 30 located on the main current 
system in the Mediterranean Sea (Figure  2—figure supplement 2). As the Tara Oceans samples 
within the subtropical gyre of the North Atlantic and in the Mediterranean Sea were all collected in 
winter, seasonal variations should not play a role in the variability in community composition that we 
observed (see Supplementary Table 2). We calculated genomic e-folding times (the time after which 
the detected genomic similarity between plankton communities changes by 63%) over scales from 
months to years based on an exponential fit of metagenomic dissimilarity to Tmin with the form y = C0 
e−x/τ (where C0 is a constant and τ is the folding time). Exponential fits for size fractions 0–0.2 µm and 
5–20 µm were not calculated due to an insufficient number of sampled stations in the North Atlantic 
(Appendix 6).
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The synthetic map (Figure  2—figure supplement 2a) was generated with the R packages 
maps_3.0.0.2, mapproj 1.2.4, gplots_2.17.0, and mapplots_1.5. We derived dynamic sea surface 
height from the Csiro Atlas of Regional Seas (CARS2009, http://www.cmar.csiro.au/cars) using the ​
hgt2000_​cars2009a.​nc file and plotted with the R package RNetCDF.

Imaging methods
Plankton were also collected using WP2 (200  µm mesh) nets, using vertical tows (0–100  m), and 
preserved with borax-buffered formaldehyde. Taxonomic classification was performed using the 
ZooScan imaging system (Gorsky et al., 2010) and identified with an automatic recognition algo-
rithm to the finest possible taxonomic resolution using Ecotaxa (Picheral et al., 2017) . The resulting 
identifications were manually visualized by taxonomic specialists and either validated or corrected. 
Resolution of the taxonomic identifications depended on morphological heterogeneity within taxo-
nomic groups. Hence, identifications reached different taxonomic levels, from species to phylum, 
and most of them reached family level. All images and their taxonomic assignation are accessible 
within Ecotaxa (https://ecotaxa.obs-vlfr.fr/prj/377). Since all genomic data were collected during day 
time, we restricted our analysis on day-collected samples. We also discarded non-living objects in our 
analyses. We estimated β-diversity by calculating Bray-Curtis dissimilarities between pairs of stations 
based on the relative abundances of each annotated taxonomic unit. Bray-Curtis dissimilarities are 
available as Supplementary Table 17.

MAGs analysis
MAG relative abundances in metagenomic samples were retrieved from Delmont et al., 2022a. β-di-
versity was estimated by calculating the Bray-Curtis dissimilarities between pairs of stations based on 
the relative abundances of each of the 713 MAGs calculated by read mapping in the metagenomes of 
size fraction 20–180 µm (the size fraction in which MAGs recruit the largest relative share of all reads). 
We represented PCoA-RGB color of the Bray-Curtis dissimilarity matrix for each sample on a world 
map (Figure 1—figure supplement 4g) following the methodology described above. The Spearman 
ρ correlation coefficient was calculated between MAG-based β-diversity and metagenomic-based 
β-diversity from the size fraction 20–180 μm. MAG abundances for the 20–180 µm size fraction are 
available as Dataset 4. MAG-derived Bray-Curtis dissimilarities for the 20–180 µm size fraction are 
available as Supplementary Table 18.

Estimates of percentages of prokaryote reads in eukaryote-enriched 
size fractions, and vice versa
We used MAG read mappings from Delmont et  al., 2022a, Delmont et  al., 2022b to calculate 
percentages of prokaryote reads in eukaryote-enriched size fractions, and vice versa. For each 
eukaryote and prokaryote MAG and for each sample, we used the proportion of reads unambiguously 
mapped to the MAG. For each sample, we next obtained estimates of the percentages of prokaryote 
or eukaryote reads by summing these relative counts for all prokaryote (bacterial or archaeal) or all 
eukaryote MAGs. We discarded samples for which both prokaryote and eukaryote relative counts had 
a zero or negligible sum (<1% of total reads). For the remaining 538 samples, the average percentage 
represents the average across all samples within a given size fraction.
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The following previously published datasets were used:
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https://www.​ncbi.​nlm.​
nih.​gov/​sra/?​term=​
PRJEB16766

NCBI Sequence Read 
Archive, PRJEB16766

Tara Oceans 
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corresponding to size 
fractions for protist

https://www.​ncbi.​nlm.​
nih.​gov/​sra/?​term=​
PRJEB4352

NCBI Sequence Read 
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Tara Oceans 
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2013 Shotgun Sequencing of 
Tara Oceans DNA samples 
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fractions for prokaryotes
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nih.​gov/​sra/?​term=​
PRJEB1787

NCBI Sequence Read 
Archive, PRJEB1787

Tara Oceans 
Consortium

2013 Shotgun Sequencing of 
Tara Oceans DNA samples 
corresponding to size 
fractions for viruses

https://www.​ncbi.​nlm.​
nih.​gov/​sra/?​term=​
PRJEB4419

NCBI Sequence Read 
Archive, PRJEB4419
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Appendix 1
Comparison of metagenomes and OTUs
Metagenomic comparisons reflect fine-scale differences in genome content at the community level 
as a function of diversity, genome size, and organismal abundance, and also depend on the rate 
of evolution of each specific lineage. With exhaustive sampling, metagenomic dissimilarity could 
theoretically distinguish among genomes in a sample separated by a single mutation. However, our 
metagenomic sequencing level was likely not able to reach saturation due to the number of genomes 
per sample and their putative large size (metatranscriptomes, which contain fewer sequences per 
species than do metagenomes, did not reach saturation within Tara Oceans samples Carradec et al., 
2018). For example, if for a pair of samples we sequence 50% of the total amount of the unique 
genomic DNA present, we expect the maximum similarity of the two samples to be roughly 25% (0.5 
× 0.5). Therefore, the pairwise metagenomic dissimilarities we calculated between samples probably 
reflected a combination of genomic differences weighted toward more abundant organisms. In 
contrast, OTUs, obtained by sequencing single marker genes, approach biodiversity saturation (de 
Vargas et al., 2015; Roux et al., 2016; Sunagawa et al., 2015). However, OTU resolution depends 
on the choice of the marker to be used, the threshold of similarity for the marker, and its lineage-
specific substitution rate, and may therefore confound evolutionarily and/or ecologically distant 
organisms (Piganeau et al., 2011; Seeleuthner et al., 2018; Vannier et al., 2016; Worden et al., 
2009; Wu et al., 2015). We observed a significant agreement between the two proxies (Figure 1—
figure supplement 2), although dissimilarities based on OTUs were generally lower than those 
computed from metagenomic data (Figure 1—figure supplement 3 a).

Analyses of plankton biogeography produced consistent results based on metagenomic and OTU 
data (Figure 1—figure supplement 4, Figure 1—figure supplement 5, Figure 2—figure supplement 
1, Figure 3—figure supplement 1). For simplicity, in the main text, we chose to highlight results 
based on metagenomes rather than on OTUs for three reasons. First, the metagenomic sequencing 
protocol and subsequent measurement of dissimilarity were uniform across size fractions, whereas 
OTUs were defined differently for the viral-enriched, bacterial-enriched and eukaryote-enriched size 
fractions (Materials and methods). Second, the biogeographical patterns we obtained (see below) 
may be more evident in comparisons among metagenomic sequences (our data source in identifying 
genomic provinces), as genomes accumulate single-base changes and other variants more quickly 
than a single ribosomal gene marker. Third, β-diversity estimated by metagenomic dissimilarity 
generally displayed higher correlation values with minimum travel time (Tmin; Figure  2—figure 
supplement 1).

https://doi.org/10.7554/eLife.78129
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Appendix 2
Robustness of genomic provinces
We assessed the robustness of genomic provinces in five separate ways. First, we tested five different 
hierarchical clustering algorithms from the R-package pvclust_1.3–2 (Suzuki and Shimodaira, 2006; 
UPGMA; McQuitty’s method; Complete linkage; Ward’s method; Single linkage) on the metagenomic 
pairwise dissimilarities produced by Simka separately for the six organismal size fractions, followed 
by multiscale bootstrap resampling. We used the cophenetic correlation coefficient from the R-
package dendextend_1.5.2 (Galili, 2015) to measure how accurately the dendrograms produced 
by each method preserved the pairwise distances within the input dissimilarity matrices (Sneath 
and Sokal, 1973; Sokal and Rohlf, 1962). The ranking of the cophenetic correlation coefficient for 
different clustering methods within each size fraction (Supplementary Table 19) was consistent with 
a published large-scale methodological comparison of clustering methods for biogeography, which 
considered UPGMA agglomerative hierarchical clustering to have consistently the best performance 
(Kreft and Jetz, 2010). Second, we compared clustering results among all size fractions using Baker’s 
Gamma Index (Baker and Hubert, 1975) from the R-package corrplot_0.77 (Wei and Simko, 2016), 
which is a measure of association (similarity) between two trees based on hierarchical clustering 
(dendrograms). The Baker’s Gamma Index is defined as the rank correlation between the stages at 
which pairs of objects combine in each of the two trees. For each type of correlation, the UPGMA 
was consistently the most correlated with other clustering methods (Supplementary Table 20). This 
allowed us to conclude, in agreement with previous results (Kreft and Jetz, 2010), that the UPGMA 
method is likely more robust than the other methods we tested.

Third, we compared the genomic provinces found by our UPGMA hierarchical clustering 
approach to those found by two different non-hierarchical methods: K-means on the positions found 
by multidimensional scaling and spectral clustering on the nearest-neighbor graph. Both methods 
rely on (i) a dissimilarity matrix and (ii) a tuning parameter (dimension of the projection space for 
K-means, and number of neighbors for spectral clustering). K-means uses the numeric values of the 
dissimilarities, whereas spectral relies only on their ordering (e.g. community A is closer to B than 
to C). We compared the genomic provinces to clusters found by K-means and spectral clustering 
for all values of the tuning parameter using the Rand Index (RI; from the GARI function of the loe R 
package version 1.1 Terada and Luxburg, 2016), a score of agreement between partitions. Results 
are reported as mean ± SD of the RI: 1 means perfect agreement and 0 complete disagreement. 
Fourth, in order to assess the significance of the genomic provinces, we performed a multivariate 
ANOVA to partition metagenomic dissimilarity across regions, using the adonis function of the vegan 
R package version 2.5–4 (Oksanen et al., 2019). Note, however, that since the same data were used 
both to construct the genomic provinces and to assess their significance, the p-values estimated by 
ADONIS might be anti-conservative. The results of the third and fourth analyses are presented in 
Supplementary Table 21.

Fifth, we found that clustering of samples in genomic provinces was consistent with a 
complementary visualization based on the same data: RGB colors derived from the first three axes 
of a principal coordinates analysis (PCoA-RGB) of β-diversity, in which similar colors represent similar 
communities (Figure 1—figure supplement 4; see Methods). Samples within the same genomic 
province generally shared the same range of PCoA-RGB colors. Because the clustering approach 
was hierarchical, samples sharing some similarity could have been assigned to different genomic 
provinces due to binary decisions during the clustering process. This was also reflected in the PCoA-
RGB colors, where the boundaries of genomic provinces did not indicate a complete change of 
communities among genomic provinces (and, conversely, belonging to the same genomic province 
did not imply identical communities). Nonetheless, samples with similar PCoA-RGB colors were 
generally situated in closely-related branches in the UPGMA tree (Figure 1—figure supplement 
6). An illustrative example is genomic province F5 (of the 180–2000 µm size fraction; Figure 1—
figure supplement 4f), which encompassed stations in the Atlantic, Mediterranean Sea and some 
subtropical stations in the Indo-Pacific. In this wide region, the PCoA-RGB colors indicate the 
variation in community composition within the genomic province, and also reflect the relatedness 
of F5 to its adjacent samples, in particular those in the subtropical Atlantic/Pacific region F4, its 
neighbor in the UPGMA tree (Figure 1—figure supplement 6f).

https://doi.org/10.7554/eLife.78129
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Appendix 3
Comparison of genomic provinces to previous biogeographical 
divisions
Current approaches in biogeographic theory divide the ocean into regions based either on expert 
knowledge applied to satellite data, as in the hierarchical nesting by Longhurst, 2006 into biomes 
(macroscale, essentially representing a division of the world’s oceans into cold and warm waters, 
and coastal upwelling zones) and biogeochemical provinces (BGCPs, areas within biomes defined by 
observable boundaries and predicted ecological characteristics), or, alternatively, into the objective 
provinces of Oliver and Irwin, 2008, which are based solely on statistical analyses. Longhurst BGCPs 
are based upon, primarily, monthly variations of chlorophyll a, the geography of the seasonal cycle of 
physical factors (such as the depth of the upper ocean mixed layer) and surface temperatures. In turn, 
these ocean properties are strongly modulated by oceanic currents (e.g. moderate to large mixed 
layer depths are observed generally on the poleward side of the subtropical gyres). In contrast, 
the objective global ocean biogeographic provinces proposed by Oliver and Irwin, 2008 were 
based upon clustering temporal variability of chlorophyll concentration and surface temperatures, 
both measured from satellite data. They combined a proxy for the intensity of primary productivity 
with water temperature, therefore emphasizing regions similar in their temporal variability for both 
properties (which essentially corresponds to the seasonal cycle). None of these ocean partitions 
directly considered organismal community composition.

We tested whether genomic provinces were comparable with these partitions by performing 
an analysis of similarity (ANOSIM; Figure 1—figure supplement 4a-f, insets; Methods). The four 
small size classes, 0–0.2 µm, 0.22–1.6/3 µm, 0.8–5 µm, and 5–20 µm (Figure 1—figure supplement 
4a-d) were more consistent with Longhurst BGCPs. In contrast, for the two larger size fractions 
20–180 µm and 180–2000 µm, the three biogeographical divisions were not strongly different within 
the ANOSIM (Figure 1—figure supplement 4e-f).

From an oceanographic point of view, plankton should be quasi-neutrally redistributed (i.e. 
homogenized) by currents and their biogeography should follow the structure of the main 
recirculations, within a range of physiologically compatible temperatures. In this point of view, our 
results are consistent with the large-scale geographic distributions found by Hellweger et al., 2014 
using a neutral model.

Although our analyses of the influence of transport and other environmental conditions on 
plankton biogeography are focused on surface samples (the depth at which our simulations of 
transport was conducted), we included samples collected at the DCM in our genomic provinces in 
order to produce a broader description of plankton biogeography. In general, samples at the surface 
and DCM from the same station clustered together in the same genomic provinces, although we 
observed a minority of cases in which surface and DCM samples from the same station were found 
in different genomic provinces, and even a few genomic provinces composed only of DCM samples 
(e.g. C6 in the 0.8–5 µm size fraction; Figure 1—figure supplement 4).

https://doi.org/10.7554/eLife.78129
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Appendix 4
Differences in genomic province sizes among organismal size fractions
Globally, we obtained more numerous, smaller genomic provinces in the smaller size fractions 
and fewer, larger genomic provinces in the larger size fractions (Figure  1—figure supplement 
4, Figure 1—figure supplement 7). We observed a similar pattern using OTU data (Figure 1—
figure supplement 5). Whereas smaller size fractions generally lacked geographically widespread 
genomic provinces containing numerous Tara Oceans samples, the two largest size fractions were 
both characterized by two very widespread genomic provinces: F5 and F8 for the 180–2000 µm 
size fraction, and E5 and E6 for the 20–180 µm size fraction. These large genomic provinces were 
latitudinally limited by the boundary between the subtropics and subpolar regions, and spanned 
different oceanic basins. Notably, in the southern hemisphere the subtropical gyres actually form 
a single supergyre (Speich et al., 2007) and there are almost no metabolic (mainly temperature) 
barriers between the northern and southern subtropical gyres (see Figure 1—figure supplement 
4), potentially explaining genomic provinces in the 20–180 µm and 180–2000 µm size fraction that 
contain samples from the North and South Atlantic. For example, in the 180–2000 µm size fraction, 
F5 mostly covered the North and South Atlantic Oceans and adjacent systems, and F8 covered 
the Indo-Pacific low- and mid-latitudes. No clear correspondence existed with biogeochemical 
patterns (e.g. nutrient ratios), except for the clusters coinciding with upwelling systems (F3 for the 
California upwelling, F7 for the Chile-Peru upwelling, and F2 for the Benguela upwelling system) 
and for the samples collected at the DCM in the Pacific subtropical gyres (F5); this is consistent 
with the comparison of genomic provinces to previous biographical divisions, in which the genomic 
provinces of smaller size fractions were more consistent with Longhurst BGCPs, but those of 
larger size fractions were not (Appendix 3). A bimodal zooplankton species distribution (split into 
subtropical and subpolar communities, with ubiquitous warm water species) was also detected by 
a recent study on copepod population dynamics that used alternative approaches to analyze the 
same metagenomic data set (Madoui et  al., 2017) (see their Figure 2). More locally, within the 
North Atlantic (see also Appendix 6), along the northern boundary of the subtropical gyre, cold and 
warm copepod species overlapped because of cross-current dispersal. Nonetheless, although both 
cold and warm species appeared to be able to travel long distances, mixing among them was not 
sufficient to create a local genomic province in our data.

We interpret the difference in genomic province sizes between smaller and larger size fractions as 
the result of various factors. Plankton smaller than 20 µm (femto-, pico-, and nanoplankton), which 
represent most of the prokaryotic and eukaryotic phototrophs (de Vargas et al., 2015; Sunagawa 
et  al., 2015), are sensitive to a suite of environmental factors (i.e. temperature [Eppley, 1972], 
nutrients, and trace elements [Moore et al., 2013]; see also Figure 1—figure supplement 7) and 
generally have a shorter life cycle, together leading to faster fluctuations in their relative abundance 
in the communities we sampled. In contrast, larger plankton have longer life cycles and, if they 
are predators that are not strongly selective in their feeding, or are photosymbiotic hosts capable 
of partnering with multiple different symbionts, may cope with local fluctuations in environmental 
conditions. Therefore, they should be affected primarily by large scale, mostly latitudinal, variations 
in the environment, leading to larger genomic provinces, whereas smaller plankton are grouped 
into smaller provinces more influenced by local environmental conditions. Overall, this difference in 
biogeography suggests a size-based decoupling between smaller and larger plankton (which may 
also extend to nekton such as tuna and billfish; Reygondeau et al., 2012), with implications for the 
structure and function of oceanic food webs and other types of biotic interactions.

https://doi.org/10.7554/eLife.78129
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Appendix 5
Genomic provinces as stable ecological continua
As plankton communities are transported by ocean currents, they change over time due to the 
various processes that occur in the context of the seascape: variations in temperature, light and 
nutrients (where changes in the latter may also be induced by plankton communities), intra- and 
interindividual and species biological interactions, and mixing with neighboring water masses. 
Thus, a continuum of composition among nearby samples is expected as a natural consequence of 
community turnover within the seascape over time. We observed the effects of continuous turnover 
in our biogeographical analyses (Figure  1 a, Figure  1—figure supplement 4, Figure  1—figure 
supplement 5, Appendix 2) in which nearby samples often reflected gradual, but not complete 
changes in community composition.

We measured the time window of transport by currents separating two samples during which 
the changes in their community composition were maximally correlated with travel time, resulting 
in a global average of Tmin less than roughly 1.5 years. This represents the travel time during which 
predictable continuous turnover occurs in our data set. This time scale of 1.5  years is probably 
an underestimate, since our sparse sampling did not cover all current systems. Notably, Tmin does 
not necessarily define the turnover rate itself, which depends on how strongly different seascape 
processes affect communities with differing biological characteristics (see Appendix 6).

https://doi.org/10.7554/eLife.78129
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Appendix 6
Community turnover in the North Atlantic
In order to characterize the impact of physical and biological processes on changes in metagenomic 
composition during travel along currents, we focused on the well-known current systems crossing the 
North Atlantic into the Mediterranean Sea (the Gulf Stream and other currents around the subtropical 
gyre Dornelas et al., 2014; Fofonoff, 1981; Franklin, 1786; Talley et al., 2011; Figure 2—figure 
supplement 2a). Across this region, the piconanoplankton (0.8–5 µm) were split into three genomic 
provinces, C5, C8, and C3, each less than 5000 km wide (~11 months of travel time; Figure 1—
figure supplement 4c). In contrast, mesoplankton (180–2000 µm) biogeography corresponded to 
a single province, F5, spanning from the Caribbean to Cyprus (>9700 km or ~18 months of travel 
time; Figure 1—figure supplement 4f; see also Appendix 4). Metagenomic dissimilarity and Tmin 
were strongly correlated within the region (Spearman’s ρ between 0.44 and 0.86 depending on 
size fraction, Figure 2—figure supplement 2b-e), which allowed us to explore the relationship of 
genomic province size, ocean transport, and plankton community turnover over scales from months 
to years. We calculated metagenomic turnover times as e-folding times based on an exponential 
fit of metagenomic dissimilarity to Tmin (ranging from a few months to a few years, Methods). The 
metagenomic turnover time of smaller plankton (<20 µm) was approximately 1 year. In contrast, for 
the larger size fractions, the metagenomic turnover time was approximately 2 years, suggesting that 
a lower turnover rate for larger plankton may explain their geographically larger genomic provinces.

We note that our results on metagenomic turnover time appear different from a recently published 
study that also calculated turnover rates for plankton, which found faster rates for larger organisms 
(Villarino et al., 2018). This may be explained by two significant differences between our approach 
and theirs: first, their measurements of β-diversity were based on presence/absence (Jaccard) 
comparisons among either morphological species or OTUs, whereas our calculations of turnover 
time above were based on metagenomic sequences. As described above (Appendix 1), there are 
significant differences in resolution between OTU-based and metagenomic data, and we would 
expect similar differences in resolution between organismal observation data and metagenomic 
sequences. In fact, due to these differences in resolution, our estimates of metagenomic turnover 
based on OTU rather than metagenomic data show a similar trend to those of (Villarino et  al., 
2018; Figure 2—figure supplement 2f-i). Second, their turnover rates were calculated separately 
for individual plankton groups (the nine main groups were prokaryotes, coccolithophores, 
dinoflagellates, diatoms, all microbial eukaryotes, gelatinous zooplankton, mesozooplankton, 
macrozooplankton, and myctophids), whereas our metagenomic data represent samples of the full 
plankton community within each size fraction. Among these, several groups (e.g. dinoflagellates 
or mesozooplankton) would be expected to be found across multiple Tara Oceans size fractions, 
blurring potential comparisons. Thus, our study and Villarino et al. calculated rates of change using 
broadly similar approaches, but based on very different underlying biological substrates.

https://doi.org/10.7554/eLife.78129
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Appendix 7
Plankton biogeography is robust to missing samples
Although many individual Tara Oceans stations are missing metagenomic or metabarcode sequencing 
data for a subset of size fractions (Figure 1—figure supplement 1b), all oceanic regions have broad 
coverage for each size fraction, with the exception of the viral-enriched size fraction in the North 
Atlantic. In fact, the largest source of missing data in our study is due to limited sampling of the viral-
enriched size fraction in this region. Nevertheless, we found a pattern for organismal biogeography 
and for its relation with transport time that is not dependent on the size fraction, and therefore also 
does not depend on the particular size fractions sampled at specific set of sampling sites. In our 
analyses, we found a consistently similar patterns across the four smaller size fractions (each fraction 
was sampled and analyzed independently from the others) as opposed to the two larger ones. In 
addition, for our results relating to ocean transport time, the fact that the sampling sites are not 
exactly the same among size fractions actually lends robustness to our results, since it means that the 
dynamics we found are not overly dependent on any one selected site, region, or subset of sampling 
stations.

https://doi.org/10.7554/eLife.78129
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