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Abstract

We present a method based on hierarchical self-organizing maps (SOMs) for recognizing patterns in protein se-
quences. The method is fully automatic, does not require prealigned sequences, is insensitive to redundancy in
the training set, and works surprisingly well even with small learning sets. Because it uses unsupervised neural net-
works, it is able to extract patterns that are not present in all of the unaligned sequences of the learning set. The
identification of these patterns in sequence databases is sensitive and efficient.

The procedure comprises three main training stages. In the first stage, one SOM is trained to extract common
features from the set of unaligned learning sequences. A feature is a number of ungapped sequence segments (usu-
ally 4-16 residues long) that are similar to segments in most of the sequences of the learning set according to an
initial similarity matrix. In the second training stage, the recognition of each individual feature is refined by se-
lecting an optimal weighting matrix out of a variety of existing amino acid similarity matrices. In a third stage
of the SOM procedure, the position of the features in the individual sequences is learned. This allows for vari-
ants with feature repeats and feature shuffling.

The procedure has been successfully applied to a number of notoriously difficult cases with distinct recogni-
tion problems: helix-turn-helix motifs in DNA-binding proteins, the CUB domain of developmentally regulated
proteins, and the superfamily of ribokinases. A comparison with the established database search procedure PRO-
FILE (and with several others} led to the conclusion that the new automatic method performs satisfactorily.
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In sequencing projects, a database search for similar sequences
is an inexpensive first attempt at suggesting the biological func-
tion of newly sequenced primary structures. More and more se-
quences are assignable to families, and there are a number of
published procedures for the heuristic recognition of local se-
quence patterns using the information inherent in a set of related
specimens or in a consensus model. All such strategies have a
circularity problem, however, in that pattern recognition pre-
supposes a valid alignment of the sequences, whereas the con-
struction of an alignment requires previous knowledge of the
pattern. Although in the case of a very clear-cut and distinct pat-
tern this difficulty may be alleviated by a skillful iteration pro-
cedure, serious problems may arise when one or several of the
following situations apply: the presence of a fuzzy pattern (dif-
ficult to distinguish from noise), very liberal alignment (too
many possible insertions/deletions), or undersampling (prohib-
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iting statistical analysis of pattern elements). An additional and
very common practical problem is that extensive searches in vo-
luminous databases become prohibitive, because unrelated noise
accumulates even in the neighborhood of true samples, and au-
tomatic routines become time-consuming and dependent on la-
borious interactive decisions after inspection of intermediary
results. The most popular search method (Gribskov et al., 1987,
1990; Liithy et al., 1994) is essentially a statistical approach that
requires a preset alignment and derives pattern descriptors from
the single-position frequency of amino acids, combined with
downweighting of redundant sequences and evaluation accord-
ing to a mutation table. A different strategy (Smith et al., 1950;
Henikoff & Henikoff, 1991; Neuwald & Green, 1994; Tatusov
et al., 1994) circumvents the intricate alignment and looks in-
stead for ungapped partial blocks whose common presence leads
to the identification of a motif.

Pattern recognition in biopolymer sequences is a task that may
be tackled with a recently developed class of algorithms based
on distributed computational capability (Rumelhart & McClel-
land, 1986; Hertz et al., 1991). These methods are known as ar-
tificial neural networks (ANN). In one variant, the learning
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program is called “supervised,” because it is confronted with two
or several classes of objects, each of them carrying its unique
class pertinence as a label. The goal is to learn correct classifi-
cation of objects. In a second variant, named “unsupervised,”
the learning process includes both definition of classes and their
correct classification. ANNs that learn under supervision have
been applied to prediction of secondary structure from the in-
formation supplied by a database of known structures (Bohr
et al., 1988; Qian & Sejnowski, 1988; McGregor et al., 1989;
Rost & Sander, 1994), and also in motif definition and recog-
nition in protein sequences (Bengio & Pouliot, 1990; Hirst &
Sternberg, 1991; Frishman & Argos, 1992).

An unsupervised, self-classifying strategy is appropriate for
treatment of patterns. It may support or even replace the often
dubious previous definition (including classification and align-
ment) of patterns. This paper proposes the use of Kohonen maps
(1989, 1990) for this purpose. These are self-organizing neural
networks that compress a more or less compact training set of
high-dimensional vectors to low-dimensional ones, arranging
them on a (usually two-dimensional) map. Such a strategy has
the advantage of tolerating low accuracy of signal representa-
tion and of synaptic weights. The approach has been applied to
detecting signal peptides (Arrigo et al., 1991) and to clustering
protein sequences into families according to their degree of se-
quence kinship (Ferran & Ferrara, 1991).

Here we want to apply Kohonen maps to the task of motif
definition in a training set and to subsequent recognition of
query objects. In contrast to previous applications, but by anal-
ogy with brain functional mapping, we arrange Kohonen maps
in a hierarchic structure of self-organizing maps (SOMs). We
chop all sample sequences into the set of constituent words
(4-16 letters, a selectable parameter), encode them as a property-
describing or scoring vector, and present this information to an
unsupervised self-organizing Kohonen map. This leads to a map
in which words are portrayed and agglomerate locally (as fea-
tures, a feature being a characteristic subsequence occurring in
the set) according to their similarity. Each feature so obtained
is introduced into a tuning procedure that takes place in a sec-
ond “floor” of Kohonen maps, which selects the “best” evalu-
ation principle for that class of objects (emphasizing, for
example, evolutionary relationship, physicochemical properties
of residues, information content, or structural propensity). Only
after this step is the position of the feature specimens in the se-
quence block considered; if desirable, a common alignment is
then suggested. The ordering of partial stages is to some extent
similar to the procedure applied in a different context by Pear-
son and Lipman (1988), which first finds accumulations of small
“tuples” in order to align them afterward. The strategy involv-
ing Kohonen maps as presented here is applicable to motif fam-
ilies with sequence lengths of more than 15 residues.

We tested this method on several sets of sample proteins (dif-
ficult cases, different types of problems) and compared it to
other methods.

Results

We examined the performance of a set of hierarchic arrayed
Kohonen maps at the recognition of subtle motifs in protein se-
quences. The search strategy, as described in the Materials and
methods, involves three stages: (1) finding features in chopped
sequences; (2) tightening pattern definition; and (3) evaluating
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the occurrence, array, and position of features. We did three se-
ries of studies, taking notoriously intricate test problems from
the literature, and compared the performance of our SOM hi-
erarchy with that of some well-established recognition methods.

Helix-turn-helix motif in DNA-binding proteins

The helix-turn-helix (HTH) motif belongs to a class of protein
sequences that are bacterial transcription factors or similar pro-
teins (Brennan & Matthews, 1989; Anderson, 1992; Dodd &
Egan, 1990; Chapter 7 of Branden & Tooze, 1991; Pabo &
Sauer, 1992). The HTH motif is the site that binds to regula-
tory sites at DNA. It is about 20 amino acid residues long, and
there is 3D structural information available. There is no align-
ment problem between most of the specimens, because the two
helices and the short turn in between are superimposable with-
out gaps. On the other hand, the sequence information is ex-
tremely fuzzy, because a wide spectrum of only slightly related
sequence variants is compatible with the requirement of a HTH
structure. The PROSITE database (release 12) lists several hun-
dred sequences classified into 10 families with different sequence
“signatures.”

In addition to the bacterial transcription factors, there is a fur-
ther superfamily of many hundred sequences of approximately
the same length, originating in eukaryotic sources: the so-called
“homeodomains” or “homeoboxes” (Chapter 8 of Branden &
Tooze, 1991; Pabo & Sauer, 1992; Treisman et al., 1992). They
perform a similar regulatory function and also contain a HTH
motif. Structural information is likewise available. The HTH
motif of homeoboxes is in the twilight region of similarity to the
bacterial transcription factors, and they may be aligned together.

Recognition and analysis of the HTH motifs is a very tough
matter that has led to much controversy (Yudkin, 1987, 1988;
Dodd & Egan, 1988, 1990; Lawrence et al., 1993). We took a
subset of HTH motifs as selected and studied in detail by Law-
rence et al. (1993) and Neuwald and Green (1994). The neural
networks were trained on this set to identify these and other
HTH motifs in the whole protein sequence database.

The training set consisted of 12 HTH patterns (each 20 amino
acids long) and included 1 homeobox and 11 bacterial transcrip-
tion sites. These motif examples are so diverse that none of the
mutual pairwise PAM120 scores surpassed a value of 35, which
is a faint similarity at best.

The SOM procedure chopped each of the 12 learning se-
quences into five tetrapeptides, collected them in five files, and
subjected each file to the learning cycle of a specialized Koho-
nen map. The map contained 16 neurons; that is, slightly more
than the number of sequence segments. After training, we per-
formed a run through the SWISSPROT database (Bairoch &
Boeckmann, 1993) and collected in every 20-window of all se-
quences the quantization error (q.e.) (a distance measure) re-
ported by the five maps. A file was collected of all 20-windows
where the five maps reported a moderately low q.e. (threshold:
positive if < 3.0). The results (Table 1) may be summarized as
follows:

1. All training sequences were retrieved as a set of positive re-
ports from all five maps with extremely low q.e. (<0.003). This
means that they all were redetected with high fidelity (which is
no surprise, because the neurons were numerous enough to
“learn by heart”).
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Table 1. Self-organizing hierarchic networks for
pattern recognition in protein sequence

ID Position N, N, N3 Ny N5

NIFA_KLEPN 495  0.0003 0.0001 0.0001 0.0001 0.0004

HMAN_DROME 326 0.0002 0.001 0.0001 0.0001 0.0004
DICA _ECOLI 22 0.002 0.001 0.0001 0.002 0.004
DNIV_ECOLI1 160 0.003 0.0003 0.001 0.0002 0.0001
DEOR_ECOLI 23 0.002 0.0002 0.001 0.0002 0.0002
ARAC_ECOLI 196  0.0002 0.004 0.001 0.001 0.002
NAHR_PESPU 22 0.001 0.002 0.0003 0.0001 0.0002
MERD_SERMA 5 0.001 0.0004 0.003 0.0001 0.0004
FIS_ECOLI 73 0.003 0.0003 0.002 0.002 0.0003
RPC2_LAMBD 25 0.0001 0.002 0.0001 0.0002 0.0001
RP32_ECOLI 252 0.002 0.0001 0.0001 0.001 0.001
LEXA_ECOLI 27 0.0001 0.0001 0.002 0.0003 0.0001
RPSK_BASCU 94 0.8 0.8 0.14 1.2 1.1
RPSB_BASCU 223 0.9 1.9 0.14 0.9 0.7
NTRC_BRASR 449 1.2 1.0 0.64 1.05 0.82
MTAI1_YEAST 99 1.1 0.6 0.6 1.6 0.4
CRP_ECOLI 169 0.9 1.9 1.1 0.9 1.4
RCRO_LAMBD 15 09 0.9 I.1 0.8 1.1
RCRO_BPP22 12 1.1 0.6 0.1 1.1 0.4
FNR_ECOLI 196 1.4 1.5 0.0001 1.0 0.7
NTRC_KLEPN 444 1.2 0.0001 1.0 1.0 0.8
CYTR_ECOLI 11 0.8 1.0 0.9 1.1 0.7
GALR_ECOLI 3 09 1.0 0.001 1.2 1.0
LACI_ECOLI 5 1.3 0.9 0.001 1.2 1.4
TER2_ECOLI 26 0.9 0.6 0.8 0.8 1.1
TRPR_ECOLI 67 0.8 1.3 1.4 1.2 1.6
RPSE_BASCU 205 0.8 1.2 0.4 1.0 0.7
PURR_ECOLI 3 1.0 0.4 1.1 1.0 0.9
EBGR_ECOLI 3 06 0.9 0.0001 0.7 1.1
RPC1_BP22 25 0.9 1.0 0.4 0.6 0.0004
HXA7_XENLA 27 1.1 0.7 1.5 1.2 1.4
HMAA_DROME 164 0.8 1.4 1.2 1.1 2.5
HXB6_HUMAN 172 1.1 0.8 1.5 1.8 1.2
HMAN_DROME 323 1.2 1.3 2.3 1.0 1.7
HM90_APIME 34 1.6 1.2 1.1 1.2 1.5
HMSC_APIME 34 1.4 1.2 1.4 1.7 1.8
HXB5_HUMAN 220 0.9 1.8 2.3 2.1 1.9
HXAS5_MOUSE 221 1.0 1.9 2.1 2.4 2.1
HXB4_MOUSE 187 1.2 1.5 2.3 2.4 2.2
HXB7_HUMAN 163 1.3 1.7 2.6 2.3 2.1
HXC6_MOUSE 167 2.2 2.1 2.4 2.1 2.5

HXD4_CHICK 170 2.1 2.4 2.5 2.6 2.3
HXB6_CHICK 33 25 2.3 2.6 2.7 2.6

2 Recognition of features contained in HTH patterns of DNA-
binding proteins by a parallel array of SOMs. The first 30 rows of the
table refer to individual HTH patterns from the collection assembled
as a test set by Lawrence et al. (1993). SWISSPROT acronyms are re-
ported in the first column. Column 2 identifies the position of the first
amino acid of the HTH motif (20 residues long) in the complete se-
quence. The upper block of the table displays the 12 patterns used as
a training set, and the 18 patterns in the middle block are the applica-
tion (test) set. Training stage: Each HTH pattern was chopped into five
nonoverlapping 4-words and presented to the corresponding SOM (la-
beled N,-N;) for training. Application stage: All window positions in
the protein database were chopped into five consecutive 4-words and
presented in turn for diagrosis to the trained SOMs. The table shows
the “hits” obtained (identified by q.e. < 3.0 pointing to similarity). It
is evident that each SOM redetected the complete learning set (q.e. <
0.003), which by itself is a difficult task, because of its diversity (see text),
and recognized (with less similarity, g.e. around 1.0) the application test
of bacterial HTH sites (block II). A final block of 13 patterns shows
a subset of additionally detected homeoboxes (q.e. < 3.0). Many fur-
ther binidng sites are detected with a looser acceptance criterion (e.g.,
not all subfeatures require g.e. < 3.0), but then false positives would
also appear.
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2. Such an extremely low q.e. was only occasionally reported
for other sites in SWISSPROT (examples in Table 1, second
block), but never by all five maps.

3. Many bacterial HTHs (in particular, all those of the paper
by Lawrence et al., 1993) showed up with moderately low q.e.
in all five tetrapeptide maps and in proper arrangement (i.e., are
identified as HTHs by the network).

4. Many homeoboxes appeared also at moderately low g.e.
(Table 1, last group), with no suspected false positives in be-
tween (identification of a false positive was not always sure, as
several proteins of unkown function appeared in the list).

We consider this an excellent result. It compares satisfacto-
rily with that of the PROFILE study we undertook with the
same training set. The PROFILE procedure was not only blindly
used: a wide spectrum of parameters was studied, sequence
weights were incorporated, and different evaluation matrices
were applied as described by Liithy et al. (1994).

The result of a PROFILE search through SWISSPROT was
in all cases essentially the same (not much influenced by vari-
ants of technique). A list of around 100 window sites appeared
with high to moderate Z scores (>5.0, pointing to similarity with
the profile). The profile identified mainly homeoboxes (very nu-
merous in the database); many fewer of the equally numerous
bacterial sites were identified (although they made up 11 of the
12 training HTHs). There were always a few definite false pos-
itives interspersed with the true positives (some of them with high
Z scores), which is an indication that the “detection radius” of
the profile is so large that a number of fortuitous hits appear,
pointing to the high “volume” of the loose HTH cluster. The
12 training sequences were typically retrieved only partly: usu-
ally about one third with a high Z score, one third with a mod-
erate Z score (dubious statistical significance), and one third with
a clear “random score,” sometimes below 2.0.

We also performed a database search with the HTH profile
obtained from 21 sequences by Gribskov et al. (1990) as avail-
able in the public domain. The resuit was a similar list of about
100 HTHSs with significant Z scores. [ts composition emphasized
the bacterial origin of the profile: more bacterial transcription
factors, only a few homeoboxes, again a few dubious or false
positives, and again the typical fact that only part (10 of 21) of
the input sequences to the file were retrieved with high Z scores.

The fact that a profile retrieves only part of its own input is
the clearest indication that HTH motifs are only loosely simi-
lar. The profile constructs the analogon of a “center of gravity”
of a family, and it can retrieve only those input sequences that
are close enough to the bulk. Weighting (Liithy et al., 1994) may
somewhat redress the effect, but it cannot change the large dis-
tance of the periphery from the center of gravity.

By contrast, the SOM has a special property here. It can
“learn” a distant HTH with the same precision as a central one.
Therefore, the input sample members and their closest relatives
are always redetected with high fidelity, and hits by pure ran-
dom coincidence have a much smaller chance of getting a low
q.e. in all partial maps. Chopping an alignment into oligopep-
tides increases this effect, as we concluded from an experiment
with training one Kohonen map by the full HTH motif (20
amino acids). This attempt produced a worse separation of HTH
variants and non-HTHSs. A further experiment was designed to
detect HTH motifs without specifying their position in the to-
tal protein sequence. Even in this case, the “feature-extraction”
method was able to recognize the motifs in 7 of 12 cases.
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For comparative purposes, we undertook a retrieval study of
HTH patterns with the program BLIMPS, available in the pub-
lic domain (Wallace & Henikoff, 1992). This program is block-
oriented and therefore suitable for diagnosis of cases where there
is a well-conserved substructure in the family. The result con-
firmed what the ASSET study (Neuwald & Green, 1994) had
concluded already. Four of the 12 representative motifs were
redetected by BLIMPS (the output contained bacterial DNA-
binding proteins in the first place), and the one homeobox was
also identified, but in two further cases the correct assignment
appeared on the lower part of the list only, and in five cases,
the correct assignment was missed entirely. Again, this result
points to the very vague cluster structure of the HTH region.

Ribokinase family

The ribokinase family is one of several sugar kinase families that
catalyze ATP-dependent phosphorylation of sugars. Bairoch’s
PROSITE database (Bairoch, 1993) lists the current established
set of 22 sequences (between 280 and 430 residues long) under
the name “pfkb-family.” He includes, in the form of regular ex-
pressions, two consensus signatures as typical for this set. Bork
et al. (1993) have studied this family in more detail. For sequence
searching, the particular intricacy of this motif is that its elemen-
tary features are separated by long unrelated regions of variable
length (up to 150 residues).

Because this conservation pattern is apparently different from
that of the HTH family, we tested an SOM network on this fam-
ily. Only three full-length specimens were used as learning set
(Fig. 1). They were presented without any alignment to a first-
stage map, which distinguished 15 features, and retrained on a
parallel array of 15 second-stage SOMs, resulting in the set of
typical features displayed in Figure 1.

The 15 SOM networks so instructed looked into the whole
SWISSPROT database and found (as a set of maps “flashing,”
as it were, in the correct position) all 22 specimens of the fam-
ily contained in the database. Without second-stage refinement
(by matrix retraining), identification was possible in only 17
cases. The PROFILE software, with a CLUSTAL-W-derived
alignment (Higgins et al., 1992), was also able to “learn” on these
three sequences and produced (without refinement) 19 of 22
specimens present in the database. Also, BLIMPS (Wallace &
Henikoff, 1992) is able to identify three blocks of the ribokinase
family, but not in all cases (a notable exception is LACC_ST
AAU, from which only one of the motifs was found).

Figure 1 shows sections of the sequences and their typical fea-
tures. A part of the 15 features is identical with the two “signa-
tures” of PROSITE and with the conserved blocks of Bork
et al. (1993). These are rather well conserved (Gs, Ds, and Ns
present in all three specimens at identical positions). The other
features as found by SOM are more fuzzy (e.g., only a few res-
idues identical in two of the learning sets, and none identical in
all three). A problem in all standard methods is to find all this
in the bulky learning set without previous alignment. The
oligoword strategy of SOMs performs satisfactorily.

In particular, the extraction of the distantly related INGK _
ECOLI is remarkable. The overall sequence similarity of the 11
features, as identified (see Fig. 1) to any one of its analoga in
the three learning sequences, is in the twilight zone below 25%
letter identity. The identification is complicated by the facts that
the features in INGK_ECOLLI are in completely unrelated po-
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sitions of the sequence and that several features of the training
set are lacking in INGK_ECOLI.

It is noteworthy that, after inclusion of the newly found five
specimens, the block shows much more sequence identity than
the original three ones, suggesting (in a situation where one
would not know this in advance) that a cluster has been collected
rather than just five more random sequences. This ability to
identify rather fuzzy features from an undersampled set (if in-
deed a feature is present) is one of the peculiar capacities of the
Kohonen map hierarchy.

CUB domain

The widespread CUB domain occurs in various developmentally
regulated extracellular proteins and in complement proteins (for
details, see Bork & Beckmann, 1993). It contains nine repeated
feature blocks of length ~6-8 residues, separated by unrelated
variable regions of flexible length (2-8 residues). Only two cys-
teine residues seem to be invariant in all of the 18 modules
present in SWISSPROT, release 31. The secondary structure at-
tained by these patterns has so far not been rigorously deter-
mined, but prediction analysis suggests all 3 structures. The
sequence features are vague, consisting mainly of hydrophobic
and partly aromatic amino acids. A unique multiple alignment
and hence similarity analysis is very difficult to establish. PRO-
FILE was offered a training set of five specimens and found af-
terward 11 of 18 CUB examples present in the database with a
Z score above 6.0 and ahead of the first false positive. We did
not pursue PROFILE further with sophisticated parameters, be-
cause we wanted only to show the CUB problem to be intricate
enough. Our SOM hierarchy, having learned on the same set of
five specimens, detected all 18 sequences in a fully automated
run. Figure 2 shows a detail of the CUB set that illustrates that
three characteristic patterns (7- or 8-words) were found by an
SOM, without previous supervised instruction and without
alignment.

Discussion

Heuristic recognition of patterns in protein sequence sets is a no-
toriously difficult task because different factors influence the
appearance of a sequence: (1) the evolutionary origin of the se-
quence; (2) functional requirements (e.g., the need to form an
active center); and (3) structural demands on the chain (e.g., the
need to form a certain globular structure or to fit into a mem-
brane medium). The sequence contains all this information, but
in a more or less veiled form. Hence, some features in a family
of related proteins may be quite evident (e.g., two cysteine res-
idues at a certain distance), whereas others are extremely fuzzy
or even obscure at the level of primary structure.

There exist a number of procedures for heuristic prediction.
They rely on numerical indicators evaluated for a given position
of the sequence, such as the frequency of an amino acid or
amino acid subgroup (expressing the degree of “conservation”
during evolution), the propensity of a certain amino acid to sup-
port certain structural or functional demands, and the evolution-
ary or functional “distance” between amino acids. In most cases,
a sum of indicator weights over all positions (a “score”) or sim-
ilar statistic is defined for this evaluation. A learning stage (dur-
ing which weights are assigned) may be distinguished from an
application phase (when diagnostic “scores” for candidates are



J. Hanke et al.

76

*saauanbas uonesijdde jo 1wswudye sjdujnw e Jo SIS
-aY1u4s 2y 01 Speaj A[21RWN SIsA[EUE JOJ s3duanbas Fururea] ays jo Surddoyd Teruy Yeyl uads st 3 "(SINPISAL 100} 181y) G pue ‘p1 (1391 242 01 §[ woiy sanp
-1891 2211) BUIPTIOUL) €] $2INTBIJ *p }P0[q Y10d (3ySLI Y1 03 ST WI0IJ sanpisal 32141 snid) [] pue (3J9] Y3 01 §] WO SINPISII Inoj FUIpnoUl) G saInieay ‘¢
¥00[q yIog ‘ST Surpnjour (sanpIsal In0J ISIly) ¢ PUE (SNPISII 1SE] 2UO) T SIINJBIJ ‘7 J20[q Y1og ‘(Snpisai 1se[ 1dadx3) T pue | s2In1es) ‘1 ¥90[q Y10 (s19133]
2211} 158 1d00X3) ST PUE ‘p] ‘(SONpIsal OM] I8y 1d90x3) €] $2INIBD) ‘7 3Injeusis (S Surpnjour ‘(sanprsar 1se] oM 1dadxd) € pue ‘T ‘(aNPISAI 1811} 1dooxd) |
saInieay ‘1 oInyeusis :(s ‘S ‘€661) 1B 1° Y109 Aq paIedIpur A[TWe] 1BY] JO $)}D0]q PIAISSUOD 941 O pue (¢66] ‘Yooireq) sainjeusdts FLISOYd dY? 01 S31n1E3§
341 JO 30UaIRJRY 170 "7 aseury aulsouens autsoul ‘[ TODA~ MONI (702 7 aseupjolnijoydsoyd-g toutw ‘1 7029-7d9Y 702 °'F aseuryolonijoydsoyd-1
17009~ dd 1Y ‘snoudjoumsip orqig onp “TVAIA~MUDS ‘sauado.op pyaisqay oMp ‘NAITN NYDS ‘wninuiydd) pjjpuouw|ng Seuryo1dn)
‘ALTVS ™ MUDS (Snaunp sno020jdydpis aseurjorveedoydsoyd-9 ‘NVVIS DDV 02 Dyo1ayssy aseuyoqul ‘ITODT MSHY SWAUOLE LOUASSIMS
10 uoneue(dxy paziugoda: aq Avw (ST UIIFJIP N JulABy puE SaINIea [BIAIS Fulssiun) saouanbas pare[al AUBRISIP UIAD Tey) UIIS st 11 ‘g ajdwes K1anb
1y "saouanbas 13110 3y U1 113 © Jo uomsod B ut ded JFuls B 10J spuels Wuod Y C[IBISP Ul UMOYS 10U 210j313Y) pue [edtdAl jou (S) suondas Jutuaaiul
10 13Ua] SNPISAI Y] SIBIIPUI SIINJEJ USIMISG SIOqUINN "3InSYy 2y Jo 1red wo110q 3] w jdwexs ue se pausife 316 W) JO AL "SIINIBI] ¢ dY1 JO DUd
-saxd ayy Aq paziugooal qe ‘saouanbas g1 JO 20uasaId SYI pa[BIAIL (1€ ISBI[AI) o183 LOAJSSIMS V "patels dre wayp Sunuasardal 159q saoLIRW JYSom a1
pue ‘ainsy 3y3 jo 1red sjppru ay3 Ul pausye o1e A3y, *saduanbas ay1 jo sisf[eue dew UUOYOY AQ PIIdBIIXD S $3INJBIJ G| J1B SUOTIIAS JIBIP[OQ Y, "3seq
-e1ep 1OUJSSIMS Y? woly uayel saduanbas Fusuiea] a1e do1 dy1 Je saduanbas 2211 3y | “Aelie [d[ered NOS Ue £q juou aseulyoqul Jo uonudoday -1 ‘s

I1aadiIvy T¥9ISYD NLNWI-T-3d99-96-19IdD ¥IDTA-~--~~-————-—-—-—— €C¢Tl-———~——=~——~—=~ SANHWINDI-6T---—--—--- AQQAIAT-8-DHINS - LT-HWIN DILODY
TOVTIOD AJYADYD LIAId-T-AADD-0T-ADNYD OIATA-G-YVIOD-Z-OWHSLS-0T-IMAAIY-Z8-L1IS¥IDDAA-S-L1SL¥0-6-AADADYT-8-dAUONA-FT-AVAN ¥YdVDDJ
IOVTIOV AJIVADYD LLAAY-T-Ad¥YY-0T-ADYED OILATI-9-YNTHV-Z-SAIAAS-0T-TIIVAY-£8-LILNIDHSA-S-ISIHD-6-AADADYT-8-dAADA-FT-AYVAN ¥d¥OOd
THTIRYD ATHAOYD ALSDS-T-TYAD-0T-¥O0dD TSAAA-9-NATID-Z-MMAQAd-0T-TIMONd - Z8-ASYADTOS Y- G- INGUL- 6 -dANIAYT- L-LYDDOY- T-UVAN 1D DDd
IOATITOD AWSAOVD ALSAA-T-ASdd-0T-¥OAYD TSIAA-G-ENTVH-Z-HIAQIK-0T-TIMIN -G8 -NAALATOAA -V -ANIUL-6-VIDTISI- L-NAAOT-FT-AVAN IDAOVY

0Lo1q Z901d 0ZTWYd §L0189 29014 ¥OTAYL [£90714 Noovd 0ZTHYd HOTAV.L z9o1d 0SWYd O0CZTAYd JOTIAYL 9018
ST 141 ET (41 IT 0T 6 8 ' 9 s 4 £ 4 I

ISYTIOV  ALYADYD LIAAS-S-NAHL-8-ADVD MIATI-9-HIASY-Z-AVTIANS -0 T-TIAANY-Z§-I4I1dIDDAA -G ~LSIYH - 6 -ANDEOOT-8-dADOA- Y T-AVAN ¥d¥DDd
IYSIIOV ALSAOSD AdNIA-G-NANA-8-YOOUYD TSAII-8-DSAVD-Z-SATSIA -g-TASIN-6L-TTITLOODI-7-IONUL-6-MIAVHAT-8-"TIDDI-YT-ULAN TOADOV
TYIITYD NALADVY IIAAY-G-dAND-8-AD¥SD TITTIA-S-THIAD-Z-NVYAAd - L-THEVIL-LL-DIANADION-G-ADLSE-6-AINAINT-§-SAADL-F1-AYON V¥DIDDI

! UOTIORIIXD 2IMIES)

ADUNTAEOAI TYIRYONYILLY TYOOLOVILTLIITYINRAIIWONYISVITIOY AdVADYD LIAASYAdYYNIAHLANO

DAVYIADVED MIATTTIdOANALASYIDAVIANSSS I ANTITES THAANVHH TYEA IOV ITIVOAOMIAd ¥ INdAISANDDYS VI SANYYALLS ¥SAAYS TV S DAHTMOOVVAD
dTAFAATITAYS QUARILALEIODAA TIANNLS LNHOAATANH S AAADIOD T LHINA YD AdADDAVO I ADSNOOTIVADAYAN ¥a¥DOHAD0TTIOTSId TTANAYADTAMANYNK
ALTYS MI0S

AT IONATATANNINAZDLOVADYNTAD TINY A TICHONIHNTIVSLIOY ALSADSD AANTIASIIEINAMXALHNHA

VIYDOYD TISATIMAIDTITIOSAYON ISTTSEATIONTIOATISINGNIATINAINATALDTIYOS DATIAIADINDONE T IDVAXAONTONA TS DS IVAVAANATIOFAHNIID
YYAONAIZdODETIALODOTHTI Y IONNLION T NAIVHE IQVHATINY I A0OTHODI IDSYINIEDADYIANIAN TOADONLAS AFOAUNAAATITYLIJAS IANSANTLILTIR
NYVYLS™ OO¥'1

BUATIVAT TTIMIASIDVONHIAVI VYYYHY I I VId TANTITTELITYD NALAOVY ILAAVOANIDAAMODIONASY

MADYSED TIITALYIONIHIADVNVVAEANIAY I OLTYAVILANILI IAATVITIAd TAEYIVANTYATIINOHY I MVYYHAS 21d SHTORTTYS UNY T HTIOVAATYA STYYNY
SYHIDIANIOIONNAII TYADISIONT ASAIL IAINALVIOGUAS IO SAADLOVI IV INYOSUOVYAYON YONODIVAOAHNDIALIDAIAISTINTIHAYNISOTIANTSOYNON
177003 Msgd

LN \O [~ 0

o™

T



Feature mapping of protein sequence patterns

Agn3_Pig
Tld Drome-3
A5p/Xenla-2

Colr_ Human-1
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9 CGGFLKNYSGWISYYKALTTNCVWTIEMKPGHKIILQILPLNLT. .
624 CGGVVDATKSNGSLYSPSYPDVYPNSKQCVWEVVAPPNHAVFLNFSDLEGTRFHY.
147 CSRNFTSSNGVIKSPKYPEKYPNALECTYIIFAPKMQOEIVLEFESFELEADSN, .

17 GSIPIPQRLFGEVTSPLFPKPYPNNFETTTVITVPTGYRVKLVFQQFDLEPSEG. .

Tsg6/Human 135 CGGVFTDPKRIFKSPGFPNEYDDNQICYWHIRLKYGQRIHLSFLDFDLEYDPG. .
GWISYYK TDCIWTIL LQILPLNL
GSLYSPS VEKSWDIE LNFSDLEG
GVIKSPK FETTTVIT LEFESFEL
GEVTSPL TYCYWHFQ LVFQQFDL
. RIFKSPG QICYWHIR LSFLDFDL

feature extraction
feature I feature II feature IIIX

“best* matrix: PAM120 BLOSUMA45 Taylor

Agnl_Pig 9 CGGVLRNYSGRISTYEGPKTDCIWTILAKPGSRVFVAIPYLNLA. .

Cols_BHuman-1 11 AWVYAEPTMYGEILSPNYPQAYPSEVEKSWDIEVPEGYGIHLYFTHLDIELSEN. .

Tld Drome-4 787 CKFEITTSYGVLQSPNYPEDYPRNIYCYWHFQTVLGERIQLTFHDFEVESHQE. .

Awl Pig 9 CGGVLRDPPGKIFNSDGPQKDCVWTIKVKPHFHVVLAIPPINLS. .

Asfp/Bovin 10 CGGILKEESGVIATYYGPKTNCVWTIQMPPEYHVRVSIQYLOQLN. .

Casp_Messau-1 17 ASFSAEPTMHGEILSPNYPQAYPNEMEKTWDIEVPEGFGVRLYFTHLDMELSEN. .

Brpl Human-2 435 CGGDVKKDYGHIQSPNYPDDYRPSKVCIWRIQVSEGFHVGLTFQSFEIERHDS. .

Pl4/Mouse-1 36 CGDTIKITSPSYLTSAGYPHSYPPSQRCEWLIQAPEHYQRIMINFNPHFDLEDRE, .

pl4/Mouse-2 158 CGGDVVTGESGYVASEGFPNLYPPNKKCIWTITVPEGQTVSLSFRVFDMELHPS. .

Pspl_Pig

6 CGGRLTDDYGTIFTYKGPKTECVWTLOVDPKYKLLVSIPTLNLTCGKEYVEILEG. .

Fig. 2. Recognition of CUB features by an SOM array. Shown are the first three (of nine) features, labeled I-111, as extracted
by the “feature extraction” network (see Fig. 3) from the learning set of five sequences. “Best matrix” was obtained by retrain-
ing in the “feature tuning” layer (Fig. 6) and is indicated below each feature. The bottom part of the figure emphasizes the fea-
ture occurrences detected in some “unknown” sequences. The whole set of neural maps may be envisaged as an array of signal
lamps that flash when a common feature comes by. A pattern of flashing signals identifies a sequence belonging to the set of

CUB domains.

cajculated). The procedures require a multiple alignment of the
learning set. Our results permit the general conclusion that a
level hierarchy of Kohonen maps is able to solve this same task
even in notoriously intricate cases. Hence, a well-trained neu-
ral network is as good a tool for the experimentalist as is a well-
designed statistical procedure.

At first glance, the two principles — statistical arithmetics and
neural computation —seem to be rather different. On closer ex-
amination, one sees items of similar information processing. The
most important one is numerical encoding of sequence informa-
tion (usually in the form of scores assigned to “window” sec-
tions). Furthermore, both approaches use the strategy of
replacing the crude letter information by a vector of physico-
chemical properties and/or by a vector of numerical values rep-
resenting the distance between amino acids. One of the best
established arithmetic methods of sequence recognition is the
program named PROFILE (Gribskov et al., 1987, improved as
iterative optimization by Liithy et al., 1994, and Thompson

et al., 1994), It starts from a set of prealigned sequences and cal-
culates, position by position, scores for any amino acid in a
given place. The scores are derived from the position-specific
frequency of amino acids and from similarity coefficients be-
tween them.

Our Kohonen map is able to process the same information,
but in a different way. Instead of one scalar element, the whole
vector of coefficients of an amino acid in a weight matrix is pre-
sented to the learning procedure. A Kohonen map may be
trained with a very small training set (indeed, even from a sin-
gle specimen). This would create problems in any frequency-
dominated arithmetic procedure.

The Kohonen network learns and works with chopped, un-
gapped partial sequences. This principle is similar to that of
methods like FAST (Pearson & Lipman, 1988: first stage, search
of “tuples”) or BLAST (Altschul et al., 1990, looking for sig-
nificant common “segments”), and to the strategy of “block”
representation of sequence families (Henikoff & Henikoff,
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1991). It is obvious that such a strategy does not require pre-
alignments, at least not in the first stage, and thus circumvents
principal obstacles of sequence analysis in the presence of in-
sertions and/or deletions. The price to be paid is additional con-
sideration of number and position of ungapped features. In the
Kohonen network, this necessitates higher levels of hierarchy be-
yond simple recognition of features.

We have compared (not shown here) our Kohonen map strat-
egy with the more common feed-forward networks (see, for ex-
ample, Frishman & Argos, 1992). It turned out that Kohonen
hierarchies discriminate better, which may be caused by the
topology-preserving learning principle of lateral inhibition in
Kohonen networks (Ritter et al., 1992).

The claim of this paper is that suitably scaled Kohonen maps
arranged in an appropriate architecture are able to memorize
and recognize motifs and patterns in protein sequences with a
quality that is not worse, and is often better, than that of estab-
lished methods. The test cases of ribokinases and of CUB do-
mains demonstrate the ability to discern related sequences by
common short subsequences without previous alignment. The
HTH example demonstrates the ability to be trained with a re-
stricted learning set of a structural motif that is extremely fuzzy
on the level of primary structure (see analyses of Lawrence
et al., 1993, and Neuwald & Green, 1994). From a Kohonen map
hierarchy as reported here, one may expect the following. (1)
A detection performance occurs as in any other arithmetic pro-
cedure working on the same principle (blockwise detection,
blockwise optimizing of mutation table, discarding out-of-block
information as “noise.” (2) An SOM is able, without special ef-
fort, to “subclassify” an inhomogenous family by seeing sub-
clusters of features (which in several established procedures
would be merged by averaging). (3) An SOM learns without pre-
alignment on rather small learning sets. With such performance
established, and given access to a massively parallel computer,
the method should be applicable to search tasks of enormous
volume and may thereby overcome, or at least alleviate, the well-
known capacity limitation of sequence analysis against large
databases. At present, we prepare a systematic application of
the method to sets of superfamilies.

Materials and methods

We describe the Kohonen mapping strategy as applied to par-
tial sequences and, later on, the hierarchic array of Kohonen
maps for pattern recognition.

Feature recognition by a Kohonen map (SOM)

A feature is a set of characteristic ungapped partial sequences
of a certain length that are close neighbors of each other accord-
ing to a scoring measure. The Kohonen map is trained to rec-
ognize such features within a more or less numerous collection
of partial sequences presented to it. The sequences are coded
such that either distance or similarity between them is defined,
and the feature specimens appear as a cluster of small mutual
distance in the sequence space, whereas nonfeatures are at a
large distance from that cluster.

The algorithmic details of the training strategy are described
in the specialized literature (e.g., Hertz et al., 1991; Ritter et al.,
1992). We sketch only the application to our task.
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The basic model of the Kohonen map is outlined in Figure 3.
For a certain set of codebook vectors, the signal space is
uniquely mapped into domains of the pertinent neurons. “Learn-
ing” is an iterative process, during which all input signals are
“shown” in turn and many times to the mapping, and each time
the codebook vector of the pertinent neuron (the “winner”) and
those of its closest neighbors become updated to better memo-
rize this signal (shifting the codebook vector somewhat closer
to it). Over a prolonged cycle, this procedure results in the code-
book vectors being in the center of the feature specimens around
them.

As a result, we obtain a map of neurons whose codebook vec-
tors populate the signal space such that densely populated in-
put regions also have a dense representation on the map (in the
sense that codebook vectors of neurons that are neighbors on
the map have a small distance in the signal space), whereas in
sparsely populated input regions the codebook vectors occur
rarely (i.e., codebook vectors of neighboring neurons have a
large distance).

A given feature emerges in this transformation as a set of in-
put signals projecting onto the same neuron or its immediate
neighbors on the map. Their distance from the pertinent code-
book vector in the signal space (called “quantization error”) is
small. Any “nonmember” of the feature set will become pro-
jected either on neurons distant (on the map) from those of the
feature (this occurs when relatives of it have been offered in the
training set), or (if unprecedented) will be projected at random
on the neuron that happens to be at minimum distance, but with
large quantization error.

Throughout this study we have taken the Euclidean distance
between signal vector and codebook vector as quantization error.

Recognition performance of a Kohonen map (SOM)

After the properly parametrized passage through the training it-
eration, the SOM recognizes the feature (projection with small
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Fig. 3. Schematic illustration of signal space and projection onto the
Kohonen map. Sequences are encoded such that they form a “signal”;
that is, a vector of numerical values unique for that sequence. For any
pair of sequences, a “distance” (or some analogon of it, such as a dis-
similarity score) is defined. Kohonen mapping is the projection of the
signal of any sequence onto a unique neuron of a two-dimensional layer
of neurons (the “map”; see right-hand lattice). After training, a unique
“codebook vector” is assigned to each neuron of the map. The “recep-
tor field” of a neuron is the set of all sequence signals whose distance
from the pertinent codebook vector is smaller than their distance from
any other codebook vector. The receptor fields form polygonal patterns
in the signal space (two such “honeycombs” are shown). During train-
ing, the position of codebook vectors and hence of the polygonal recep-
tor fields are systematically changed in accordance with the features to
be learned (see text).
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error into the domain of the pertinent neuron) and distinguishes
it from nonfeatures (projection with large error and/or onto a
distant neuron).

Kohonen’s mapping is essentially a well-selected projection
from a multidimensional signal space onto a two-dimensional
lattice. It cannot “completely” preserve the topology of the in-
put space, in the sense that orderings in the distance remain in-
tact. All that can be ensured is that clusters of signals remain
clusters on the map. A codebook vector of a cluster is in some
sense its “center”; hence, previously unknown relatives of the
cluster will be recognized as well as the training specimens
themselves.

The number of neurons on the map is of importance for the
performance. Too few neurons (compared to the set of se-
quences) will allow only a very coarse classification. Too many
neurons will create a tendency to “learn by heart”; that is, to
memorize only one individual sequence per trained neuron and
to miss close relatives.

The iteration procedure has a number of parameters (adap-
tion step size, learning radius on the map). They have to be suit-
ably varied during the training (see Ritter et al., 1992).

Coarse classification vs fine tuning of feature recognition

By a suitable choice and change of the iteration parameters as
well as of the training sample, one may construct a Kohonen
map on which more than one feature is distinguishable by pro-
jection into different domains of the lattice (“feature distinc-
tion”), or, alternatively, a different type of map that recognizes
only one feature (against the universe of nonfeatures) but with
great precision of detail and ability to distinguish “subfeatures”
(“fine tuning of the feature”).

Encoding of input sequences

The basic item presented as the input signal is the contents of
a “window” of width W, that is, a sequence of W amino acids.
The amino acid appearing in a certain position is encoded as a
vector of A elements, either of chemical properties (in binary
notation, as in Taylor’s evaluation scheme [1986]), or of numer-
ical values. These values may be property coefficients (express-
ing, for example, hydrophobicity or bulkiness) or scores taken
from a weight matrix (like PAM or BLOSUM) (Dayhoff et al.,
1978; Henikoff & Henikoff, 1992). In our application of such
matrices, the column vector of substitution scores belonging to
one amino acid is taken as the signal element of that position,
so that the whole W-word is represented by an image consist-
ing of (W x A) elements arrayed in matrix form, and introduced
into the computation as a vector of concatenated columns of
that matrix. This representation of an amino acid by a vector
constitutes a conceptual difference from scoring methods like
PROFILE (Gribskov et al., 1987 and many others), where only
one scalar is assigned to one amino acid in one given position.
Such a coding procedure defines a convenient distance metric
as a Euclidean distance between two signals.

The hierarchy of feature maps

Kohonen maps are arrayed in parallel, each one for a different
feature, and then assembled in hierarchic order to perform dif-
ferent recognition stages (see Figure 4 for a schematic view). The
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—— pattern analysis

feature location

feature tuning

Query - feature extraction

training sequences

Fig. 4. The feature-map model. The flow of information through a set
of Kohonen maps arrayed in hierarchical order is shown. Each Koho-
nen map is displayed as a two-dimensional area where individual neu-
rons aggregate into neighborhood regions (ellipsoids) representing
“features.” Lines between the layers symbolize the connection weights
that perform the projection from the respective input onto the map. Dur-
ing training, these connections obtain numerical weights. The input is
illustrated by a set of unaligned training sequences. The features are set
in bold for clarity, but their character is unknown during the training
phase. The first (bottom) network learns to recognize typical n-words
in the chopped (partial) sequences. In the second “tuning” layer, each
Kohonen map deals exclusively with the specimens assigned to one se-
lected feature to find the optimal substitution matrix leading to the most
compact cluster. The third layer studies the location and repetition pat-
tern of the features. The uppermost layer is trained to integrate infor-
mation on one pattein composed of several features in a specified
number and location. It is possible to instruct it to recognize more than
one pattern, provided the number of neurons is sufficient. Recognition
of a family means projection of all signals into one region of the Ko-
honen map. Application (after training) means that query sequences en-
ter into the character-recognizing (second) layer, go through the upper
layers, and become projected into the corresponding family locus.

processing of the sequence is thus divided into several concep-
tual stages, which are described in the following sections.

Step 1: Feature extraction method

In the first step, features need to be extracted from a collection
of candidate sequences. The criterion for the definition of a
feature is that certain specimens form a cluster in the space of
sequences; that is, that their mutual distance is small (or, equiv-
alently, their mutual similarity score large) when compared with
samples of nonfeatures.

Finding features in a collection of sequences is the task to be
solved by Kohonen maps. We present all continuous sub-
sequences of a specified length (or range of lengths) to the map.
After training, the projection algorithm makes it possible to de-
tect typical features that occur frequently in the set. As the chop-
ping produces overlapping words, and as the word length is
allowed to vary, a selection procedure follows that defines the
most compact feature (in terms of quantization error). Figure §
shows an example where features are allowed to have different
lengths (optimized by trial). Table 1, by contrast, gives an ex-
ample where the sequences have been cut into nonoverlapping
pieces of specified (likewise optimized) length. This approach
may be preferable in cases where the alignment problem does
not exist or has been solved previously.
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Fig. 5. Feature extraction. The manner in which the subsequences of
each training sequence are projected onto corresponding vicinities of the
feature map (where individual neurons have not been indicated) is il-
lustrated. The procedure isolates two clusters whose optimal compactness
is reached when they are presented as 5-words or 6-words, respectively.
The former is the RRERN-cluster, the latter the KCRKRK-cluster (see
boxes). They have very similar relatives in each of the three sequences
in similar position. Each cluster is projected into one neuron. The quan-
tization error for the RRERN-cluster is 0.67, that of the KCRKRK-
cluster 0.78, indicating a tight cluster. There are two examples of
S-words, RKSRD and RRSRA, which are somewhat less related to the
cluster and are in different locations in their sequences, and which be-
come projected at some distance from the RRERN-cluster. The quan-
tization errors of RKSRD and RRSRA are 1.3 and 1.55, respectively,
indicating that they do not form a tight cluster. The 5-word PESSD is
an example of a word that is very distant from all the features so far
considered and is consequently projected into the corner. lts quantiza-
tion error is 2.25, indicating a “maverick.” The quantization error is a
mean distance between sets of sequences. It stems from the representa-
tion of amino acids as vectors. An evaluation with similar conclusions
might be done with, for example, BLOSUM4S scores. According to this
method, the RRERN-group has a mean intracluster score of 22; the clus-
ter members toward RKSRD have a mean score of 16; and those toward
RRSRA have a mean score of 17; whereas the mean score to the dis-
tant PESSD is —4. Note that this projection is independent of any align-
ment. It recognizes small “blocks” and analyzes their occurrence and
location.

Step 2: Feature tuning

Once characteristic features have been identified in the set of
chopped sequences, each of them is presented to one SOM of
the second stage that specializes in it (Fig. 6). In detailed stud-
ies, it has turned out that “feature clouds” of related words be-
come more homogenous and “compact” and, hence, easier to
recognize when the similarity criterion is optimized. This effect
depends on the biological character of the motif or even of the
individual feature of the motif: sometimes mutability may be
the appropriate criterion; in other cases, similarity of physico-
chemical milieu, structural features of residues, or some other
feature is decisive. These different principles are encoded in the
published weight matrices (e.g., Dayhoff et al., 1978; Bacon &
Anderson, 1986; Taylor, 1986; Niefind & Schomburg, 1991;
Henikoff & Henikoff, 1992). The SOMs are trained with each
in turn, and the “best” criterion is selected by the smallest av-
erage distance (quantization error) of the feature set. Further-
more, an iterative procedure tests whether a shortened section
of the feature (down to 4-words) yields a more compact repre-
sentation (i.e., smaller quantization error). If all members of the
feature are very similar, then all of them will be projected to the
same “winner” or “center of gravity” neuron, but the refined
training may likewise yield several centers of gravity; that is, sev-
eral “subfeatures” located as “images” in different neurons.
At the end of this stage, the “best” weight matrix and the
“best” feature length has been determined, and there is a trained
subnetwork that is able to report that an input word belongs to
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conserved raglon
KRARN =

Soring Matrix : BLOSUM45 Scoring Matrx : PAMSO

Scoring Matrix : BACON Scoring Matrx : Taylor

Fig. 6. Feature tuning. One of the features from the previous figure is
isolated and processed in detail by subjecting its members to a compar-
ative retraining with different weight matrices (the results of four of them
are shown). It is seen that the set may be represented in the most com-
pact and homogenously distributed form by retraining with the
BLOSUM45 matrix. We have found that such fine tuning of the fea-
ture improves the performance of the later diagnostic process.

that feature. This report indicates the “winner” neuron to which
the candidate is most similar and states the distance to it. A dis-
similar candidate is at once recognized by a high quantization
error or by projection into a distant neuron domain.

Step 3: Feature location

To this point, features have been studied without regard to their
location in the learning set. In the third stage, SOMs are again
specialized to one feature and are trained to memorize occur-
rence and position in the mother sequences. In simpler cases,
features occur once in a sequence, and in prescribed order. But
the network is also able to learn that different combinations of
features may occur in different compositions and orders.

Step 4: Pattern analysis

At this stage, the information has been integrated. Now the fi-
nal, “master” SOM looks at whether the number and position
range of features reported for a query sequence are correct. The
signal from the query is projected to the closest neighbor on the
final map and may therefore be used for diagnostic purposes.
Decisions may alternatively be taken after inspection of the Ko-
honen map on a screen graph. If the capacity of the network
(number of neurons) is sufficient, then more than one domain
or pattern may be discriminated by the same hierarchic array.

Selection of learning sets

The learning set for HTH detection was adopted from previous
studies (see text). In the case of ribokinase and CUB families,
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we selected the learning sequences at random (three and five
specimens, respectively) from the set of family members as
present in SWISSPROT.

Any learning sequence was chopped into all (ungapped, neigh-
bors overlapping) segments of length W. The value of W was
started at a reasonable upper boundary (13 residues), then re-
duced stepwise. The “best” value for a feature is obtained when
the mean quantization error in the neurons is minimal (mostly
around 4-8 residues).

This optimization was repeated for different evaluation tables
of amino acids. This resulted in a “best” W and a “best” simi-
larity table for each feature.

Application and selection of diagnostic criteria

During application, both criteria (W and best table) were fixed
for each feature. Whether or not a feature is present in a query
window is decided by its individual q.e.: the appropriate cut-off
value is a matter of choice by the user.

A default criterion was constructed in the following way. The
longest individual sequence from the database that certainly did
not contain the feature was selected, and a set of “nonmembers”
was obtained from all possible (overlapping) windows of that
sequence. Then the individual quantization errors after train-
ing was recorded for all “members” of the training sets as well
as from all nonmembers, and was arranged by magnitude in a
list. If this array separated members from nonmembers with-
out mixing, then the average between the “worst” q.e. of mem-
bers and the “best” ¢.e. of nonmembers served as default
cut-off.

If both g.e. sets would overlap, then the user has to decide
which type of error (number of false positives or number of false
negatives) is to be minimized, or, otherwise, which compromise
is to be adopted. This selection depends on the specific goal of
the search.

Evaluation of the training result

The ratio of the mean distance of training vectors from their
codebook vector after training to the mean distance of training
vectors from their center-of-gravity vector before training serves
as an evaluation measure. For good learning, this measure
should be considerably smaller than unity (e.g., 0.1). However,
approaching zero means “learning by rote” and is to be avoided,
either by reducing the network dimension or by reducing the
final “learning radius” of the algorithm.

Programs

The hierarchic network system (called an SOM) is a set of pro-
grams and subroutines. They are implemented on a cluster of
5 Sparc 10 stations (i.e., in parallel). The resulting program is
quick for both stages —training and execution — the time con-
sumption being proportional to the number of networks and to
the dimension of the database. A search through SWISSPROT
and PIR (combined) for the HTH motif as described in the pa-
per takes 1.5 h.

The programs are written in ANSI-C language and may be
run on UNIX and MS-DOS machines. We are preparing a ver-
sion accessible via ftp-server (ftp ftp.mdc-berlin.de) and WWW-
server (www.mdc-berlin.de).
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Very extensive computations were done on the MasPar com-
puter of the university of Stuttgart (IPVR).
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