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Chediak-Higashi syndrome (CHS) is a rare, auto-
somal recessive disorder characterized by hypopig-
mentation, severe immunologic deficiency with
neutropenia and lack of natural killer (NK) cells, a
bleeding tendency and neurologic abnormalities’.
Most patients die in childhood. The CHS hallmark is
the occurrence of giant inclusion bodies and
organelles in a variety of cell types, and protein sort-
ing defects into these organelles®8. Similar abnor-
malities occur in the beige mouse®7: 9-13 the
proposed model for human CHS. Two groups have
recently reported the identification of the beige
gene!*15 however the two cDNAs were not at all
similar. Here we describe the sequence of a human
cDNA homologous to mouse beige, identify patho-
logic mutations and clarify the discrepancies of the
previous reports. Analysis of the CHS polypeptide
demonstrates that its modular architecture is simi-
lar to the yeast vacuolar sorting protein, VPS15.

Multiple rounds of screening human cDNA libraries
with mouse beige probes and subsequently with probes
derived from those newly isolated cDNA clones were
performed to obtain 27 human ¢cDNA clones. Sequence
assembly of these yielded a sequence of 13,449 bp for
the human beige cONA homologue, CHS, that mapped
to chromosome 1g43 by PCR on the G3 Radiation
Hybrid Panel'® (data not shown); a refinement of the
previously published map position!?!%. A potential
translational initiation codon occurs at nt 190, followed
by an open reading frame (ORF) of 11,403 bp. A stop
codon occurs at nt 11,592 followed by multiple stop
codons and a poly(A) tail in a 3'-untranslated region of
1,933 bp.

Fig. 1 Identification of mutations in three patients with CHS.
a, Patient 1, a white male with typical childhood CHS, including
oculocutaneous albinism (OCA), neutropenia, impaired platelet
function, lack of NK cell activity, and characteristic melanosomal
abnormalities®, Hair and skin are hypopigmented. The patient's
parents were third cousins. b, A PCR product spanning codons
461-540 exhibited slightly reduced electrophoretic migration in
both the SSCP and duplex patterns, suggestive of a small dele-
tion (data not shown). DNA sequence analysis of the PCR prod-
uct demonstrated that this patient, shown in a, was homozygous
for a single-base deletion within codon 489, resulting in a
frameshift distal to this site and translational termination at codon
566. ¢, Sequence analysis of patient 2 revealed a C~T transition
resulting in premature termination and presumptive truncation of
the polypeptide at codon 1103. Patient 2, a 27-year old white male
with fate-onset CHS (lymphoblast culture GM03385; Coriell Insti-
tute for Medical Research, Camden, NJ), exhibited albinism, recur-
rent skin infections, neuropathy and mild mental retardation. No
additional clinical information or family history is available.
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Fig. 2 a, Modular architecture of CHS and VPS15. Motifs are described in the text. b, Schematic representation of the position of
known mutations (refs. 14, 15 and presented here) along the length of the CHS protein in both mouse (*) and human (0)

Comparison of CHS with the 3" partial 7-kb mouse
beige cDNA sequence that we reported previously'4
demonstrates 77.2% nucleotide identity and 87.9%
amino acid identity between the partial mouse and full-
length CHS sequences. BLAST searches of the GenBank
nucleic acid sequence databases identified multiple
expressed sequence tags (ESTs), including those previ-
ously identified with the murine beige sequence!4, In
addition thirteen human ESTs (N25938, H99579,
Z21296, 221358, N39704, W26957, H50968, M78482,
H51623, N74354, W03146, N92032, N74383) exhibited
almost complete sequence identity to the human beige
¢DNA homologue.

The isolation of the human CHS gene allowed us to
identify mutations in three patients with CHS (Fig. 1).
Patient 1, shown in Fig. 14, is an inbred boy with typical
childhood CHS® and homozygous for a single-base dele-
tion within codon 489, a frameshift mutation that results
in premature translational termination at codon 566
(Fig. 1b). Patient 2, an adult male with late-onset CHS,
is homozygous for a C to T transition in codon 1103,
CGA-to-TGA, resulting in a nonsense mutation (Fig.
Lc). Patient 3, a one year-old girl with typical childhood
CHS (fibroblast culture GM02075A; Coriell Institute for
Medical Research) exhibits ‘partial” OCA, photophobia
and cytoplasmic inclusions in her white blood cells. She
is heterozygous for a previously described frameshift
mutation!?; a single-base duplication in codon 40, GCA
to GGCA (data not shown). We have not yet identified
the second mutation in this patient. The overall simi-
larity of the mouse beige and CHS gene sequences and
the identification of pathologic mutations in patients
with CHS definitively prove that CHS is homologous to
mouse beige,

We have recently reported the cloning of the mouse

beige gene'* as have Barbosa et al.!5. However the
sequences reported do not align or even partially over-
lap. Both the partial sequences — that obtained by
ourselves and the 4.5-kb sequence obtained by Bar-
bosa et al.— are contained within the larger 11,403-
bp ORF described here: ours' aligns with the 3' end
of the ORF of CHS while that of Barbosa et al. aligns
with the 5' end. Both groups have also observed a large
12-kb message in many tissues. The most abundant
message observed by Barbosa et al. however, was 7 kb.
Based upon its abundance in leukocyte cell lines, they
concluded that it corresponds with the message of pri-
mary functional significance. Nevertheless, as shown
in Fig. 2b, pathologic mutations have been identified
along the length of the longer, 12-kb mRNA, suggest-
ing that this longer species is critical to function. Sur-
prisingly, the final 36 amino acids of the murine beige
gene reported by Barbosa et al.!> are not present in the
full-length human CHS polypeptide. However, it is
possible to PCR-amplify this segment from both
mouse genomic DNA and from a bacterial artificial
chromosome contig that completely spans the mouse
beige region (M.D.J. et al, manuscript submitted), sug-
gesting that this sequence represents an alternatively
spliced exon.

Additional alternative splice forms of CHS have also
been isolated; two of the human cDNAs isolated in this
study lacked nts 7550-7927. Furthermore, alignment of
the murine BG polypeptide sequence reported by Bar-
bosa et al.'> with that of the full-length CHS protein
revealed the absence of amino acids 10391044 in the
former. At present it is not clear whether these differ-
ences result from the cloning of splice variants, or from
true structural differences between the genes in human
and mouse.
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3601 PSEIEMETQT HLYGHTEETT SLEVCKPYST LISVSRDGTC IIWDLNRLCY Fig. 4 Alignment of the CHS protein sequence and related protein sequences: Saccha-

3651 VOSLAGHKSP VTAVSASETS GDIATVCDSA GGGSDLRLWT VNGDLVGHVH romyces cerevisiae ORF, YCR032w (Genbank #P25356), CaenO(habditis elegans ORFs,
3701 CREIICSVAF SNQPEGVSIN VIAGGLENGI VRLWSTWDLK PVREITFEKS TO1H10.8 (Genbank #1054708), F10F2.1 (Genbank accession number 1066956),
3751 NKPIISLTFS CDGHHLYTAN SDGTVIAWCR KDQORLKQPM FYSFLSSYAA YSM3_CAEEL (SwissProt #Q10123), YSM2_CAEEL (SwissProt accession number

3801 G Q10122) and human cell division control protein 4-related protein (CDCAL) (Genbank
#A43289). The alignment was performed as described!. Residues highlighted in yellow
Fig. 3 Amino acid sequence of the CHS gene product. indicate identities; residues highlighted in blue indicate conservative substitutions.

The 11,403-bp open reading frame (ORF) of CHS viously reported for murine'BGM. These proteins
predicts a polypeptide of 3,801 amino acids (Fig. 3) with  include a Saccharomyces cerevisiae OR_F, a human cell
a molecular mass of 429,153. BLAST searches of the division control protein 4—relat§d protein (CDC4L) anfl
NCBI and SwissProt protein databases reveal signifi- two anonymous Caenorhabditis elegans ORFs. In addi-
cant homology between CHS and related proteins pre- tion, a third homologue was identified in C. elegans by
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merging YSM3_CAEEL and YSM2_CAEEL into one
contiguous sequence that appears to contain two genes
both related to BG/CHS (Fig. 4). Both significantly
match adjacent regions in the portion of CHS that is
conserved, and represent two separate loci that are phys-
ically linked within the C. elegans genome. Of all the
ORFs described above, F10F2.1 in C.elegans most close-
ly resembles those of bg and CHS. As much of this
sequence homology is restricted to amino acids
3116-3461, we conclude that this is a functionally and
structurally defined domain. We have designated this
conserved domain BEACH (BEige And CHS) because
there is high conservation in otherwise distinct proteins
over a wide species range, the length of the region is
much larger than protein—protein interaction domains,
and because of similarities in predicted alpha-beta fold-
ing type and the clustering and properties of the con-
served amino acids'*

The human CHS polypeptide also contains a number
of sequence motifs that may provide further clues to its
biological function (Fig. 2a). The CHS protein consists
of a series of hydrophobic helices, with interspersed
hydrophobic regions that do not appear to represent
transmembrane domains but are consistent with trans-
membrane association. These helical regions most close-
ly resemble ARM?® and HEAT?! repeat motifs, which
tend to form long rods?™ 2. HEAT repeat motifs occur as
a minimum of three repeats in tandem in extremely large
proteins that contain extensive helical regions, not unlike
CHS. Many of the known HEAT repeat motif-containing
proteins are associated with vesicle transport?>-25, The
C-terminal region of the CHS polypeptide contains
seven consecutive WD40 motifs. Four of these precisely
correspond with the WD40 consensus, and three have
minor deviations®. Such consecutive WD40 motifs form
beta sheets arranged in a 7-bladed beta ‘propeller
fold’?”-28 that is thought to mediate protein-protein
interactions.

Barbosa et al.!® reported that the mouse BG protein
exhibits homology to stathmin, a phosphoprotein that
regulates the polymerization of microtubules?®, We also
observe a 26% identity between BG/CHS and stathmin
across 72 amino acids (464-536). However, the function
of stathmin is dependent on this region forming a coiled-
coil, but our analysis of BG/CHS across this region indi-
cates that it has no coiled-coil potential as calculated by
using a coiled-coil prediction program®, Furthermore,
this small region merely represents 2% of the total size
of the protein and comparison of the full-length human
CHS polypeptide further weakens the significance of this
alignment (1.3 X 10~* probability by chance). Thus, the
significance of the ‘homology’ between BG/CHS and
stathmin remains questionable,

As noted above, the CHS polypeptide shares the clos-
est homology to a number of anonymous ORFs. In addi-
tion, the modular architecture of sequence motifs in
CHS suggests some potential functions. The presence of
multiple hydrophobic regions resembling related ARM
and HEAT repeats'?, as well as 4-7 consecutive WD40
sequence motifs, suggests that CHS may be a cytoplasmic
protein involved in transport and/or associated with vesi-
cles. The only known protein that contains HEAT repeats
(or helical regions that resemble HEAT and ARM
repeats), C-terminal consecutive WD40 motifs and a
globular alpha/beta domain is the yeast serine/threonine

protein kinase, VPS15. Vps15is a member of a large class
of yeast ‘Vps' mutants that are associated with defective
vacuolar protein sorting, and fall into more than 40
complementation groups (reviewed in ref. 31). Vps
mutants exhibit defective sorting in that they tend to
secrete soluble vacuolar hydrolase precursors instead of
sorting them into the vacuolar compartment??, It is
thought that VPS15 is required for activation of a sec-
ond VPS (VPS34) and that they function together as
components of a membrane-associated signal trans-
duction complex that regulates intracellular protein traf-
ficking™.

Given the similarity in modular architecture of VPS15
and the BG/CHS proteins (Fig. 2a), we suggest that the
BG/CHS proteins may have a similar function, consis-
tent with the observation of defective vesicular trans-
port to and from the lysosome and late endosome &8:10:12
and aberrant compartmentalization of lysosomal and
granular enzymes /1011 both in humans with CHS
and in mice carrying beige mutations. The role of
BG/CHS as a component of a membrane-associated sig-
nal transduction complex that regulates intracellular
protein trafficking is also consistent with our observa-
tions that multiple BG/CHS paralogues exist in C. ele-
gans. This suggests that BG/CHS may define a novel gene
family; an hypothesis compatible with both the existence
of multiple mouse loci, mutants of which have pheno-
types that are partially similar to beige mutants®*, and
with the potential of CHS being a heterogeneous dis-

casel’.

Methods

CHS cDNA isolation. To isolate the complete human beige
cDNA homologue, we first screened human fetal liver and reti-
na cDNA libraries (Clontech) with probes from multiple
regions of the murine beige cDNA', Subsequently, we carried
out multiple rounds of screening using probes derived from the
newly isolated human beige homologous cDNAs. In total, 27
cDNAs (12 from a fetal liver library and 15 from a human reti-
na library) were identified and sequenced completely on both
strands.

Genetic mapping. Sequence-tagged sites (STSs) were designed
to multiple segments along the length of the cDNA; all STSs
were mapped by PCR on the G3 Radiation Hybrid Panel!®.

Mutation detection. High molecular weight genomic DNA was
prepared from cultured cells from patients with CHS by stan-
dard methods. DNA segments were amplified from genomic
DNAs of the patients and at least two normal individuals by
PCR using primers derived from the cDNA sequence, and
analysed by simultaneous single-strand conformation poly-
morphism (SSCP)/heteroduplex (HDX) analyses. Segments
exhibiting aberrant SSCP/HDX patterns were either reampli-
fied from each patient in duplicate, and cloned into pCR2.1
(InVitrogen, San Diego, CA) from which at least six indepen-
dent clones were sequenced, or sequenced directly from multi-
ple independent PCR amplifications.

Structural analysis. Initial database searches were performed
using the BLAST series of programs. Putative nonglobular
domains that function as linkers were identified using the SEG
program (ref. 36 and refs therein). Secondary structure predic-
tion and screening for transmembrane helices were carried out
using the PHD Web server implement®”. The coiled-coil poten-
tial was measured using the COILS program®. To increase the
sensitivity of the database similarity search programs, CHS was
partioned into segments according to similar secondary struc-
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ture content and to putative globular domains. As homologous
sequences were identified, iterate motif and profile searches
were performed™,

GenBank accession number. The accession number for the
CHS cDNA sequence is U67615.
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