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Predicting function from sequence using computational tools is a highly
complicated procedure that is generally done for each gene individually.
This review focuses on the added value that is provided by completely
sequenced genomes in function prediction. Various levels of sequence
annotation and function prediction are discussed, ranging from genomic
sequence to that of complex cellular processes. Protein function is cur-
rently best described in the context of molecular interactions. In the near
future it will be possible to predict protein function in the context of
higher order processes such as the regulation of gene expression, meta-
bolic pathways and signalling cascades. The analysis of such higher
levels of function description uses, besides the information from comple-
tely sequenced genomes, also the additional information from proteomics
and expression data. The final goal will be to elucidate the mapping

between genotype and phenotype.
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Genomes and function prediction

Prediction of protein function using compu-
tational tools becomes more and more important
as the gap between the increasing amount of
sequences and the experimental characterization of
the respective proteins widens (Bork & Koonin,
1998; Smith, 1998). With the availability of com-
plete genomes we face a new quality in the predic-
tion process (Table 1) as context information can be
utilized when analysing particular sequences. This
review focuses on the added value of genomic
information on the many steps of function predic-
tion from genomic sequence. The first reports on
completely sequenced genomes give an excellent
overview of the evolving state of the art in the ana-
lyses of particular genomes (Fleischmann et al.,
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1995; Fraser et al., 1995, 1998; Himmelreich et al.,
1996; Goffeau et al.,, 1996, Kaneko et al., 1996
Blattner et al., 1997, Tomb et al., 1997, Kunst et al.,
1997; Bult et al., 1996; Smith et al., 1997; Klenk et al.,
1997). In addition, there are numerous reviews that
touch on the extraction of functional features from
sequence (e.g. Bork ef al, 1994; Andrade ef al,
1997; Koonin & Galparin, 1997; Bork & Koonin,
1998), but very few reviews have been published
that systematically summarize the additional infor-
mation for function prediction that is provided by
the presence of entirely sequenced genomes (orig-
inal papers e.g. by Mushegian & Koonin, 1996a,b;
Himmelreich et al., 1997; Koonin et al., 1997;
Tatusov et al., 1996, 1997; Huynen & Bork, 1998;
Huynen et al., 1997, 1998a; Dandekar et al., 1998b).

What is function?

“Function” is a very loosely defined term that
only makes sense in context. Most current efforts
aim at predicting protein function, but there are
other types of function, e.g. RNA function or orga-
nelle function, that also need to be explored. Even
to describe “protein function” requires a broad
range of attributes and features (Figure 1). Molecu-
lar features such as enzymatic activity, interaction
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Table 1. Added features from complete genome analysis for function prediction

Genome specific patterns in the DNA and their usage in genome annotation

Feature: Genome-specific (poly)nucleotide frequencies, codon usage
Usage — Identification of genes
— Identification of recent horizontal gene transfers into the genome
Feature: Genome-specific signal sequences like regulatory regions, promotors
Usage — Gene identification, identification of the mode of regulation of genes, regulatory regions in mRNA,

specification of the boundaries of genes

— Operon identification

Usage of the complete set of genes in a genome and comparative genome analysis

Feature: The finding of orthologs by comparative genome analysis
Usage — Narrowing down the function of a gene
— Identification of (conserved) regulatory signals neighbouring the orthologues
Feature: Conserved genome organization
Usage — Genes in a conserved clusters have related functions, show physical interaction
Feature: Differential genome analysis
Usage — Identification of the functions that are absent from a genome
— If an orthologous gene is absent, but the function is present, missing genes point either to a wrong
annotation or a non-orthologous gene transfer
— Identification of the functions that are specific to a genome, and might be responsible for the species’
specific phenotype, delineation of the mapping between genotype and phenotype
— Correlation in the patterns of occurrence of genes in the comparison of multiple genomes points to
functional relations between the genes
Feature: Complete list of detected gene sequences
Usage — Identifying the optimal candidate gene in the whole genome for an observed enzymatic activity

Various types of patterns and (context) information that become available with the analysis of the complete genome can be used
for function prediction at “lower levels”, e.g. in the prediction of the function of single genes.

partners, and pathway context are currently being
predicted, but only qualitatively. Expression pat-
terns, regulation, kinetic properties, localization
and concentration effects and, even more so, dys-
functions, environmental influence, fitness contri-
bution or clinical symptoms can currently hardly
be predicted. There is furthermore a relatively poor
knowledge of the mechanisms of posttranslational
modifications (Esko & Zhang, 1996). For example,
although some sequence patterns for preferred gly-
colysation sites are known, the prediction accuracy
is still limited and the assighment does not include
the kind of sugar or carbohydrate that is attached,
so that most of the functional features of the
respective proteins will remain hidden.

The main goal will be to bridge the gap between
genotype and phenotype (Figure 2), i.e. to under-
stand the genotype to a degree that the phenotypic
features can be predicted: What are the genes
responsible for a certain disease phenotype and
which proteins of the respective pathway (or an
alternative one) are the best targets for a drug to
be developed, or which variations at the DNA
level are best suited for the respective diagnostics?
Which genes have to be changed to achieve a
desired phenotype? To answer such questions in a
more general way, one needs a detailed under-
standing of the function of higher order processes,
including the complex interaction between the
heritable part of the phenotype and the environ-
ment. This will require a whole battery of novel
types of experimental data with appropriate bioin-
formatics support.

Nevertheless, it is important to extract as much
information as possible from sequence data using

the already available (and inexpensive) compu-
tational tools to guide experimental work.

Functional prediction for gene products by
annotation transfer from homologous sequences

When homologues of a query are identified in a
database search (Bork & Gibson, 1996), the anno-
tated information of the homologue and the taxo-
nomic, biochemical and/or molecular-biological
context of the query protein are used to extrapolate
possible structural and functional features of the
query protein. This approach has proven extremely
successful although, from a formal point of view
the hypotheses generated must be experimentally
verified (Eisenhaber et al., 1995). The information
transfer from well-studied proteins to uncharacter-
ized gene products has to be done carefully since
(i) a similar sequence does not always imply simi-
lar protein structure (Sander & Schneider, 1991) or
function (in particular in important details such as
recognition loops) and (i) the annotation of the
database protein might be incomplete or even
wrong.

Often (particularly in the case of automatic pre-
diction programs), the function is transferred from
another member in a multigene family, but not
exactly from the functional counterpart in a differ-
ent species. Even orthologues (see below) can differ
functionally in various organisms. It should also be
emphasized that generally only the molecular func-
tions of a protein can be transferred by analogy
(Figure 1); it is rather rare that a particular
sequence motif strongly correlates with cellular
functions as in the case of the DEATH-domain,
which is mainly contained in apoptose signalling
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Figure 1. Characterization of pro-
tein function. Whereas nucleic acids

phenolyplc function fulfil the tasks of storage, transfer
- morphology and processing of genetic infor-

- physiology mation contained in the genome of

- behavior < > I ronment, living organisms, the proteins (gene

; T products) form a complex (single-

- phenotypic - or multi-) cellular machinery for
disfunction, the realization of this genetic pro-

gram (resulting in the phenotype)
in dependency and in response to
changing environment conditions.
Therefore, protein function requires
also a multilevel, hierarchical
description comparable with the
notions of primary, secondary, ter-
tiary, and quaternary protein struc-
ture. Here, we propose a possible
framework for functional character-
ization and, for each hierarchical
level, both functional features and
attributes are described. It should
be noted that, for most proteins, a
quantitative functional characteriz-
ation is still a matter of the future
and, today, a qualitative descrip-
tion of function for at least some
hierarchical levels can be con-
sidered an achievement for many
proteins. (1) Each protein has mol-
ecular (elementary) functions; e.g. it
can have specific binding sites for
substrates, low-molecular effectors,
nucleic acids or other proteins.
Given the set of allowed allosteric
conformational changes, of possible

cellular functlion
- metabolic pathway
- signal cascade
- cytoscsleton,....

- cellular localization
ttern

- expression pa

molecular function interactions with other molecules,
- binding sites and of kinetic properties, etc., the
- catalytic activity protein can, for example, catalyse a

metabolic reaction, it may transmit
a signal to other proteins or DNA
or be able to fit into cytoskeletal
macromolecular associates. Struc-
tural properties of a protein are
attributes for the execution of
function, therefore, 3D structural
information  greatly  facilitates
understanding of function. Also, possible posttranslational modifications such as glycosylation, propeptide cleavage,
or protein splicing are an important preposition for a protein to fulfil its molecular function. (2) A set of many co-
operating proteins is responsible for a physiological (cellular) function (metabolic pathway, signal transduction cas-
cade, structural associate etc.). The cellular function of a protein is always context-dependent and is characterized by
taxon, organ, tissue, etc. Subcellular localization is an essential attribute for this level. For proper functioning, the pro-
tein has to be translocated to the correct intra- or extracellular compartments in a soluble form or to be attached to a
membrane. All types of regulation of protein activity are another attribute. For example, the amount of protein mol-
ecules is often controlled via gene expression which might be limited to certain types of cells or tissues or to specific
periods in the cell cycle or the individual ontogenese (expression pattern). (3) Finally, the totality of the physiological
subsystems and their interplay with various environmental stimuli determines phenotype properties (phenotypic
function), the morphology and physiology of the organism and its behaviour. Some phenotype properties may be
traced to the activity of a single gene but most are determined by the co-operative action of many gene products. The
absence of activity of a specific gene can result in phenotypic dysfunction. The knowledge of whole genomes will
open a new era in the investigation of properties determined by many genes since the total set of genes influencing
the phenotype is known.

- conformational changes

- posttranslational modification
- 38D-structure

proteins. Sometimes only the expression pattern
and the tissue context determine the final function-
ality (for example, high sequence identity and even
gene sharing between metabolic medium-chain
dehydrogenases and eye lens crystallins;

Piatigorsky & Wistow, 1991; Persson et al., 1994;
Serry et al., 1998). Proteins (or more precisely, their
domains) as structural and functional modules are
multiply adapted by evolutionary processes and
re-used in a different context. Thus, higher order
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Figure 2. Function prediction scheme: zooming in and out. Whether gene, contig or genome: current methods con-
centrate on gene prediction and the annotation of individual genes that are then put into context. Due to our limited
understanding of the genome, this is only possible by accessing complementary experimental information generated
among others by proteomics research. Nevertheless, exploitation of genome information provides additional hints.

This review follows the individual steps.

functions should be analysed in the biological con-
text of the organism considered. Unfortunately, the
functional knowledge of proteins reflected in their
annotation (Figure 1) is frequently incomplete,
sometimes erroneous or inconsistent, and often
only cellular or even phenotypic functions are
listed. For example, the human glia maturation fac-
tor (P17774) is described as growth factor (by defi-
nition extracellular!) but an in-depth sequence
analysis revealed ADP-domains characteristic for
cytoskeletal proteins (intracellular!).

Sequence and annotation quality in
molecular databases

Function transfer by analogy requires knowledge
about the quality of sequence data and functional
annotation. Concerns have been raised about an
accumulation (Bork & Bairoch, 1996) and even an
explosion (Bhatia et al., 1997) of errors in sequence
databases.

In genome projects, two to tenfold sequence
coverage is usually sampled. This is critical as



Review: Predicting Function Using Genomes

711

automated raw data acquisition (single read) is less
than 99% accurate even when using optimized
sequencers and software (Ewing ef al., 1998). Most
of the ESTs (expressed sequence tags, i.e. single or
sometimes double gel reads from cDNA) stored in
current databases have much lower quality and
require special caution as they are often also con-
taminated by cloning vectors or DNA of other
sources including non-coding regions. More
reasonable accuracy (at least over 99.85%) in all
regions can be achieved only by systematic mul-
tiple coverage (Richterich, 1998). Nevertheless this
will leave about one error per gene (mostly frame-
shifts) leading to considerable deviations at the
protein level. Unless the accuracy is above 99.99%
(the majority of the reading frames are sequenced
without any error), a considerable error rate should
be considered in the analysis.

Processing of raw genomic DNA includes identi-
fication of genes, their exon/intron structure, and
the “in silico” translation into protein sequences by
automatic methods. Given the limited accuracy of
eukaryotic gene prediction methods (Burset &
Guigo, 1996; Guigo, 1997, see below) and the
impact of organelle- and species-specific translation
tables, of pre- (RNA editing and splicing) and
post- (propeptide cleavage and protein splicing,
side-chain modifications) translational changes, the
sequence quality of a given genomic segment is
expected to be lower in protein databases than at
the DNA level.

The value of sequences stored in databases is
greatly increased by their functional annotation.
However, automatic as well as manual annotations
have all kinds of inaccuracies ranging from ortho-
graphic errors, simple spelling ambiguities, and
incompleteness to semantic mistakes (Bork &
Bairoch, 1996; Eisenhaber & Bork, 1998; Smith &
Zhang, 1997). Function assignments obtained as a
result of automatic homology searches are often
not labelled as such and cannot easily be distin-
guished from true experimental data (Bork &
Bairoch, 1996; Andrade & Sander, 1997). Further-
more, there is a gap between the current database
annotation and the knowledge embodied in the
scientific literature (Bork & Koonin, 1998).

Creating, updating, and correcting functional
annotation is a costly effort absorbing a consider-
able amount of manpower. At the moment, there
is no real alternative to manual input from experts.
In the future, text analysis systems might support
this process by automatically extracting abstracts
of related articles from literature databases and
selecting relevant keywords and text units for pro-
tein families (Guigo et al., 1991, Guigo & Smith,
1993; Andrade & Valencia, 1997).

For analyses of genotype-phenotype relation-
ships, the retrieval of complete sets of proteins
from sequence databases with respect to their func-
tion is necessary. This can efficiently be achieved
only by categorized protein function descriptions
(Riley, 1998) for cellular (subcellular localization,
involvement in metabolic pathways, signal trans-

duction cascades, etc.) and phenotypic functions.
However, functions are currently annotated in the
form of plain text incorporating a large variety of
vocabulary for the in-depth description of particu-
lar phenomena. Thus, they are not easily retrieva-
ble with keyword search engines such as SRS
(Etzold et al., 1996).

Computer-readable hierarchical systems of func-
tion description as envisioned in Figure 1 might be
helpful, but controlled vocabularies such as in FLY-
BASE  (ftp.ebi.ac.uk/pub/databases/edgp/misc/
ashburner/fly_function_tree), the keywords in
SWISS-PROT (expasy.hcuge.ch/sprot/), and, for
catalytic functions, the system of Overbeek et al.
(1997) put enormous pressure on the database
curators. Such classifications also have to be
adapted and updated frequently in accordance
with the increasing understanding of the biological
relationships.

Rule-based automatic algorithms that parse writ-
ten annotations for defined questions might be a
solution since a much smaller effort (compared
with database reformatting) is required for their
updates. For the deduction of cellular localization,
a system of about 1000 biological rules was able to
classify 88% of entries of SWISS-PROT (currently
seen as one of the best annotated general protein
sequence databases; Bairoch & Apweiler, 1998)
into subcellular localization categories. This is con-
siderable progress given that only 22% of the
entries can be retrieved using querying stems of
keywords such as “extracell” or ““membrane”
(Eisenhaber & Bork, 1998).

Annotating genomes

Function prediction usually starts with already
assembled genomic or cDNA data: at best a com-
plete genome (Figure 2). Several features intrinsic
to DNA can be recognized first, before identifi-
cation of genes and pathways, although detection
of the latter enhances also the annotation of non-
coding features in genomes.

Nucleotide frequencies

Nucleotide frequencies are one of the oldest fea-
tures of genomes that have been studied, even
before sequencing was available (Chargaff &
Davidson, 1955). Biases in nucleotide frequencies
exist both within and between genomes, they have
various uses in gene and function prediction. In
warm blooded vertebrates and angiosperms, for
example, the genome is divided in regions, so
called isochores, that differ in G+C content. Iso-
chores with a high G+C content are relatively rich
in genes (Saccone et al., 1996). Biases in G+C con-
tent can hence be used to find genes. A number of
bacterial species show biases in the nucleotide fre-
quencies of the leading and lagging strands in
replication (Mrazek & Karlin, 1998; Freeman et al.,
1998); these biases can be correlated with a bias in
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the coding density, e.g. in Bacillus subtilis (Kunst
et al., 1997).

In the study of complete genomes, biases in
nucleotide frequencies and codon usage provide an
important clue for detecting recent horizontal
transfers of genes into the genome (Figure 3;
Medigue et al., 1991). Variations in the codon
usage can be described with a principle component
analysis which divides the variation among
orthogonal axes. Different axes correspond to inde-
pendent sources of variation; the variation in
codon usage that results specifically from horizon-
tal gene transfer can be identified using auxiliary
functional information from the genes (see below).
In Helicobacter pylori for example, it is the first prin-
ciple component that reflects horizontal gene trans-
fer (Figure 3). On the basis of the variation in the
codon usage in E. coli its genome has been pre-
dicted to consist of at least 10-15% of recently
horizontally transferred genes (Medigue et al.,
1991). Biases of nucleotide frequencies within a
genome also reveal information about their func-
tion apart from information about the evolutionary
history of genes. Recently horizontally transferred
genes are expected not to be involved in the core
functions of the cell and to be relatively expend-
able (they were generally not present before the
transfer). In H. pylori the regions with deviating
nucleotide frequencies can be related to pathogen-
icity, or are prophages and/or are rich in insertion
sequences (Figure 3). The same observation has
been made in Haemophilus influenzae (Fleischmann
et al., 1995; Huynen et al., 1997).

Repeats

For a large fraction of the DNA of multicellular
eukaryotes no obvious function has yet been
assigned. Most of it consists of repetitive elements.
For example, Alu repeats may cover as much as
13% of the human genome (Mighell et al., 1997).
Repetitive, non-coding DNA should be filtered out
as one of the first steps in function prediction to
reduce the search space for the finding of genes in
eukaryotic DNA (Jurka et al., 1996). Coding regions
contain repeats too, but these are hardly identifi-
able at the DNA level due to their divergence.
They usually represent structural domains and
should be detected at the protein level (see below).
An exception are the trinucleotide repeats that are
expanded in a number of disease genes (Chastian
& Sinden, 1998); they can even specifically be used
to search for such genes in DNA libraries (Pujana
et al., 1998).

In prokaryotes repeats are much less frequent.
However, tetranucleotide repeats have been found
in some virulence genes that increase variability by
frameshift mutations (Hood et al.,, 1996). More
strikingly, repetitive elements even have been
found in what are probably the smallest bacterial
genomes, those of mycoplasmas. These have been
hotspots for genome rearrangements via recombi-

nation, as can be deduced by whole genome com-
parison (Himmelreich et al., 1997).

Regulatory regions

Regulatory regions can indicate when and how
genes are expressed, repressed or co-expressed.
Their computational detection is a powerful comp-
lement to novel experimental approaches (see pro-
teomics, below). If known structures provide a
template, simple consensus searches, matrix
approaches and also programs taking into account
specific features, structural constraints and energy
values are available (reviewed by Dandekar &
Scharma, 1998).

If no genomic template structures are available,
neural networks (Demeler & Zhou, 1991; Pedersen
& Engelbrecht, 1995; Ogura et al., 1997), language
based approaches (Trifonov, 1996) and other non-
consensus search methods are important (e.g.
Tiwari et al., 1997). One can, for example, search
for so-called CpG islands, which are, relative to the
rest of the genome, abundant in the regulatory
regions of mammalian housekeeping genes
(Wirkner et al., 1998). The combination of artificial
in vitro evolution and genomic screening is another
powerful way to identify a regulatory motif when
no template structure or sequence is available. The
computer based genomic screen delineates how
close the in vitro selection procedure comes to the
situation in vivo (Dandekar et al., 1998a).

The challenge from complete genome sequences
is double: first, a comprehensive annotation of
known regulatory elements using specific search-
ing methods (i.e. either templates for particular
elements such as promotors, attenuators, termin-
ators and enhancers or RNA secondary structure
fitting methods; d’Aubenton-Carafa et al., 1990;
Brendel et al., 1986); second, the identification of
novel elements using comparative analysis and
experimental indications (co-expression, etc.).
Knowledge of gene expression and changes in
gene expression patterns at a complete genomic
level may revolutionize drug discovery processes.
An overview of the complete genome allows much
better tailoring of drugs and the discovery of cor-
rect, condition specific targets (Gelbert & Gregg,
1997).

A comparison of complete genomes identifies
orthologous genes (see below). Their upstream
regions can be screened for common regulatory
signals in a much reduced search space. When co-
expression patterns or functional interactions of
genes are known, one can also search within the
non-coding regions of a single genome. Unfortu-
nately, regulatory regions in prokaryotes seem to
be little conserved (Figure 4; Diaz-Lazcoz et al.,
unpublished), thus it is necessary to include several
species to increase the signal to noise ratio via mul-
tiple alignments. In the case of putative RNA struc-
tures, one can utilize methods that include base-
pairing information (cf. Chan et al., 1990; Han &
Kim, 1993). These approaches, however, require
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Helicobacter pylori

Genes with a homolog in the E. coli genome or a homolog in
a non pathogenic E. coli plasmid
Genes (putatively) involved in interaction with the host

HI Genes with a homolog in H. influenzae but not in E.coli
Others: e.g. metabolism, transposases, restriction enzymes
P— Genes with unknown functions
[-VI clusters of genes with deviating codon usage
codon usage

Figure 3. Differential genome display of H. pylori versus E. coli, H. influenzae. The genes of H. pylori are divided into
sets. Set 1 (green) are genes with a homologue in E. coli, set 2 (HI), genes with a homologue in H. influenzae but not in
E. coli. Set 3 (red) are genes without a homologue in E. coli that are (putatively) involved in interaction with the host
like virulence factors, outer membrane proteins and toxins. Set 4 (purple) are genes without a homologue in E. coli or
H. influenzae that are not host interaction factors. A large fraction (63%) of the genes in H. pylori that have no homol-
ogue in E. coli, but for which some functional classification is possible, can be considered host interaction factors. The
star-figure in the centre gives the values of the codon usage of the genes on the first principle component in distance to
the centre. The first principle component corresponds roughly to the usage of A and to a lesser extent T in 3D codon
positions. Hence, genes with a high value on this axis have a relatively high A+T content in third coding positions. Six
clusters (I-VI) of at least three consecutive genes with, on average, the codon usage that deviates the most from the
genomic mean were further analysed. The genes in these tend not to have any homologue in E. coli or H. influenzae,
their closest relatives for which complete genome sequences are available. This observation supports that the genes in
clusters I-VI result from horizontal gene transfer into the genome. Proteins from I and VI are hypothetical proteins
with no known homologues other than proteins in H. pylori itself. Region II contains homologues of VirB4, a virulence
factor and of transposases. Region III is the CAG pathogenicity island, whereas region V again is rich in transposases.
Region IV consists of three proteins, HP0611-HP0613. Sequence analysis reveals a frameshift that would merge HP0611
with HP0612. The resulting protein is an ABC type 2 transporter, the only one that can be observed in H. pylori. ABC-2
transporters are involved in export of complex carbohydrates and play an important role in virulence.
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Escherichia coli

3o

Haemophilus influenzae

181 156 83 64
Helicobacter pylori

88 15 11 286

Synechocystis PCC6803

Mycoplasma genitalium

Bacillus subtilis

113 41 53 119
Borrelia burgdorferi

67 24 40 314

Aquifex aeolicus

63 3 89 -1

Methanococcus jannaschii

132 57 110 856
Methanobacterium thermoautotrophicum

21 5 8 113
é?k:) Conserved secondary structure of the intercistronic mRNA element

- Genes of the E.coli the str operon and orthologs in various species but is

- Genes surrounding the str operon that are not always conserved

longer and relatively strong signals. Weaker motifs
can be identified using statistical approaches with-
out prior alignment of sequences (cf. Staden, 1989;
Hertz et al., 1990; Wolfertstetter et al., 1996).
Reliable statistics require, however, many ortholo-
gous sequences. The comparison based on ortholo-
gous regions in complete genomes, from different
Gram-negative bacteria for instance, offers a new
way to identify regulatory motifs without a precon-
ception of the regulatory motifs revealed. In due
course this and other approaches (see above) will
improve quantitative predictions on expression and
regulation in complete genomes and should also
yield probabilities for tissue distribution of
expression patterns and regulatory factors.

125 96 27 70

96 150 206 59
28 16 9 51

Figure 4. Variability of regulat-
ory regions. Structure of the str
operon and surrounding genes in
eight Bacteria and two Archaea.
The organisation of the str operon
in Archaeoglobus fulgidus is essen-
tially the same as in M. jannaschii,
while the structure of the str
operon in Mycoplasma pneumoniae is
the same as that in M. genitalium.
The arrows indicate the direction of
transcription, the numbers under
the arrows the lengths of the inter-
genic regions. Genes in green are
orthologous to the genes in the
same location in E. coli. Genes in
light-red are shared at that location
between two or more genomes
other than E. coli. Gene names may
vary in the official genome annota-
tions, but were kept constant in
this Figure for clarity purposes.
Operon structure is generally not
well conserved in prokaryotic evol-
ution. The conservation of two
genes besides each other in all the
prokaryotic genomes that have
been sequenced thus far can be
regarded as an exception. Note that
the conservation of the str operon
does not follow the standard phy-
logenetic pattern: i.e. the operon
structure in E. coli is more similar
to that in the Archaea than it is to
the operon structure in the closer
related bacteria B. burgdorferi and
A. aeolicus. In E. coli expression of
the str operon is regulated by an
RNA secondary structure located
between the rpsL and rpsG genes
(Saito & Nomura, 1994). A similar
structure is present in H. influenzae,
absent from the other
species. Hence, regulatory elements
appear even less conserved than
gene order.

Gene prediction

The prediction of protein coding genes from
DNA sequences can become a major bottleneck in
genomics as currently there is quite a lot of infor-
mation loss when genes cannot be identified cor-
rectly. In eukaryotes the situation is particularly
complicated, due to the generally low coding den-
sity (probably as low as 2% in human) and the pre-
sence of introns surrounding the relatively short
coding regions. Various different, but weak signals
have to be combined such as promotors, splice
sites, translational start and stop sites; different
knowledge-based methods complemented by hom-
ology searches are applied to utilize them (Guigo,
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1997). However, an analysis of the accuracy of all
available packages for the prediction of coding
sequences for a region of human DNA showed
a low accuracy for the prediction of coding
sequences and specifically the prediction of intron/
exon boundaries (Burset & Guigo, 1996; Gelfand
et al., 1996; Guigo, 1997; Lukashin & Borodovsky,
1998).

In Archaea and Bacteria the situation is, relative
to most eukaryotes, less complicated due to the
almost complete absence of introns. In predicting
protein coding regions, several methods make use
of the information in the complete genome
(Borodovsky et al., 1994; Fraser et al., 1998). Such
bootstrapping methods use the genes that can
easily be predicted, e.g. on the basis of the length
of open reading frames and/or similarities to
genes from other species to establish (i) taxon-
specific patterns in codon usage, hexanucleotide
frequencies and local complexity (information con-
tent), and (ii) taxon-specific signal sequences like
poly(A) signals, regulatory sequences such as ribo-
some-binding segments (Shine-Delgarno segments)
and promoters and start codons, etc. These pat-
terns are currently implemented into Hidden
Markov Models (HMMs) to predict the other genes
in a genome. A method that relies on no a priori
information to divide the genome into coding and
non-coding regions has been shown to be success-
ful (Audic & Claverie, 1998). These gene finding
approaches should be complemented by another
round of homology searches to find shorter or fra-
meshifted genes that do not follow the codon
usage of the organism.

Annotating individual proteins

Although homology searches are often already
integrated into the gene prediction procedures,
they are fully exploited only at the protein level
with its higher sensitivity. Database searches are a
standard technique for annotating proteins, but
should be used in context with other methods
(Bork & Koonin, 1998).

Domain analysis

Due to the modularity of many proteins, i.e.
their multidomain architecture, the first step in
functional annotation should be a scan for known
domains in a query protein. Several databases exist
that comprise patterns or profiles, i.e. fingerprints
of already classified domains, and are well-suited
for this first scan. Although somewhat redundant,
they each have their individual strengths. PROSITE
(Bairoch et al., 1997) is one of the oldest and prob-
ably most widely used. It is well-annotated and
covers more than 1000 different domains. With the
inclusion of PROFILESCAN there is now also
access to more than 250 domains that cannot easily
be described with the classical PROSITE consensus
string. A drawback, perhaps, is that the profiles
are not yet fully integrated and most of them are

not exhaustively annotated (which is a huge
amount of work). BLOCKS (Henikoff et al., 1998) is
derived from PROSITE and offers ungapped align-
ments that are, in turn, used for a pattern matching
approach which is more sensitive than the consen-
sus string matching method of the original PRO-
SITE database.

PRINTS describes a protein domain with a set of
several motifs separated along the sequence
(Attwood et al., 1998). Version 17.0 is extensively
annotated and comprises about 800 fingerprints
with in total about 4500 motifs.

PFAM contains a collection of accessible multiple
alignments that are translated into hidden Markov
models; version 2.1 is a large collection covering
527 families that match at least once 47% of all
SWISS-PROT entries in release 34 (Sonnhammer
et al., 1998); it more sensitive than the classical
PROSITE or PRINTS, has poorer annotation, but
has many entries crosslinked to other domain data-
bases. SMART concentrates only on mobile
domains and hence is not exhaustive, but has a
high sensitivity and selectivity, takes care of
domain borders and provides additional annota-
tion features (Schultz et al., 1998). Each of the data-
bases offers search software on the web and there
are efforts under way to overcome the difficulties
of different formats and annotation styles.

Intrinsic feature analysis

Current database search techniques are all ham-
pered by compositionally biased (low complexity)
regions with a reduced residue alphabet. This
includes (1) transmembrane regions: accumulations
of ten hydrophobic residues in segments of length
20 of non-homologous transmembrane proteins are
treated as homologous, (2) coiled coil segments
(widespread heptarepeats with patterns of hydro-
phobic and polar residues) that pollute database
search outputs with high scoring similarities to
analogous (but probably not homologous) coiled
coil regions in other proteins, (3) small repeats that
lead to a bias in amino acid composition and (4)
other regions with biases towards one or several
amino acids such as proline-rich or glutamine-rich
regions.

Methods exist for the identification of all those
features. Most of these use many sequences with
the feature as training sets and identify the feature
knowledge based. A general method for finding
low complexity regions, SEG (Wootton &
Federhen, 1996) is already integrated into BLAST
(Altschul ef al., 1997) in the form of a filter. Special
types of composition bias can, of course, be pre-
dicted better by specialised methods such as coiled
coil predictors (for a review see Lupas, 1997),
transmembrane helix recognition (e.g. TOPPRED2,
von Heijne, 1992) or even for subclasses of those
such as signal sequences (e.g. SIGNALP, Nielsen
et al., 1997). For transmembrane regions, a variety
of methods exists with widely varying outputs. It
is worrying that when using different methods for
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genome analysis the results vary greatly, e.g. the
fraction of transmembrane proteins in Mycoplasma
genitalium was predicted to be 18% (Fischer &
Eisenberg, 1997), 24% (Koonin et al., 1997), 30%
(Arkin et al., 1997) and 36% (Frishman & Mewes,
1997).

To avoid spurious hits and thus erroneous trans-
fer of functional information, such regions can be
filtered out, for example using the SEQ option in
BLAST (Altschul et al., 1997; replaced by “neutral”
Xes for “any amino acid”). One has to bear in
mind though that also such residues can contain
useful functional and structural information and
need to be annotated.

Another functional feature, especially in eukary-
otic proteins, is the presence of posttranslational
modifications. The EXPASY server provides useful
software tools to detect and describe these
(www.expasy.ch/www /tools.html).

Homology analysis

A classical database analysis should only be per-
formed after identification and masking of
domains and intrinsic features described above.
This has the advantage of search space reduction
and of better annotation quality. A database search
using BLAST (Altschul et al., 1997) or FASTA
(Pearson, 1998) often reveals significant homol-
ogues, but this is then only the beginning of a com-
plicated, and mostly manual transfer of functional
information from the homologue in the database to
the query sequence as one does not know how
many of the functional features are shared (Doerks
et al., 1998). Averaged over all species, the chance
that a newly sequenced gene has a homologue in
sequence databases detectable by BLAST is already
above 70% (e.g. 84% for yeast chromosome IIL;
Bork & Koonin, 1998; 70-85% for Bacteria and
73% for Archaea; Koonin et al., 1997, but lower for
animals), while the fraction for which some func-
tional features can be predicted is at least 70% in
Archaea and Bacteria (Koonin et al., 1997). For
more than a third of all bacterial proteins, some
homology-based fold assignments can be done
with high confidence (Huynen et al., 1998b; M.A.H.
et al., unpublished). Knowing the 3D structure of a
protein is crucial in the understanding of the
relation between sequence and function. In the
case that amino acid identity levels to sequences
with known 3D structures are higher than 50%,
homology modelling can be used to further eluci-
date the roles and interactions of individual amino
acids (Johnsson ef al., 1994; Eisenhaber et al., 1995;
Sanchez & Sali, 1997; Rodriguez & Vriend, 1997).
Other predicted structural features such as second-
ary structure elements (Rost & O’Donoghue, 1997)
can also be used in functional characterization.
Characterization of a potential protein or RNA sec-
ondary structure can help to assess whether an
open reading frame codes for a protein or a
sequence codes for a functional RNA structure
(Huynen et al., 1996), respectively, or to test

hypotheses based on other, independent obser-
vations.

Only in the minority of cases can functional and
structural features of a homologue be transferred
to the query sequence as is (see above, Figures 1, 2)
because often only some of the features are shared.
Functional equivalence is only likely for ortholo-
gues.

Finding orthologues

Orthologues (Figure 2, top right) are genes
whose independent evolution reflects a speciation
event rather than a gene duplication event (Fitch,
1970). They are likely to perform the same function
in various species, and hence represent a refine-
ment over homologues in sequence analysis and
annotation. Knowledge of the complete genome
and of its protein coding regions improves the
detection of orthologues. Orthologues are expected
to have the highest level of pairwise similarity
between all the genes in two genomes (Tatusov
et al., 1996, 1997, Huynen & Bork, 1998), having
diverged relatively recently compared to non-
orthologous homologues. One needs to know all
the proteins in two genomes to use relative levels
of sequence identity to identify orthologues.
Methods for the finding of orthologues rely both
on relative similarity of genes from various gen-
omes, and on information from the context of a
gene in a genome. If two genes from different gen-
omes share the same context, e.g. in the form of
being a neighbour to a gene that also has the high-
est pairwise similarity between the two genomes,
this supports them being orthologues of each
other. The comparison of the sequence tree and the
species tree can help in identifying orthologues
(Yuan et al., 1998), assuming that the genes have
not been subject to horizontal transfer. Apart from
information about the “functions” present in the
genome, orthologues also provide information
about the evolution of gene regulation. Specifically
by comparing the 5 and 3’ regions of orthologous
genes one can obtain information about the evol-
ution of promotors and operator/repressor
sequences, and about the evolution of RNA sec-
ondary structures involved in gene regulation (see
above). Orthologues should be the basis of sub-
sequent reconstruction of pathways, rather than
proteins for which we only know that they are
homologous. Within the current databases, only a
minor fraction of homologous relations can be
classified as orthologous and thus one has to incor-
porate external data (Figure 2, left) for further func-
tion characterization.

Searching genes for a function

A tool that further exploits the information from
comparing genomes for function prediction is
differential genome analysis (Huynen et al., 1997,
1998a). The genes that are not shared between two
genomes are probably responsible for species-
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specific phenotypes, as can be shown in the com-
parison of the pathogenic H. influenzae with the
closely related but relatively benign E. coli. A large
fraction (70%) of the genes in H. influenzae for
which there are no homologues in E. coli and for
which some functional annotation is possible can
indeed be considered host interaction factors
(Huynen et al, 1997). Also in the pathogen
H. pylori the fraction of genes that is not shared
with E. coli is relatively enriched in host interaction
factors (Figure 3). Taking differential genome anal-
ysis one step further one can show how gene con-
tent correlates with phenotype in multiple genome
comparisons (Huynen et al., 1998a). Although the
correlations between gene content and phenotype
cannot be used to predict the function of specific
genes, they can serve as a filter to select genes that
are probably responsible for specific functions. Or,
in other words, to search for “genes for a function”
rather than to search for ““functions for a gene”.

Incorporating proteomics data

Proteomics focuses on the protein products of
the genome and their interactions rather than on
DNA sequences (Humphery-Smith & Blackstock,
1997). It is thus complementary to the genomic and
nucleic acid information (Kahn, 1995) exploiting
novel tools such as 2D large scale analysis (Vietor
& Huber, 1997) and powerful mass-spectrometry
applications (Yates, 1998).

Protein identification and gene expression

Protein reading frames and expression behaviour
in particular are not easy to predict from the gen-
ome sequence and profit from incorporation of
additional experimental data (Figure 2, left). Co-
expression as well as tissue- and organ-specific
expression patterns at genomic scale are inten-
sively studied (Hieter & Boguski, 1997; Zhang et al.,
1997) and recent techniques collect data on a geno-
mic level.

Expressed sequence tag (EST) databases are
available which contain information on gene
expression that should correlate with the amount
of redundancy, and on the tissue distribution of
mRNA which can yield complex expression pat-
terns (Boguski et al., 1994; Zweiger & Scott, 1997).
However, retrieval of this information is hampered
by the high sequence error rate, by different spli-
cing variants and by the often missing 5 region
necessary to determine the exact CDS start.
Another caveat is that the EST approach has diffi-
culties measuring genes with low expression.

Serial analysis of gene-expression (SAGE,
Velculescu et al., 1995) is a more rapid method to
obtain partial sequence information from a very
large set of expressed genes, e.g. differences in
gene expression profiles in normal and cancer cells
are identified by hundreds of differentially
expressed transcripts, many of them growth factors
(Zhang et al, 1997). DNA chip-based gene-

expression screening procedures are currently the
fastest approach. Polymorphism with single base
resolution is detected within minutes in the entire
human mitochondrial genome (16.6-kilobases) by
applying 135,000 probes simultaneously (array
generated by light-directed chemical synthesis) and
a two-colour fluorescent labelling scheme (Chee
et al., 1996). Systematic PCR of the entire yeast
genome allows fluorescent readout of mRNA
levels in different yeast environmental conditions
such as changing glucose concentrations (DeRisi
et al, 1997; http://cmgm.stanford.edu/pbrown/
explore). The correlation between mRNA and pro-
tein expression level is, however, debatable.
Anderson & Seilhamer (1997) give a correlation
coefficient 0.48 for expression levels in human liver
measured either by two-dimensional electrophor-
esis (protein abundances) or by transcript image
methodology (mRNA abundance measured by
c¢DNA sequencing and cDNA clone count).

Direct determination of the major expressed pro-
teins may thus be an independent and attractive
alternative. The huge amount of work involved in
this can today be substantially reduced by apply-
ing 2D gels and mass spectrometry and comparing
experimental data to the annotated and predicted
genome sequence. Link et al. (1997) identify the
major part of the proteins and protein complexes
from H.influenzae (300 out of 400 spots) after liquid
chromatography (LC) and separation of the protein
cleavage products of each 2D gel spot in a first
mass spectrograph (MS) and further analysis in a
second (LC/MS/MS approach). Several proteins
not annotated in the genome sequence were ident-
ified by this approach.

Posttranslational modifications

After translation many proteins are further pro-
cessed. This includes chemical modification of
amino acids. Over 200 amino acid modification
types are classified (Krishna & Wold, 1997), many
more are expected (Annan & Carr, 1997). Such
modifications are not apparent from the genome
sequence, however, they are often critical for pro-
tein function. Two-dimensional gel electrophoresis
coupled to mass spectrometry and modern soft-
ware allows not only peptide mass fingerprinting
for low quantities (Kiister & Mann, 1998) but also
specific detection of amino acid modifications on a
large scale (Dongre et al., 1997). For this, a database
has to cover many of the reading frames likely to
be encountered in the protein mixture analysed by
the mass spectrometer. The EXPASY server
(www.expasy.ch/www /tools.html)  comprehen-
sively links 2D gel experiments (e.g. separation
from pH 4.0 to above 8.0 in the first dimension
and from M, 8-200 kDa in the second) to computer
analysis tools. Nevertheless, determination of e.g.
sugar modifications both by experiment and by
software (e.g. EXPASY suite above) has limited
accuracy, even including the kind of carbohydrate
attached.
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Predicting function in higher order processes

Having predicted or determined functions for as
many genes as possible and having assigned their
interactions as well as their expression levels, it is a
challenging task to put all the information into the
context of cellular processes (Figure 1). A variety of
databases and tools are emerging to support this
procedure.

Information on tissue distribution

On the molecular level the processing machinery
for metabolites differs in diverse tissues including
absence of enzymes, receptors and structural pro-
teins. On higher levels such as organ function,
clinical impairment, drug metabolism or suscepti-
bility to infections, tissue and phenotypic specific
expression differences are key features of differen-
tiation and help to find substances of therapeutical
value. Data for humans are provided e.g. by
TIGR (www.tigr.org/tdb/hgi/hgi.html), by NCBI
(www.ncbi.nlm.nih.gov/UniGene/index.html and
www.ncbi.nih.gov/dbEST/index.html), by SANBI-
South African National Bioinformatics Institute
(www.sanbi.ac.za/Dbases.html) and by the MRC
human genetics unit (glengoyne.hgu.mrc.ac.uk).
Such data should be wused critically as low
expression transcripts important for regulation
such as tyrosine kinases may escape detection by
EST sequencing or even Northern blots, and hence
are misrepresented in databases. Techniques are
still being improved (e.g. DNA chips (Brown,
1994)) and many data are not yet on the Web
or are even completely inaccessible (e.g. in
companies).

Analysis of protein interactions

Prediction and analysis of protein interaction
uses both experimental (e.g. antibody precipitation,
Maniatis et al., 1989) and theoretical approaches.
Two hybrid screening systems (Tsukamoto ef al.,

Figure 5. Protein interactions.
Shown are ABC transporter pro-
teins in the membrane of Gram-
negative bacteria. Encoding genes
are found as conserved gene clus-
ters in the same sequential order in
the complete genome sequences of
E. coli, H. influenzae and H. pylori.
They are an example of protein
interactions predicted by triple
comparison of complete genomes
and additional confirmation by
standard methods (see the text).
A number of other protein inter-
actions can also be suggested by
comparative analysis of complete
genomes.

1997) allow large scale screening, e.g. for 20 resi-
due peptide sequences that correctly recognize (so
called “aptamers”’) and inhibit cyclin-dependent
kinase 2 (Colas et al., 1997). Automation (with a
considerable error rate though) and matching the
data gathered with context and information such
as common pathways is possible (Brent & Finley,
1997). Logical connections of protein interactions
(e.g. with ras protein) can be revealed by a careful
choice of reporter plasmids (Xu et al., 1997).

A new way to identify protein interactions, com-
parative analysis between genomes, has revealed
that the conservation of gene order between gen-
omes with less than 50% protein identity is limited
to those genes that code for proteins that physi-
cally interact with each other (Dandekar et al.,
1998b). Protein candidates for physical interaction
that are identified by the conservation of their gene
order can further be analysed by the methods men-
tioned above. An example are the ABC transpor-
ters which were experimentally shown to consist
of physically interacting proteins (Eym et al., 1996)
and are found in conserved gene clusters in differ-
ent genomes (Figure 5). The conservation of gene
order can of course be used for the prediction of
functional features of hypothetical proteins (inter-
action with a neighbour and, if this one is charac-
terized, even participation in a pathway).

Reconstruction of pathways

The prediction of reactions and pathways
(example: Figure 6) of the respective organisms
integrates all the data above (including errors at
different levels!) into its phenotypic context and
yields a more complete picture of the biochemical
and adaptive capabilities of the sequenced organ-
ism (Overbeek et al., 1996). Mispredictions, wrong
annotations and higher level errors (substrate
specificity etc.) have to be minimized by context
information and additional experimental data. Pro-
blems specific to pathway predictions arise, such
as non-orthologous displacements (enzymatic
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Figure 6. Prediction of metabolic pathways and pathway alignment. The glycolytic pathway (centre) and alterna-
tive other routes (sides) predicted from the genome and observed in several microorganisms are shown and com-
pared (pathway alignment) to illustrate the often underestimated variability of metabolic pathways. Key enzymes
discussed are shown in bold. In the glycolytic pathway (centre) two molecules of triose are derived from one hexose
(as dihydroxyacetone phosphate can also be converted into glyceraldehyde-3-phosphate), the energy yield is two
mole ATP per mole glucose. Genome analysis shows that the complete glycolytic pathway is present in E. coli, as it
is, incidentally, in most eukaryotic organisms and cells including all human cells. In contrast, in H. pylori , a causative
agent for stomach ulcer and chronic ulcerative gastritis, phosphofructokinase in the upper part of the glycolytic path-
way and the important enzyme pyruvate kinase in the lower part seem to be missing. Thus a different route has to
be taken in H. pylori. According to our analysis (right bottom), a homologue of phosphoenol-pyruvate (PEP) synthe-
tase is present, which may support the missing step of the pyruvate kinase albeit at a reduced energy yield. The
taking over of the role of pyruvate kinase by phophoenol-pyruvate (PEP) synthetase could be an adaptation to the
highly acidic environment of the stomach in which H. pylori has to survive. More, and also more complex phenotypic
features of H. pylori can be understood in this way by a pathway analysis utilizing differential genome comparisons
(Huynen et al., 1998a). What about alternatives for the first part of glycolysis? This is illustrated in Figure 6 for Myco-
plasma species which are non-glycolytics: Phosphofructokinase is missing (as probably is the case in H. pylori where
only some homologue to pfkB from E. coli is present but is likely to be utilized differently) and also aldolase is
absent, for instance in Mycoplasma hominis. These species seem to channel instead glucose by the pentosephosphate
cycle (Pollack et al., 1997), which also yields glyceraldehyde-3-phosphate plus ribose and NADPH for nucleotide syn-
thesis and is thus less dispensable than parts of glycolysis in these very compact genomes (Himmelreich et al., 1997).
Our own investigations indicate that this should only be stochiometrically possible if there are additional enzymes in
the genome or additional functions of known enzymes which serve to replenish the pool of sugar phosphates in the
pentose phosphate pathway. There are several further alternatives for converting glucose to pyruvate. The Entner-
Doudoroff pathway (bottom left), is used instead of glycolysis in some bacteria (Danson & Hough, 1992). Further-
more, genome analysis by us and others shows that this route is present as a backup pathway for instance in all
Gram-negative genomes analysed to date. The ATP yield is only one mole per mole glucose. Probably it survived as
an exclusive pathway in some genomes due to its simplicity and direct yield of NADPH. Top left shows the non-
phosphorylated Entner-Doudoroff-pathway. This is an example of paleo-metabolism and due to the direct conversion
of glucose to gluconic acid not yet optimized to obtain any net ATP yield per mole glucose (Melendez-Hevia et al.,
1997). It is present in some Archaea such as Thermoplasma acidophilum (Fields, 1987).
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activities may then be overlooked in homology
searches; Koonin et al., 1996).

Databases increasingly facilitate the prediction of
metabolic pathways, notably EcoCyc (Encyclope-
dia of E.coli Genes and Metabolism), HinCyc:
(Encyclopedia of H. influenzae Genes and Metab-
olism), PUMA (see below), Biocatalysis/Bio-
degradation = Databases, Enzyme  Database
(e.g. www.expasy.ch/sprot/enzyme.html), Ligand
Databases (e.g. at the Japanese genome net, its
compound section is a collection of metabolic
compounds including substrates, products, and
inhibitors; www.genome.ad.jp/dbget/ligand.html),
Klotho, the biochemical compounds declarative
database; KEGG (Kyoto Encyclopedia of Genes
and Genomes page) and pathway pages on the
Web such as the Boehringer Mannheim pathways
chart, NetBiochem Welcome Page or pages on par-
ticular organisms such as for soybean metabolism
(cgsc.biology.yale.edu/metab. html). Experimen-
tally verified pathway databases have been col-
lected for regulatory circuits such as cell cycle in
yeast, human and budding yeast (BRITE project,
www.genomes.ad.jp/brite/Cellcyclemaps.html), as
cross-references (object oriented database manage-
ment system ACEDB) between protein kinases,
their interactions, 3D structure and pathways by
Igarashi & Kaminuma (1997) and for fly genes
involved in pattern formation (Jacq et al., 1997).

Several software tools reconstruct metabolic
pathways, usually in association with databases
(see above). Early efforts (Seressiotis & Bailey,
1988; Mavrovouniotis et al., 1990) required exten-
sive pre-analysis of the genome and the proteins
encoded therein. More recent developments
include Magpie (Multipurpose Automated Genome
Project Investigation Environment), an automated
genome analysis tool (Gaasterland & Sensen, 1996)
that accesses several databases through an object
and attribute viewer. Reaction equations, and com-
pounds are taken from the Enzyme and Metabolic
Pathway Database (Selkov et al., 1996) and have
been assigned via homology to proteins from sev-
eral organisms. The precomputed reconstruction
can be accessed via the Web. The WIT (What Is
There) system (Overbeek et al., 1997) is similar in
concept, but offers a wide range of query options.
It is a useful toolkit (http://www.cme.msu.edu/
WIT) to briefly check for pathways that might be
present in the genome of interest. Also with the
KEGG database pathway computations are poss-
ible, for instance testing the completeness of an
enzyme list (e.g. from a genome sequencing pro-
ject) with regard to a certain pathway (Ogata et al.,
1998).

Nevertheless, current reconstruction of metabolic
pathways from sequence is mostly done manually
using various tools that guide the decisions with
consideration of accumulated biochemical and bio-
logical knowledge. For example the EcoCyc WWW
Server (Karp et al., 1998) is used as a reference and
each possible hit there is carefully checked for
orthology (the whole protein function should be

similar, the sequence similarity should not be
restricted only to a functional domain; otherwise
no complete function transfer possible). For the lat-
ter an efficient tool is the COGs server (clusters of
orthologous genes; Tatusov et al., 1997; http://
www.ncbinlm.nih.gov/COG/). Profile alignments
of important enzymatic activities such as signa-
tures for pathways are also used and are being
developed in several other laboratories (e.g.
Rawlings & Searls, 1997).

The prediction of interdependencies of genes
and metabolism

Utilizing the tools and approaches above
together with methods for comparative sequence
and genome analysis, a number of specific predic-
tions in recently sequenced prokaryotic organisms
have been made that go beyond the analysis pro-
vided in the publications on sequenced genomes
for prokaryotes (Selkov et al., 1996, 1997; Tatusov
et al., 1996; Koonin et al., 1996; Strauss & Falkow,
1997) and eukaryotes (Oliver, 1997; Palsson, 1997).
The plasticity and the enzyme variety even of very
basic pathways turns out to be surprisingly high.
Figure 6 illustrates this for variants from standard
glycolysis encountered after genome analysis.

Predictions for protein functions and enzyme
pathways just cover the repertoire of functions pre-
sent. However, metabolic control analysis also con-
siders quantitative aspects such as flux, flow,
concentrations, stochiometric and allosteric effects,
compartimentalization and regulation (see e.g.
Schuster, 1996; Thomas & Fell, 1996; Bish &
Mavrovouniotis, 1998 and references therein).
Knowledge of possible metabolite flows (i.e. differ-
ent paths and orders of reactions given a constant
number of enzymes; “elementary modes”,
Schuster & Hilgetag, 1994, 1995; Liao et al., 1996;
Nufio et al., 1997; Bonarius et al., 1997) should
improve the understanding of the context of ident-
ified enzymes in the near future. This requires
well-studied systems. However, exactly these can
be achieved by extensive genome and proteome
analysis.

Comparative analysis of complete genomes pro-
vides further tools to study gene interdependence.
For example, genes that depend on each other are
expected to occur together in genomes or to be
absent altogether. By doing large scale comparative
genome analysis such correlations between genes
become apparent and provide an extra tool for
finding connections in metabolism or signalling
cascades. An example are sets of genes shared by
M. genitalium and one of either M. jannaschii (set 1)
or M. thermoautotrophicum (set 2), but not by the
other. Set 1 encodes among others, the functionally
related proteins phosphoglucose isomerase, glycer-
aldehyde 3-phosphate dehydrogenase and pyru-
vate kinase, that are all involved in glycolysis,
whereas set 2 contains the genes for DnaK and
DnaJ, parts of a chaperone pathway (Huynen &
Bork, 1998).
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Robustness, modularity and interdependence

When considering all the levels discussed there
seems to be a discrepancy between the complex
nature of the networks of genes and their interde-
pendence (e.g. via regulation) on the one hand and
the surprising robustness (e.g. horizontal gene
transfer or gene loss) on the other. One way in
which such robustness might be achieved is a
highly modular organisation, the interdependencies
of genes would then be limited to small sets. As yet
we do not have a quantitative understanding of the
modularity of cellular organisation, including the
genome, and its implications for the flexibility and
robustness of evolution. One also needs to keep in
mind that the examples of robustness we see are a
selected set: evolution does not report negative
results. We have tried to show here the powers of
using information contained in entire genomes, i.e.
context information and the interdependencies of
genes within a genome. These rules affect the func-
tion prediction process in various ways.

Limited prediction accuracy at all levels
and interdependence

Although many methods exist for various
aspects of each prediction step, one has to bear in
mind that they are not perfect and have only a lim-
ited accuracy. In addition, most of the methods
have (sometimes hidden) parameters that influence
the search result drastically (just switch in BLAST
the matrix from default BLOSUM62 to PAM250
and watch the changes in the output). Fortunately,
the loss of information in each step is compensated
by the fact that data are produced by experimental
methods in all the different levels (Figure 2). Thus,
the errors do not add up and can be compensated
by information from different levels e.g. by using
genome information to improve the prediction of
protein function as described here. Experimental
validation of hypotheses can also be conducted at
all levels, the interdependence allows even the
interpretation of cellular data for molecular fea-
tures and vice versa.

Modularity at each level and robustness

Modularity already is present at the DNA
sequence level in repeats, ubiquitous promotors,
duplicated segments, etc. The limited set of
domains, used again and again as structural and
functional scaffold, documents modularity at the
gene and protein level. Displacement of non-hom-
ologous but functionally equivalent enzymes and
the distinct pathway variants that all lead to the
same compounds (see Figure 6) are evidence for
modularity at the cellular level. Complex systems
such as the cytoskeleton (animals versus Mycoplas-
mas) or even specialized organs (vertebrate versus
octopus eye) do not represent unique solutions and
reveal that even tissues can be re-invented on the
basis of lower level modules. Thus, a remarkable

robustness can be observed at all levels, the bal-
ance of which might seem surprising given the
shuffling, horizontal transfer, disruption, insertion
etc. of genetic material. On the other hand, the
robustness represents also hope that functional fea-
tures are more significantly implicated and predict-
able from sequence than previously expected.

Prediction of function from sequence is a con-
siderably more complex enterprise than a simple
sequence database search which represented the
entire repertoire of tools a few years ago. In par-
ticular, with the arrival of multiple entirely
sequenced genomes and experimental input at var-
ious complexity levels we have the chance to
approach a new quality of understanding of cellu-
lar processes and their evolution.
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