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Different gene context methods are reviewed and summarized and an exam-
ple of implementing several of these strategiesinto a publicly accessible web
server is given.

1. Introduction

Although a lot of theoretical groundwork has been done on the evolution of gene
order (Sankoff and Blanchette, 1999; Sankoff, 1993), genomes of free living organ-
isms have only recently become available in sufficient quantity to allow multiple
comparisons and infer evolutionary constraints. For example, it became clear that
despite an enormous amount of gene shuffling in each phylogenetic branch thereis
both local and nonlocal conservation that appears to reflect a number of functional
constraints on the gene products, the proteins. In thelast three years, a number
o approaches have been developed (Marcotteet al., 1999a,b; Enright et al., 1999;
Overbeek et al., 1999; Pellegrini et al., 1999; Dandekar et al., 1998; Huynen and
Bork, 1998) to exploit such gene context conservation to infer functional associa-
tion of the respective proteins. Individual methods have been reviewed extensively
(Huynen et al ., 2000; Marcotte, 2000; Teichmann and Mitchison, 2000; Huynen and
Snel, 2000; Doolittle, 1999; Sali, 1999). We give here an overview and summarize
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different gene context methods, give an example of implementing several o those
strategiesinto a publicly accessible web server and also discuss evolutionary con-
siderations associated with the conservation o gene context.

2. Gene context and knowledge context

Prediction d gene function currently meanstransfer o existing knowledgefrom a
knowledge base, usually a sequencedatabase with its annotations. Thisis bearing
the danger that errors in our knowledge base are propagated or incorrect infer-
ences are being made (e.g., Bork and Koonin, 1998). Currently, the accuracy of
those methods is rarely better than 70% (Bork, 2000). Advantages of utilizing
gene context information arethat it isdirectly contained in the dataand that the
signal for recognition is increasing with the increasing amount of data (provided
they ared high quality) i.e. power o comparative analysisincreasesintime. Gene
context can belocally on the chromosome (e.g., conservation of gene neighborhood
or gene fusion), can be scattered throughout the genome (e.g., shared or similar
regulatory elements) or can only become visibleon the background of multiple ge-
nomes (e.g. co-occurrence df genesin the same subset d complete genomes). All
these methods can only be used for function prediction if one combines them with
existing knowledge, the knowledge context. This is basically our computerized
knowledge on biological processes accessible in databases such as for metabolic
networks (e.g., KEGG, Kanehisa and Goto, 2000 WIT, Overbeek et al., 2000),
for protein interaction (e.g., DIP, Xenarioset al., 2000), for cellular localization
(Nakai, 2000; Eisenhaber and Bork, 1998),for expression experiments e.g., Aach
et al., 2000; Scherf et al., 2000, for known post-translational modifications and
so on. Furthermore, methods are now being developed to directly access primary
sourcesfor biologica knowledge, the scientific literature e.g., Andrade and Vden-
cia, 1998; Rebhan et al., 1998. In order to exploit the signal inherent to DNA
for biological predictions, the knowledge base has to be accessed and again, at
this stage, inference of functional features might introduce some noise into the
prediction.

In the following, we introduce some d the concepts that are relevant for the
usage o gene context information.

2.1. Gene order

Gene order has been described since sometimeto be not conservedin prokaryotic
evolution (Kolsto, 1997) although somelocal conservation is retained (Mushegian
and Koonin, 1996; Tamames et a., 1997; Watanabe et al., 1997). Gene order
conservationis decreasing with the phylogeneticdistance o the species compared
(Huynen and Bork, 1998). A more quantitive comparison of nine genomes revea ed
that indeed the conservation of loca gene neighborhood in three distant species
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dlowstheinference o direct or indirect (e.g., part of the same complex) physical
interaction (Dandekar et a., 1998). If the criterium for local neighborhood is a
bit relaxed, eg. only the conservation o the presence within equivalent operons
(termed "runs’ as our knowledge on shared regulatory elements is still too frag-
mentary to infer the presenceof operons) is required, the signal is still very strong
(Overbeek et al., 1999, 2000). An examplefor deriving a hypothesis using context
information isillustrated in Figure 1. To quantify conservation of local gene neigh-
borhood, one needsto take into account the phylogenetic distance of species, their
genomesizes, the distribution of the neighboring genesin al the genomes consid-
ered, and effectssuch as horizontal genetransfer. Thelatter obviously creates noise
as neighboring genes have not had enough time to become shuffled despite their
presencein divergent species. In order to estimate the degree of genome distance
that is required to assume almost complete genome shuffling, the averagesimilar-
ity d orthologous genes (i.e., genes that reveal speciation events; Fitch, 1970) or
o ribosomal RNAsin the genomes compared can be taken as a measurement of
phylogeneticdistance (Huynen and Snel, 2000; Doolittle, 1999; Huynen and Bork,
1998). It can be compared to the degree d neighborhood conservation (Figure 2).
As operons require the same transcription direction, the 5 to 3 arrangements
should be the strongest conserved, a wesk signal has aso been observed for 5' to
5" arrangements, i.e, divergent promoters (Huynen and Snel, 2000) (Figure 3),
while 3' to 3' arrangements appear the least conserved. At an average distance o
87% small subunit ribosomal RNA sequence identity or an amino acid sequence
identity of 70% between all identifiable orthol ogous gene products of two genomes,
conservation of gene order can already be seen as preserved due to functional con-
straints on the gene products. Note that this rule might only apply to prokaryotic
genomes; poxvirus genomes seem to follow different rules (Figure 4).

Recently, a number o closdly related genomes have become accessible and it
is now also possible to gain insight into the mechanismsthat lead to the genome
shuffling, namely global and local inversions, gene and gene cluster duplications
and loss as wel as recombination events (Figure 4). It becomes clear that the
quantification o those events becomes difficult as different constraints apply to
different lineages (e.g., missing inversionsin the mycoplasmalineage might be due
to the absencedf palindromic sequencesand plasmidintegration sites which in turn
might be due to the absence of restriction enzymes in these organisms (Gelfand
and Koonin, 1997)).

2.2. Gene fusion

Another type o context is based on the assumption that genesthat are fused do
functionally associate or even physicaly interact. As orthologous gene products
arelikely to perform the samefunction in other organisms, the single occurrence of
genefusion in one organism is enough to predict interaction o the gene products
(Enright et al., 1999). Indeed, the method seems very accurate with only very
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Figure 3. Dot plots o orthologous genes between closely related bacterial genomes: A,
Helicobacter pylori J99 and Helicobacter pylori 26695; B, Mycoplasma pneumoniae and
Mycoplasma genitallium; C, Chlamydia trachomatis and Chlamydia pneumoniae; D, Es-
cherihia coli and Haemophilus influenzae. Orthology is defined as "bidirectional best,
significant (E < 0.01) hit" based on Smith-Waterman (Smith and Waterman, 1981)
comparisons o the genomes with one another and including the possibility of gene fu-
sion/fission (Huynen and Bork, 1998). Directional similarity isindicated by colors. green,
pairs of genes on the same direction; red, those on the opposite direction. The ORFs
without significant similarity to the other compared genome even in local DNA sequence
level are defined as the species specific ORF and indicated by blue dots on each axes.
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Figure 4. Gene order conservation in poxviridae. The gene order in the Vaccinia virus
(strain Copenhagen) is compared with that in four other poxviridae, at varying evolu-
tionary distances. The location of the genes in Vaccinia itself are given as a reference
(figure at the top of the page). The dots indicate the position of orthologous genes in
the genomes. The phylogeny at the right was constructed by clustering genomes based
on the fraction of the genes they share (Snel et al., 1999).
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few false positive predictions (Huynen et al., unpublished). However, the number
o occurrences is very limited (Enright et al., 1999; Snd et al., 2000). This can
be overcome by inferring also from paralogues (other members o multigenefam-
ilies with presumably different functions) at the cost of a higher fraction o false
positives (Marcotte et al., 1999a).

Again, if the prediction methods are tuned so that there is a high accuracy,
the increasing number of completely sequenced genomes will lead to an increase
in predictive power o fusion-based method.

2.3. Gene co-occurrences

A third typed context predictions has been evolvedfrom the observation that phy-
logenetic patterns o orthologs vary, i.e., the presence and the absence o proteins
in the different phyla can be recorded (COG-pattern, e.g., Tatusov et a., 2000,
and references therein). Furthermore, genes that co-occur in different genomes
have been predicted to functionally interact (Huynen and Bork, 1998). A more
detailed analysis indicated a number of successful predictions (Pellegrini et al.,
1999) and this kind of context was named " phylogenetic profile”. Again, although
several groups work on these methods, the results differ asthey very much depend
on the choice of parameters and thresholds. In our hands, co-occurrence using
orthology has a lower accuracy than gene fusion and gene neighborhood methods
(Huynen et al., unpublished data).

2.4. Shared regulatory elements

Another context is that of shared or similar regulatory elements. Unfortunately,
theidentification d motifsin noncodingregionsis much harder than in coding ones
and the current accuracy even for known regulatory elements is in the range o
50% (see Bork, 2000, and refs. therein). Nevertheless, there have been a number of
successful predictions of co-regulationand functional association of proteins based
on shared regulatory elements upstream their respective geneswithin one organism
(Hugheset al., 2000; Hertz and Stormo, 1999; Roth et al., 1998). In prokaryotes,
regulatory elements seem to be able to change positions within equivalent oper-
onsin different species (Lathe et al., unpublished observation) and the functional
association observed might be an indirect one. Thus, athough the context via
shared or similar regulatory elements has certainly potential, one has to wait for
larger and validated datasetsto be able to exploreit in a systematic way.

2.5. Combination of methods

It has been proposed that combining several d the approaches above with knowl-
edge databases on pathways or expression data increases the signal to noiseratio
even if theinitial methods are tuned to create a high noiselevel (Marcotte et al.,
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1999b). Even without the inclusion d known biological facts but just by exploit-
ing neighborhood, fusion and co-occurrence approaches tuned to achieve a high
accuracy (on the cost o less instances for predictions), the overall coverage and
accuracy seemsvery high. It hasto be noted that thereisa high overlap with clas-
sical, homology-based predictions (Huynen et al., unpublished observation). One
can exploit the complementarity between the methods, and thus predict both the
molecular function of a protein by homology analysis and the pathway in which it
playsarole by context analysis.

2.6. STRING: an implementation for the prediction of func-
tionally associated genes

Oneimplementation for the combination o different context methods with knowl-
edge databases has been reported that alowsa high rate of false positivesin each
individual method, but hopes for a drastic improvement by requiring detection o
the same functional association by at least two d the methods employed (Mar-
cotte et al., 1999b). Although the noise ratio remained relatively high, it can be
successfully employed to reveal candidates that can then experimentally verified
(eg., to find additional drug targets that associate with a known one). An al-
ternative approach is to require a high accuracy for each individual method and
add the results. Starting with detecting conservation of genes within potential
operons and gene fusions, and in addition considering co-occurrencescof genes, is
the strategy behind a web-based tool named STRING (Search Tool for Recurring
Instances of Neighboring Genes; ht t p zwww. bor k . enbl - hei del ber g .de/ STR NG .

When querying the tool with a single gene of one of the currently about 30 com-
pletely sequenced genomesthat are incorporated, orthologsin other genomes and
al neighboring genes are retrieved. If some neighboring genes are found to be
conserved, the procedure can be iterated for these conserved neighbors and their
neighbors and so forth (whereby fusion and the pure presencein the respective
operons are also considered). In the last iteration (thenumber can be specified by
the user or isthe onethat leads to convergenced the procedure: i.e. no more con-
text has been detected), co-occurrenceis being retrieved of al genes detected this
way. Theiterative approach of the algorithm allows one to detect complete path-
ways. For example, all known genes o the tryptophan biosynthesis are retrieved
when starting with a single gene of this pathway, TrpA (tryptophan synthase,
alpha subunit) without any additional false positive (Figure 5).

2.7. The uber-operon: gene order conservation at a higher
level

The procedure described above can reveal some surprising connections between
processes previously thought to be unrelated (for example membrane synthesis
enzymes and ribosomal proteins) although experimental prove is needed for such
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predictions. It further can assign functional associations to hitherto uncharac-
terized proteins. Interestingly, when studying many of these examples it turns
out that the gene order within operons is not conserved, but the shuffling of genes
seemsto be restricted. Though the genomic rearrangements vary for an individual
gene's specific neighborhood, many genes are maintained over evolutionary time
within the neighborhood of a discrete set of functionally related genes. We call
this phenomenon an uber-operon (Figure 6).

These uber-operons can be seen as a natural classification o a cellular process.
The variations we see in uber-operons, either in a single species or entire taxa,
could be indicative of variations on a cellular level. Nove additions o genes in
a particular species or taxainto an uber-operon might indicate new biochemica
pathways or regulatory changesin that species. Also, uber-operons might be good
indicators of relationships d the processeswithin a cell. Some uber-operons most
likely share genes, the genes being in one uber-operon in one group o species
and another uber-operon in a second. This could indicate the relationships and
connectivity of the processesthemselves. Thus, the uber-operons might form the
basisfor a natural classification of cellular functions and processes as well as for
the characterization of novel biochemical pathways in a particular species.

Henceevolutionary constraints revealed by different typesof conservedgenomic
context prove once more to be vital in the recognition of functional features and
open a new avenueto study cellular networks.
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