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ALIGNING SEQUENCES
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The most basic activity in sequence analysis involves align-
ing protein or nucleotide sequences together. This need arises
due to the processes of molecular evolution: gene dupli-
cation followed by continual divergence of the sequences
through the accumulation of mutations over time. Compara-
tive biological analysis, which has long been such a powerful
tool for biologists (as exemplified by Linnaeus and Darwin),
is arguably even more applicable in sequence analysis than in
any other branch of biology, because it can be applied to an
enormous number of character states at the level of individual
residues in nucleic acid or protein sequences. First, however,
related sequences must be correctly aligned before the power
of comparative analysis can be brought to bear. Because of the
difficulty of aligning highly diverged sequences, and the many
applications of sequence alignment, this is one of the most
active areas for method development in computational biology.

Alignment tasks generally divide into pairwise sequence
alignment and multiple sequence alignment, although the
underlying algorithms may share many details. The most
sensitive methods for aligning sequences belong to the class
of algorithms known as dynamic programming (or minimum
string edit) that were initially developed for applications in
text comparison. Two of the dynamic programming algorithms
most used in biology are usually known as Needleman-—
Wunsch (1) and Smith—Waterman (2), after the researchers
who first applied them to biological sequences. Because these
algorithms allow gaps to be inserted at any position in the
sequences, they are computationally slow. By contrast, word
comparison algorithms, which do not allow gaps, are much
faster, but at the expense of accuracy and sensitivity in align-
ing sequences.

PAIRWISE SEQUENCE ALIGNMENT ALGORITHMS

Dynamic Programming

The basic algorithm works through a two-dimensional matrix
in which every residue in one sequence is scored against ev-
ery residue in the other sequence (1). The algorithm begins in
one corner (eg, top left) of the matrix and ends in the oppo-
site corner (bottom right). At each point in the matrix, the al-
gorithm iterates the same set of choices. Typically, it chooses
which of three existing paths scores best when extended into
the current point: (i) match the residues and continue align-
ing from the previously aligned residue pair, or (i) pay the
penalty and insert a one-residue gap into sequence X, or (iii)
pay the penalty and insert a one-residue gap into sequence Y
(see Gap penalty). The algorithm is guaranteed to find the
best path through the matrix, allowing for gaps at any position
in either sequence. Scores for matching the residues are taken

from residue exchange, or mutation, matrices. For nucleotige
sequences, these are usually quite simple: for example, +1 fgr
an identity, 0 for a transition, and —1 for a transversion. For
proteins, typical exchange matrices are the more complex 20 *
20 PAM (point accepted mutation) matrices introduced by
Margaret Dayhoff (3), or subsequently derived PAM series de-
rived from larger alignment datasets (4,5). A PAM 250 matrix
is shown in Figure 1. Gap penalties are used to control the fre-
quency and length of gaps inserted in the sequences. Where ap.
propriate, varying gap penalties in a position-specific manner
can improve the alignment.

Dynamic programming algorithms work through a two-
dimensional matrix of area M*N in aligning sequences of
lengths M and N. Therefore the computational requirement
[usually symbolized as O(MN)] has a constant factor for the
calculation, multiplied by the two sequence lengths. To obtain
an alignment, the algorithm makes a first pass to determine
the end of the highest scoring matched segment and then a
second pass working back to obtain the alignment. If only
the highest score, but not the actual path, is needed (as in a
database search), then only the first pass need be done. Naive
implementations that first plot the whole matrix to an array
will also use O(MN) memory. Because the algorithm works
through the array systematically, however, it is unnecessary
to store the whole array in memory. Memory-efficient imple-
mentations of the first pass are straightforward, because the
alignment is not being kept (6). The second pass, to obtain
the alignment, is more complicated, but memory-efficient re-
cursive methods have been developed that have allowed large
alignment tasks to be ported to small personal computers,
with a small but acceptable loss in calculation speed (7-9).

Global Alignment

The standard Needleman-Wunsch algorithm (1) finds the
optimal full-length alignment for a pair of sequences. Global
alignment is appropriate where sequences are known to be
both homologous and collinear and is therefore often used far
multiple alignment of sequence families.

Best Local Alignment

Variants of the Smith—Waterman algorithm (2) find the opti-
mal alignment that has a positive value for the path for a given
pair of sequences. Except for highly related sequences, the
best local alignment is a partial match between the sequences.
Residue exchanging mutation matrices, such as PAM250,
provide log-odds scores for the likelihood that a pair of residues
will exchange as a result of mutation: Similar residues that
exchange easily have positive log scores, while dissimil§r
residues have negative log scores. The best local alignment 18
taken as the highest-scoring continuously positive path. This
algorithm is appropriate under conditions where sequences
are not known to be both fully homologous and collinear —for
example, multidomain proteins, or DNA regions containinlg
rearrangements. Smith-Waterman type algorithms underlie
the most sensitive methods for database searching by sequence
homology yet to be devised. Because of the comput&tiOFlal
cost, they are not applied as often as search methods using
ungapped alignment algorithms. .
The Waterman -Eggert (10) extension of the algorithm will
return sets of suboptimal paths that do not intersect with the
optimal path, and in this way it can find repeats in sequences.
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Figure 1. PAM250 amino acid exchange matrix developed by Gonnet and colleagues
(4) and superseding the original Dayhoff matrix (3). Similar pairs of amino acids have
positive log-odds exchange values while dissimilar pairs bave negative values. All pos-
itive scores are colored: Red shows scores for exact matches, purple highlights similar
pairs of hydrophobic residues, and green indicates similar pairs of hydrophilic residucs.
The highest residue exchange scores are for bulky aromatic residues (Phe, Tyr, Trp) and
are stronger than exact maiches of highly mutable residues such as Ser. The strongest
mismatches are between bulky hydrophobic residucs and small or negatively charged

residues.

Best Local Ungapped Alignment

Widely used database search toals, such as BLAST (11) and
FASTA (12), search for the highest scoring matched regions
without allowing for gaps. Word searches and other ungapped
alignment methods are much faster than dynamic program-
ming approaches, but at the expense of sensitivity. Thus these
methods are likely to miss homologous but divergent matches.
To improve the results, FASTA does a second dynamic pass
on the set of top hits. For a small reduction in search spced,
BLAST2 examines the gup cost between the set of ungapped
positive matches between two sequences and returns compos-
ite best locally aligned regions, including gaps whenever the
score ig still positive. The latter algorithm is likely to approach
Smith-Waterman sensitivity except for the most unusual
alignment circumstances.

MULTIPLE-SEQUENCE ALIGNMENT

This is a set of homologous protein or nucleotide sequences
that have been correctly aligned, allowing for the presence of
indels. Figure 2 shows an aligned region for some elongation
factor TU sequences.

Uses of Multiple Alignments

Multiple alignments are indispensable in computational biol-
ogy. They are the basic dataset used to construct phylogenetic
trees, which are themselves important computational tools (eg,
for weighting sequences by divergence) as well as providing in-
sight into past evalution. They reveal conserved residues that

arc likely to be structurally or functionally (eg, in catalysis) im-
portant and unconserved positions that cither arc unimportant
or have acquired a change of function (Fig. 23, They tmprove the
accuracy of many sequence analysis functions as compared Lo
single sequences, such as secondary structure prediction
(13), coiled-coil prediction (11), and transmembrane helix
prediction (15). They arc usceful as the query input for the most
sensitive homology searches (alignment profile (16) and hid-
den Markov model searches (17)) and can be used Lo detect di-
vergent homologues that single-sequence queries cannot pick
up. They arce useful in the detection of domains and in defin-
ing their boundaries in modular, mosaic proteins (18, Mul-
tiple alignments of folded RNAs are a prime resource used in
determining their secondary and tertiary structures, by map-
ping residue conservation and long-distance-coupled mutations
(19,20). DNA multiple alignments are used for identifying con-
served signals, such as promoter clements and RNA splice
sites(21).

Multiple-Alignment Algorithms

So far it has been necessary to adopt heuristic strategies to
generate multiple alignments, because formally correct meth-
ods have been computationally impractical to implement. The
ideal method to align N sequences would be N-dimensional
dynamic programming, as this would he guaranteed to find
the optimal path (ie, the optimal multiple alignment) in an
N-dimensional matrix. Unfortunately the computer time re-
quired to align N sequences of length 7 is Ot/ ) and is impracti-
cal for more than three or four sequences, although by limiting
the search space to likely regions, the MSA program can align
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Figure 2. Part of a multiple alignment of 14 prokaryotic EFTU sequences using the
one-letter code for amino acids. Gaps are indicated by dashes. Columns marked by as-
terisks are completely conserved, columns marked by colons ave strongly conserved,
and columns marked by periods are weakly conserved. The graph at the bottom shows
the conservation in the columns. Color is an essential aid 1o scquence analysis and is
used here to highlight conservation according to the amino acid propertics. Tnverted
characters indicate poorly matching regions of sequence. Some of these are due to nat-
ural sequence divergence, but there ave four errors in sequence determination caus-
ing frameshifted regions: EFTUSPIPL 203-208, EFTUODOS! 234-243. EFTUMY-
CPN 279-289, and EFTURICPR 284 ~287. Thesc crrors may lead to falsc inferences: IT
R-285 were completely conserved, it would be a candidate functional residue, while the

false gapped column at 206 incorrectly suggests a surface loop. See color insert.

up to eight scquences (22). Another broad class of methods,
those that iterate toward an optimized score for the alignment,
are still computationally intensive but are becoming practical
with increasing computer power. These include a number of
approaches, some of which may be used in combination, such
as global minimization, genetic algorithms, and trained neu-
ral networks (23.24). The goal is to harness a good model de-
scription of a multiple-sequence alignment with an effective
iteration sirategy, so as to get high-quality alignments in a
practical timescale. In the meantime, widely used alignment
programs such as Clustal W (25) follow the heuristical clus-
tered alignment strategy.

Progressive Clustered Alignment

This two-step approach was introduced by Feng and Doolittle
(26) in an attempt to minimize errors in the final multiple
alignment, by aligning the most similar sequences first and
the most divergent ones last. The set of unaligned sequences
are first aligned in pairwise fashion to each other, so that
a matrix of the approximate pairwise similaritics may be
obtained. A matrix-based tree construction method, such as
Neighbor-Joining (273, is used to construct a dendrogram
linking the sequences according to their observed similarities,
Guided by the dendrogram branching order, the sequences
are then sequentially aligned together using dynamic pro-
gramming, beginning with the most closely related sequences
and ending by merging the most divergent groups by profile
alignment. This procedure minimizes alignment errors, which

become more likely with increasing sequence divergence,
becoming a problem for proteins less than 25% to 30% identical
in sequence. The final alignment should always be examined
for misalignment. ¢specially of the more divergent sequences,
because such crrors are likely Lo be present in any but the most
straightforward multiple alignment task.

The sensitivity of the basic clusiered alignment strategy can
be improved by several modifications, such as weighting the
sequences by divergence and position-specific gap penalties
(25). Where tertiary structure information is available, gap
penalty masks can be employed to guide the gaps into regions of
sequence that are expected to be tolerant of indels (28).

Profile Alignment

A set of aligned sequences can bhe aligned to one or more new
sequences by treating the group much as a single sequence.
The score for one alignment column can be obtained by sum-
ming the log-odds residue exchange scores for the ohserved
set of amino acids (16), correcting for sequence relatedness by
downweighting similar sequences (25). Conserved alignment
columns score more highly than unconserved columns, where
the tog-odds scores tend to cancel each other. Gap penalties can
be lowered at existing indels, because gaps in new sequences
are more likcly at these positions than at ungapped positiol‘TS.
The improvement in signal to noisce provided by the extra 110-
formation in the alignment means that a profile alignment
is more accurate than independent pairwise alignment of the
same sct of sequences. As well as heing used to merge aligned
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groups in the clustered alignment strategy, profiles provide a
sensitive search strategy to find highly divergent homologues
and are one of the main sequence analysis tools for identifying
protein domain families (18).

Hidden Markov Model (HMM) Alignment

HMMs are a class of probabilistic models, applicable when the
components of a complex linked system behave independently
(a so-called Markov chain). Up to a point, this is valid for
residue mutations in glebular protein sequences, and HMMs
are being applied increasingly in multiple-alignment algo-
rithms and profile-type database searches (17,29). The models
are more complex than the widely used PAM model for protein
evolution introduced by Margaret Dayhoff (3), providing both
advantages and disadvantages. On the plus side, the models
provide direct probabilities for evaluating database search
matches, which can include multiple matches in a repeated
sequence and can formally treat biological complexities such
as splice junctions in genomic sequence. On the debit side, the
extra parameters lead to more complex optimization problems
at several levels. Thus, inexperienced users may set up poorly
optimized HMMs while, for program developers, there is a
problem as to whether the most appropriate HMMs are being
applied to sequence evolution. It is important for the user
not to be seduced by technical jargon, but to justify the use of
newer methods such as these on the basis of convincing results.

ERROR IN SEQUENCE ALIGNMENTS

Errors are very common and invalidate any conclusions ob-
tained by methods based on sequence alignments (see Fig.
2). The three main sources of error are: the input sequences,
mistakes by the user, or alignment algorithm failure. Causes
and effects of error are manifold; some major ones are discussed
below.

Errors in the Input Sequences

Experimental errors in determining sequences include double-
insert cloning errors, truncated cDNA clones, base insertion
or deletion causing translation frameshifts, and translation
with inappropriate genetic code (eg, for plastid-encoded
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proteins). Figure 3 shows an example of a frameshift error in
a database entry. Algorithm failure during alignment may
be induced by sequence error, such as frameshifted regions,
in which the sequences are no longer similar, and may induce
incorrect gap placement (Fig. 2). Errors in sequences are
very common and likely to be present in any sequence family
(30,31).

Further errors can arise in preparing sequence database
entries. These can affect any part of the entry and can have
particularly unpredictable consequences. However, the most
common annotation errors are undoubtedly in predicted
translation products and are a consequence of the limited
accuracy of current gene prediction algorithms; that is, despite
high-quality DNA sequence, the predicted protein sequence
might contain artificially translated introns, missed exons, or
terminal truncations or might be an artificial fusion product of
two independent genes. Protein sequence alignments can often
help in identifying translation problems.

Mistakes by the User

Generally these are due to inadequate attention to detail.
Erroneous inclusion of nonhomologous sequences in the input
set is quite common, particularly if keyword searches are
used to extract a set of sequences; there are many examples of
unrelated proteins performing equivalent functions, as well
as sequences that have functions incorrectly ascribed to them.
Another source of error occurs during the alignment process,
when parameters may be set poorly. Trial and error is usually
needed to find the parameters that best suit a particular group
of sequences. For example, insertion of too few or too many
gaps may suggest that the gap penalties are not optimal. It is
important to take the time to get a basic understanding of how
a given program works, or it is unlikely to do the best job.

Algorithm Failure

Clustered alignment is a heuristic strategy that is not guar-
anteed to find the optimal multiple alignment. The alignment
process is likely to compound errors introduced by the user
or in the input sequences. Alignment mistakes will also be
made in difficult alignment cases, even when there are no in-
put errors. There are many instances of homologous proteins
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Figure 3. Frameshifted segment in the Mycoplasma pneumoniace EFTU sequence re-
vealed by comparing the DNA to the closely related Mycoplasma genitalium EFTU us-
ing a dynamic programming three-frame comparison allowing shifts between transla-
tion frames (30). Exclamation points mark the frameshift sites. The first frameshift is
caused by a base being dropped, and the second frameshift is caused by a base being
added, thereby returning to the original translation frame. See Figure 2 for a multiple

alignment spanning this region.
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having diverged over long periods of time, so that they have
apparently very little sequence similarity. The “twilight zone”
where sequence similarity merges with sequence dissimilar-
ity is in the range 20% to 25% identity. (Five percent iden-
tity would be a random match for protein sequence, neglecting
residue biases. In practice, given residue biases and gap inser-
tions to maximize the similarity, the expectation for random
sequence matches approaches ~15% identity, but higher for
short or biased sequences. There is, however, no e priori reason
why correctly aligned but extremely divergent proteins should
not be found with 0% pairwise identity.) Divergent nucleotide
sequences are even harder to align, because random similar-
ity is reached at ~25% identity before gaps are added. Wher-
ever possible, alignments need to be checked against additional
data available for a sequence family, such as known tertiary
structures and whether invariant catalytic residues, or any
other known conserved motifs, are correctly aligned.

Consequences of Errors in Aligned Sequences

Errors in multiple alignments can have disastrous conse-
quences for phylogenetic inference on the basis of sequence
trees. Sequences with misaligned segments or translation
frameshifts are apparently more divergent than they should be
from the other sequences. The branch leading to that sequence
will then have a longer length (which erroneously implies
a more rapid molecular clock) and the branch point may
migrate toward the centre of the tree, giving a false order of
divergence. Such incorrect phylogenies may be quite exciting
when they seem to refute established viewpoints. Two rules of
thumb are useful: (i) Infinitely more wrong tree topologies can
be generated than right ones, and (ii) wrong phylogenies are
more interesting than right phylogenies. Incautious advocacy
of a wrong phylogeny can waste many peoples’ time.

Errors also disrupt evaluation of conserved sites in se-
quences (Fig. 2). Catalytic residues are often absolutely
conserved, so a single misaligned sequence may lead to
rejection of the correct site. Most conserved residues have a
structural role: Structure prediction for protein uses conserved
hydrophobic residues and, for RNA, conserved base-pairing
residues. Misalignments disrupt the conservation periodici-
ties, leading to rejection of the correct structures. Terminally
truncated sequences of multidomain proteins can lead to false
inferences for the domain boundaries, which are very usefully
defined by coincidence with the protein N- or C-termini.
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ALKALINE PHOSPHATASE

NICHOLAS ALLEN

Alkaline phosphatases (E.C. 3.1.3.1) belong to a family of
orthophosphoric monoester phosphohydrolases that have an
alkaline pH optimum. Their genes are very frequently used
as a reporter gene. Alkaline phosphatase activity is most
commonly detected by the hydrolysis of 5-bromo-4-chloro-
3-indolyl phosphate (BCIP), which, when coupled to the



