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We present a sequence-based method, SecretomeP, for the
prediction of mammalian secretory proteins targeted to the
non-classical secretory pathway, i.e. proteins without an
N-terminal signal peptide. So far only a limited number
of proteins have been shown experimentally to enter the
non-classical secretory pathway. These are mainly fibro-
blast growth factors, interleukins and galectins found in
the extracellular matrix. We have discovered that certain
pathway-independent features are shared among secreted
proteins. The method presented here is also capable of
predicting (signal peptide-containing) secretory proteins
where only the mature part of the protein has been annot-
ated or cases where the signal peptide remains uncleaved.
By scanning the entire human proteome we identified new
proteins potentially undergoing non-classical secretion.
Predictions can be made at http://www.cbs.dtu.dk/services/
SecretomeP.
Keywords: extracellular/growth factor/hormone/neural
network/secretome

Introduction

For targeting a protein to the extracellular space, it has for a
long time been believed that an N-terminal signal peptide was
strictly required. Recent studies, however, have shown that
several extracellular proteins, such as FGF-1, FGF-2, IL-1 and
galectins found in the extracellular matrix, can be exported
without a classical N-terminal signal peptide (Rubartelli and
Sitia, 1997; Hughes, 1999; Cooper, 2002; Nickel, 2003). In
addition to the mentioned cases, nuclear HMGB1 and viral
proteins, such as HIV-tat or herpes simplex virus VP22, have
been shown to enter the non-classical secretory pathway
(Goldstein, 1996; Hughes, 1999; Gardella et al., 2002).
Secretion of proteins without an N-terminal signal peptide
is currently known as leaderless secretion or the non-
conventional/non-classical secretory pathway (Rubartelli
and Sitia, 1997). Eukaryotic protein secretion normally routes
through the endoplasmatic reticulum (ER) and Golgi, ending
up in a secretory vesicle fusing to the cell membrane. Studies
have shown that the non-classical secretory pathway works
independently of the ER–Golgi network; the secreted proteins

do not enter the ER and have therefore never been observed to
be glycosylated even if they carry potential glycosylation
motifs. Non-classical secretion of proteins can be verified
experimentally as export is not being hampered by inhibitors
of the classical secretory pathway, such as monensin and
brefeldin A (Tanudji et al., 2002).

Accurate protein trafficking and localization are essential
for all living organisms. Targeting to the secretory pathway,
to mitochondria or to chloroplasts in plants is usually mediated
by an N-terminal leader sequence. Targeting signals can
also be found internally in the protein sequence, e.g. uncleaved
signal peptides, nuclear import and export signals (von Heijne
et al., 1991). Numerous methods for predicting the subcellular
location of proteins have been developed, most of which
rely on the presence of these signals (Nielsen et al., 1997;
Nakai and Horton, 1999; Emanuelsson et al., 2000; la Cour
et al., 2003). Despite the knowledge of alternative secre-
tion pathways, no current machine learning approach directly
addresses the problem of predicting proteins entering the
non-classical secretory pathway. However, prediction methods
based on amino acid composition are in principle capable
of predicting proteins entering the non-classical secretory
pathway (Reinhardt and Hubbard, 1998). Here we report
that essentially all existing methods are unable to predict cor-
rectly the majority of the known examples of non-classical
secretion.

With the excessive complexity of the secretome, which by
definition comprises the secretory proteins and the secretion
machinery (Tjalsma et al., 2000; Antelmann et al., 2001;
Greenbaum et al., 2001), no current computational prediction
method is able to cover all targeting signals.

In this paper, we present a sequence-based prediction
method capable of identifying mammalian secretory proteins
of the non-classical secretory pathway. The approach we have
taken is similar to that of the ProtFun method for predicting
protein functional role categories or Gene Ontology classes
(Jensen et al., 2002a, 2003). It works by mapping protein
sequences into protein feature space where they are represented
by various sequence-derived features such as predicted post-
translational modifications, predicted structure, degradation
signals, composition, size and charge. We found that although
the method has been trained to identify classical secretory
proteins (with their signal peptide removed), it gives similar
output scores for proteins secreted via the non-classical secret-
ory pathway. This indicates that extracellular proteins
share certain properties and features which can be related to
protein function outside the cell and not to the specifics of the
secretory process itself. This also enables us to identify
secreted proteins where an N-terminal signal peptide is missing
owing to gene finding errors. However, the method is not
intended to compete with prediction methods identifying
N-terminal signal peptides—when such signals are present
we recommend using the SignalP and TargetP methods
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instead (Nielsen et al., 1997; Emanuelsson et al., 2000;
Bendtsen et al., 2004).

Materials and methods

Generation of data sets
Ideally, our positive data set should consists of a large number
of proteins secreted via non-classical pathways. Unfortunately,
it is not possible to obtain a sufficiently large data set as only a
very small number of proteins undergoing non-classical secre-
tion are known. Worse yet, many of these examples exhibit
significant sequence similarity to each other.

Since we will be looking for features shared among extra-
cellular proteins, the mechanism by which a protein is secreted
should not be important. We therefore use for training the large
number of proteins known to be secreted via the classical signal
peptide mediated mechanism. A set of 3321 extracellular mam-
malian proteins were extracted from the Swiss-Prot database
based on subcellular localization annotations in the comments
block (Bairoch and Apweiler, 2000). Partial sequences and
sequences without an annotated signal peptide were not
included in the data set. As we wish to train a predictor that
works in the absence of signal peptides, the signal peptide part
of each sequence was removed.

A set of negative training examples was constructed by
extracting 3654 mammalian proteins in Swiss-Prot, which
were annotated as residing in the cytoplasm and/or the
nucleus. In order to avoid the situation that the method
would learn the trivial fact that transmembrane proteins are
not extracellular, we did not include transmembrane proteins
in the negative set as no such proteins are present in the
positive set. Using TMHMM (Krogh et al., 2001), we were
able to remove all transmembrane proteins with high confid-
ence, as TMHMM can discriminate between soluble and
membrane proteins with both specificity and sensitivity better
than 99%. Moreover, we did not include proteins from most
other subcellular localizations since they go via the endo-
plasmic reticulum (ER), making it difficult to exclude that
they could be secreted.

A test set of 13 non-classically human secretory proteins
were collected from Swiss-Prot. Criteria for selection was
clear experimental evidence within the literature for the
given sequence entry. Only human secretory sequences were
used in this test set, discarding viral and parasitic sequences.
The Swiss-Prot sequence entries found were CNTF_HUMAN,
FGF1_HUMAN, FGF2_HUMAN, HME2_HUMAN, HMG1_
HUMAN, IL1A_HUMAN, IL1B_HUMAN, IL18_HUMAN
LEG1_HUMAN, LEG3_HUMAN, MIF_HUMAN, THIO_
HUMAN, THTR_HUMAN.

Data set partitioning
The data set (positives and negatives) was divided into five
cross-validation subsets of roughly the same size with minimal
sequence similarity between the subsets. This ensures that
when training cross-validation ensembles of neural networks,
any two similar sequences will either both be used for training
or both used for testing. Compared with a strategy where
redundant sequences are discarded, a much larger data set
will be available, while we still obtain a correct measure of
the predictive performance on the independent test subsets. The
most ‘significant’ match between training and test had a
BLAST E-value of only 8 · 10�4 (26% identity for one

sequence pair). In general, the similarity is even lower, ruling
out completely that the method transfers functional informa-
tion based on sequence similarity.

Training of a feature-based neural network
Standard feed-forward neural networks with a single layer of
hidden neurons were used for predicting which proteins are
secreted. Neural networks were trained using as input different
combinations of sequence-derived features previously used for
other protein function prediction tasks (Jensen et al., 2002a,b,
2003). Although our data set was constructed as not containing
transmembrane proteins with all signal peptides removed, the
SignalP, TargetP and TMHMM predictions were initially
included in the feature set, allowing the method to choose
features in an entirely data-driven fashion.

The feature selection was performed as follows. First, cross-
validation ensembles comprising five neural networks were
trained using each single protein feature as input. A robust
estimate of the feature performance was calculated as the
median test set performance of the five neural networks in the
ensemble. Based on the single feature performance estimates,
the best features were selected for training of neural networks
having pairs of features as input. Again, the most promising
features were selected to build up progressively larger feature
combinations. As different features and feature combinations
will result in very different numbers of input neurons, the
number of hidden units was varied to keep the size of the
network as constant as possible, aiming for 300 weights.

The six features included in the final neural network were
encoded using the following scheme. Calculated sequence
properties were presented to the network as single values.
Thus, the number of atoms and the number of positively
charged amino acid residues were encoded as a single value
for each input sequence. In order to preserve positional infor-
mation, the position specific features were encoded as average
values within a number of bins representing different parts of
the sequence. For the masking of low-complexity regions by
the SEG filter, each sequence was fractioned into five bins and
presented to the neural network. Predictions of propeptides
with ProP were similarly fractioned into five bins for each
sequence. Twenty probabilities were used as input to the neural
network from prediction of subcellular localization by PSORT.
For transmembrane helix prediction by TMHMM, each
sequence was fractioned into five bins and ‘inside’, ‘outside’
and ‘membrane’ predictions were presented to the neural net-
work during training. The other features not retained in the final
predictor were represented in a similar fashion.

Screening of the human proteome
For analysis of the human proteome, the IPI database release
2.11 was downloaded (http://www.ebi.ac.uk/IPI/). As the
neural network method presented in this paper has been trained
to recognize proteins secreted without the use of a signal pep-
tide only, the data set was also filtered to remove all protein
sequences predicted by SignalP to contain an N-terminal signal
peptide. Furthermore, TMHMM was used to remove all
predicted transmembrane proteins from the set as no such
proteins were included during training (Krogh et al., 2001).
This left us with an initial set of 36 585 sequences to be
screened. For these sequences, all sequence-derived protein
features were calculated, normalized in the same way as for
the training examples and finally used as input for all five
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neural networks in the cross-validation ensemble. The mean of
the five resulting output values was used as the final score for
each sequence.

The fairly large number of questionable protein sequences
derived from the genes predicted by computational gene find-
ing methods presented a problem in our analysis. All the human
protein sequences were therefore compared using gapped
BLAST (Altschul et al., 1997) to the equivalent IPI database
of mouse proteins. Only human proteins for which a mouse
homolog could be found with an E-value below 10�6 were
kept. This requirement reduced our initial set of 36 585
sequences to a more reliable set of 21 771 sequences, which
were used for the computational screening and identification of
novel putative proteins undergoing non-classical secretion.

Results and discussion

No simple motifs in proteins undergoing non-classical
secretion
In the well-described examples of non-classical secretion men-
tioned above, no sequence motifs have been found that target
these proteins to the extracellular surroundings. When submit-
ting a set of 13 known human examples of non-classical secre-
tion to PSORT (Nakai and Horton, 1999), seven are assigned as
nuclear, four are predicted to be cytoplasmic and two are pre-
dicted to be mitochondrial. None of the 13 sequences are pre-
dicted to be extracellular. It is not surprising that PSORT is
unable to classify these sequences correctly, as extracellular
proteins in PSORT essentially are identified as signal peptide-
carrying sequences using McGeoch’s method (McGeoch,
1985), later modified by Nakai and Kanehisa (Nakai and
Kanehisa, 1991), in combination with the von Heijne weight-
matrix for signal peptide prediction (von Heijne, 1986).

The neural network-based method NNPSL, which is based
solely on amino acid composition as input, has a reported
prediction accuracy of 66% for four eukaryotic compartments
(Reinhardt and Hubbard, 1998). Of the 13 protein sequences of
non-classical secretion, six are correctly predicted as being
secreted, three are predicted to be mitochondrial, two nuclear
and two cytoplasmic. Thus, using NNPSL, 46% of this valida-
tion set of non-classical secretory proteins could be correctly
predicted.

The notion behind the SecretomeP method is firstly that
secretory proteins share certain features regardless of the
mechanism by which they are secreted and secondly that
these combinations of features are not often found in non-
secretory proteins. Due to the relatively small number of
known non-classically secreted proteins, we use as positive
training examples classically secreted proteins (with signal
peptide removed) and inspect whether this approach will
identify non-classically secreted proteins correctly. We inves-
tigated 16 different sequence-derived features and sequence-
based prediction methods and tested them for discriminatory
value. Subsequently, those contributing most strongly to the
predictive performance were combined in a neural network
approach (Jensen et al., 2002a).

Features of discriminative value for identification of
non-classical secretory proteins
Many sequence features will, when assessed independently, be
present in proteins undergoing non-classical secretion as
well as in non-secretory proteins. We therefore searched for

combinations of features with discriminatory value. The full list
of features used is given in Table I. Using an iterative scheme
(see Materials and methods) where features were tested indi-
vidually and in combination, we eventually obtained a set of six
features together having optimal discriminatory power (Table I).

The number of atoms and the number of positively charged
residues turned out to be two of the best performing features.
The predictive power of each feature, when used alone, pro-
vides a very simple measure of feature importance. As both of
these features are strongly correlated to the sequence length,
we analyzed the length distributions of the non-classically
secreted and non-secreted proteins in addition to that of pro-
teins known to be secreted by conventional mechanisms (see
Figure 1).

Several features may well be encoding the same information
in different ways—protein size is encoded by both the number

Table I. Features tested for discriminatory value: the table lists features
included in the initial training of which some are calculated, wherease others
were predicted by various prediction tools from the amino acid sequence

Feature

Number of atoms calculated by ExPASy ProtParama

Number of negatively charged residues calculated by ExPASy ProtParam
Number of positively charged residues calculated by ExPASy ProtParama

Isoelectric point calculated by ExPASy ProtParam
Extinction coefficient calculated by ExPASy ProtParam
Grand average of hydropathicity calculated by ExPASy
ProtParam PEST regions predicted by PESTfind
Low-complexity regions predicted by SEGa

Secondary structure predicted by PSI-Pred
Transmembrane helices predicted by TMHMMa

N-linked glycosylation predicted by NetNGlyc
O-linked glycosylation predicted by NetOGlyc
Subcellular localization predicted by PSORTa

Propeptides predicted by ProPa

Tyrosine phosphorylation predicted by NetPhos
Serine and threonine phosphorylation predicted by NetPhos

aThese features were used in the final method.

Fig. 1. Protein length distributions. Length distributions for non-classically
secreted proteins and cytoplasmic proteins. The length distributions have
been normalized and smoothed by a Gaussian kernel density estimation.
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of atoms and the number of positively charged residues. To
discover other less obvious pairs of correlated features, we
studied the performance of networks trained for pairs of fea-
tures. By calculating the difference in the performance of a
feature pair and the best of the two individual features, we
obtained a measure for the additional information gained by
combining features (see Figure 2).

From this feature analysis, it is clear that PSORT and
TMHMM also appear to be encoding much the same informa-
tion in relation to this task. PSORT predicts the probability that
a protein resides in each of a number of subcellular localiza-
tions. The localization prediction which appears to be of great-
est predictive power is ‘cytoplasmic’, as PSORT generally
predicts secreted proteins to be less likely cytoplasmic than
non-secreted. PSORT does not predict secreted proteins lack-
ing their signal peptide to be secreted, but predicts them to be
cytoplasmic or nuclear. Given the absence of transmembrane
proteins in our data set (see Materials and methods), it is more
surprising that TMHMM, which predicts transmembrane
helices and the topology of transmembrane proteins, can be
used to discriminate between secreted and non-secreted pro-
teins. It appears that most of its predictive power stems from
the prediction of membrane topology, i.e. ‘inside’ vs ‘outside’,
rather than the prediction of transmembrane segments.

The two final features included in the prediction show much
weaker correlation to other features and therefore each con-
tributes unique information. These features are low-complexity
regions as detected by the SEG filter (Wootton and Federhen,
1993) and furin-type propeptide cleavage sites predicted by
ProP (Duckert et al., 2004). Both features yielded lower scores
for secreted than non-secreted proteins, i.e. they contain both

fewer regions of low sequence complexity and fewer propep-
tide cleavage sites. This is puzzling, since propeptide cleavage
usually takes place in secreted proteins (Thomas, 2002). The
propeptide predictor is not only detecting dibasic sites, but also
there is a small bias in the R/K content which is 12.1, 10.4, 10.7
and 10.7% in intracellular, extracellular, non-classically
secreted and secreted (mature part), respectively.

In earlier work, differences in single and pair amino acid
composition between extracellular and non-secreted proteins
have been reported (Nakashima and Nishikawa, 1994). For the
over-represented pairs of amino acids we found in general little
agreement when comparing the mature part of the classically
secreted and the non-secreted proteins. More importantly,
when calculating the over-represented pairs in the (small)
non-classically secreted data set, these seem to differ strongly
from those found in the classically secreted proteins. We con-
cluded that no simple compositional statistics can identify non-
classically secreted proteins.

Prediction performance of the neural network
For any prediction method, an important aspect is to assess the
prediction performance and to make a trade-off between sens-
itivity and specificity, i.e. finding as many of the positive
examples as possible while still keeping the number of false-
positive predictions low. Figure 3 shows this trade-off for the
method as a ROC (receiver operating characteristic) curve. The
performance corresponds to what we expect for novel proteins
as the curve is based on cross-validated test set performances
with minimized similarity to the training sets. With the current
method we are able to obtain a sensitivity of 40% with a very
low level of false-positive predictions of <5%.

Fig. 2. Correlations in feature information. This plot show the importance of the six features included in the final prediction method. Features included are number of
atoms, number of positive residues, propeptide cleavage site (ProP), protein sorting (PSORT), low-complexity regions (SEG) and transmembrane helix predictions
(TMHMM). The white diagonal circles shows single feature importance and the gray circles illustrate combined feature importance, that is, e.g. number of atoms and
number of positive residues provide much information to the network individually, but in conjunction only limited additional information is obtained. The spot size is
proportional to the correlation coefficient.

J.D.Bendtsen et al.

352



It is commonly believed that most of the sequence informa-
tion, which is related to classical secretion, resides in the signal
peptide itself and that the primary structure of mature protein is
not strongly constrained. The score distributions shown in
Figure 4 indicate clearly that this view may not be entirely
correct. It is in fact possible to predict with reasonable accuracy
whether a (classically secreted) sequence is secreted or not by
using the mature part of the protein only. From the ROC curve
in Figure 3, it is also clear that we cannot expect to find all non-
classically secreted proteins without assigning a lot of false
positives also. Below we have used this method to rank the
entire human proteome and used the top scoring part where
there will be no or very few false-positive assignments.

Despite our method being capable of predicting secreted
proteins with signal peptide removed, the actual test should
be on proteins known to enter the non-classical secretory path-
way. To analyze this, the neural network score distribution for
the set of 13 such proteins was compared with the score dis-
tributions obtained for positive and negative training examples
(see Figure 4). Only human non-classically secretory proteins
were used as a measure of performance.

It is clear that the neural networks give very similar output
scores for the two sets of secreted proteins despite the proteins
being secreted by entirely different pathways. This supports the
idea that extracellular proteins share certain features, which are
related more to the protein functioning outside the cell than to
the process by which the protein is secreted.

Prediction results for known and putative non-classically
secreted proteins
For the 13 known human examples of non-classical secretion,
10 receive neural network scores exceeding 0.6 using our
method (CNTF_HUMAN, FGF1_HUMAN, FGF2_HUMAN,

HME2_HUMAN, IL1B_HUMAN, IL18_HUMAN, LEG3_
HUMAN, MIF_HUMAN, THIO_HUMAN, THTR_HUMAN)
and two (LEG1_HUMAN and HMG1_HUMAN) receive
neural network scores less than 0.6. HMG1_HUMAN, a
nuclear protein under normal cellular conditions, receives
the lowest SecretomeP score. IL1A_HUMAN is only present
in the extracellular environment in low concentrations and is
predicted as a borderline case. The two FGF examples have
significant matches to various FGFs with signal peptides (FGF4,
FGF6 and FGF7), which also is the case for IL1B_HUMAN,
but the rest have no significant matches to any sequence in the
positive part of the training set. Three viral proteins are known
to enter the non-classical secretory pathway, HIV-tat, foamy
virus Bet and herpes simplex VP22. HIV tat and Bet are clearly
predicted to enter the non-classical secretory pathway, whereas
the VP22 capsid protein is a borderline case.

Recently, non-classical secretion of Annexin A2 was
demonstrated in the small intestinal enterocytes of pigs
(Danielsen et al., 2003). Similarly, we expect Annexin A2
of human enterocytes to be secreted by non-classical means.
ANX2_HUMAN receives a neural network score of 0.739,
well above the threshold for correct classification of a non-
classical secreted protein.

FGF-9, -16 and -20 lack the classical secretory N-terminal
signal peptide but are indeed efficiently secreted (Miyake et al.,
1998; Miyakawa et al., 1999; Ohmachi et al., 2000; Revest
et al., 2000). Interestingly, these three proteins are predicted to
be secretory using SecretomeP with high confidence. This
again shows the power of our prediction method, regardless
of whether the secretory protein carries a cleaved N-terminal
signal peptide or not.

Fig. 4. Neural network score distributions. Known secretory proteins of the
non-classical pathway have similar neural network output scores to the positive
training examples (truncated secretory proteins of the classical pathway without
the signal peptide), easily distinguishable from the negative training examples.
The data set extracted from the IPI database display a scoring pattern similar
to the negative training set, indicating that the majority of the IPI set is non-
secreted. All score distributions were normalized and smoothed by a Gaussian
kernel density estimation.

Fig. 3. Sensitivity and rate of false positives for the prediction method. The
receiver operating characteristic (ROC) was constructed based on the cross-
validation test set performances. Due to the homology partitioning of the cross-
validation data set, the performances shown correspond to what can be expected
for novel proteins. Random performance would correspond to a diagonal line.
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We also applied the method to the entire human proteome in
order to identify novel proteins potentially secreted without N-
terminal signal peptides. For this purpose, we used the IPI set of
predicted human protein sequences (http://www.ebi.ac.uk/IPI/),
removing all sequences predicted to have signal peptides
and/or transmembrane helices.

As only a fairly small number of non-classically secreted
proteins are expected to exist in the human genome, the score
distribution for the predictions on this set of candidate
sequences should resemble that of the negative training exam-
ples. However, this was clearly not the case as a very large
number of proteins received high scores from the neural net-
works (see Figure 4). When inspecting the predictions, it was
clear that most of these high-scoring sequences were short and
annotated as hypothetical proteins in IPI. Hence we suspect that
a very large fraction of these are in fact conceptual translations
of spurious gene predictions. As one of the prominent features
of secreted proteins is that they tend to be shorter than other
proteins (see Figure 1), the presence of such sequences in the
data set presents a serious obstacle for a computational screen-
ing as they lead to false-positive predictions. We have
addressed this problem by limiting our study to the subset
of sequences that show similarity to sequences in the IPI
mouse data set, knowing that we will thereby also discard
some true protein sequences.

From the search for new putative secretory proteins enter-
ing the non-classical secretory pathway, we divided the
high-scoring sequences into two groups. Both groups lack
SignalP-predicted signal peptides. In the first group we list
sequences with homology to entries in Swiss-Prot that carry
signal peptides (BLAST E-values <10�10 to the SecretomeP
training set, Table II). In Table III we list the top-scoring
sequences without any functional annotation in IPI or NR.
In both lists the sequences have mouse homologs.

The requirements for the first group reduced the IPI set to
237, including immunoglobulins and sequences known from
the IPI database to be fragments. By removing known non-
classically secreted proteins, immunoglobulins and known
fragments, we ended up with a total of 33 sequences, which
we predict as being secretory proteins with high confidence. A
list of these sequences is presented in Table II. The method
predicts, for example, thioredoxin to be secreted. This cyto-
plasmic protein can also be found in the extracellular surround-
ings and has previously be found to be secreted via the
non-classical pathway (Rubartelli et al., 1992).

Another example to highlight is the positive prediction of
PAI-2. This protein, lacking an N-terminal signal peptide, but
having an internal uncleaved signal peptide, is secreted through
the classical secretory pathway (von Heijne et al., 1991). Inter-
nal uncleaved signal peptides cannot be predicted using
SignalP, but SecretomeP correctly classifies the PAI-2 protein
as being secreted.

Entries in Table II with initial methionine and match to
proteins carrying signal peptides may indeed be proteins
secreted via the non-classical secretory pathway, as seen for
the fibroblast growth factor family. Only FGF1 and FGF2 of
this large family are secreted by non-classical means (Nickel,
2003). The entry 00147465.2 having a disintegrin-like domain
and carrying an initial methionine is a good candidate for
experimental validation of whether it is actively secreted via
non-classical means. Entry 00101605.1 also carries an initial
methionine and contains immunoglobulin domains found in

different types of cell adhesion molecules (De Juan et al.,
2002). Entry 00154153.1 shares similarity to plasma kallikrein
precursor which usually carries a signal peptide. Entry
00156091.1 displays similarity to a mannose binding C-type
lectin. Lectins are indeed a group of proteins known to enter the
non-classical secretory pathway (Hughes, 1999; Cooper,
2002).

In eight cases we were able to make a nearly perfect align-
ment of the predicted secretory IPI sequence to a known protein
sequence with an N-terminal signal peptide, except for the N-
terminal region. This indicates missing annotation of the signal
peptide in the IPI sequences (Reinhardt and Hubbard, 1998),
probably due to an automated computer annotation, or it could
be novel isoforms of the proteins simply without the signal
peptide as in the example of tenascin XB (see below). Features
seem to be conserved in extracellular proteins regardless of the
secretory pathway they enter.

Table II. Predicted secretory sequences entries from IPI

IPI NN Description in IPI/NR

00002785.2 0.928 TNF receptor superfamily member 6 isoform 4
00018926.1 0.904 Granulysin, isoform 519
00002778.2 0.896 TNF receptor superfamily member 6 isoform 7
00010830.1 0.830 Pro-melanin-concentrating hormone-like 1

protein
00003301.1 0.689 Astrocyte-derived trophic factor 2
00009410.1 0.664 Glycosyl hydrolase family 47
00006605.1 0.650 Thioredoxin-related protein
00008412.1 0.621 Disintegrin and metalloproteinase domain 21

preproprotein
00008308.1 0.982 HGC6.3 protein
00154272.1 0.932 TNF (ligand) superfamily, member 6
00147465.2 0.881 A disintegrin-like and metalloprotease
00017554.1 0.871 Similar to sphingomyelin phosphodiesterase

precursor
00156091.1 0.868 Probable mannose-binding C-type lectin
00154153.1 0.844 Similar to Plasma kallikrein precursor
00004922.1 0.838 Chymase precursor
00017799.2 0.829 Thioredoxin
00000962.1 0.819 Protein tyrosine kinase
00008869.3 0.804 Pregnancy-specific b1-glycoprotein 11
00013723.1 0.792 Peptidyl-prolyl cis–trans isomerase

NIMA-interacting 1
00016958.1 0.772 FGF22
00006498.1 0.750 Deleted in azoospermia 2 protein
00101605.1 0.742 MAM domain containing

glycosylphosphatidylinositol anchor 1
00001602.1 0.728 UL16-binding protein 3
00017262.1 0.712 Carbonic anhydrase VA, mitochondrial precursor
00007067.1 0.701 ‘SCP-like extracellular protein’
00005038.1 0.698 14.5 kDa translational inhibitor protein
00017809.1 0.684 TNF-C
00012668.2 0.669 Serine protease inhibitor
00003011.2 0.654 FGF 12, isoform 2
00016588.1 0.639 Nucleoporin 210
00013371.1 0.635 Sprouty homolog 3
00007117.1 0.611 Plasminogen activator inhibitor-2 precursor
00017590.1 0.605 Superoxide dismutase [Cu–Zn]
00032456.2 0.585 Tenascin XB isoform 2

Thirty-three sequence entries from the IPI database which received a high
neural network output score. Only sequences with a neural network score >0.6
and a BLAST E-value <10�10 compared with our positive training set are
included. Known fragments and immunoglobulins were removed. The first
eight sequences align perfectly to their homologous sequences in Swiss-Prot
except for the signal peptide, which is absent in the sequences presented to
SecretomeP. The major group seems mostly to be extracellular proteins.
Tenascin XB isoform 2 is included in the table even if it has a neural network
score slightly <0.6, showing alternative translations of two isoforms.
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Some of the cases where we were able to perfectly align the
IPI sequence to an entry in Swiss-Prot might not always be
erroneous annotations in the IPI database, but splice variants of
the gene product. This is indeed the case of granulysin isoform
519 as we find this to be a transcript variant with the inclusion
of an additional 242 bp segment within intron 1 of the granu-
lysin gene (AC: NP_036615). The inclusion of this additional
segment results in the utilization of a different translation start
codon. Both isoforms are secreted, but isoform 519 does not
contain any signal peptide predicted by SignalP. The other
isoform of the granulysin gene (NKG5) has an annotated signal
peptide cleavage site at position 15–16; according to SignalP,
the cleavage site is located at position 22–23.

The last entry in Table II showing tenascin XB isoform 2 is a
truncated version of isoform 1, including the C-terminal 673
residues (AC: NP_115859). This variant (XB-S) is transcribed
from a cryptic promoter sequence in intron 32 and thus includes
exons 33–45. It encodes isoform 2, which is identical with the
C-terminus of the full-length protein, isoform 1. Isoform 1 of
tenascin XB does indeed carry an N-terminal signal peptide.

Whether other predicted secretory proteins are splice vari-
ants of proteins carrying signal peptides or whether they are
erroneous annotations can only be revealed by thorough experi-
mental investigations.

In order to identify completely novel proteins of the non-
classical secretory pathway, we investigated human entries in
the IPI database with no descriptive annotation and no match to
sequences in the NCBI non-redundant sequence database (NR)

with well known function. We also discarded sequences lack-
ing the initial methionine as well as sequences shorter than 100
amino acids. A total of 2037 human entries with significant
homology to mouse sequences (also with no descriptive anno-
tation) were found. Entries containing N-terminal signal pep-
tides were removed. The resulting 1746 sequence entries were
investigated using SecretomeP and the top 30 highest scoring
sequences were inspected in detail (all had a SecretomeP score
>0.691, indicating a high probability of being a secreted pro-
tein). The 30 sequences did not have any significant homology
to either the negative or the positive training set (Table III).

Several entries from the list of the 30 highest scoring prob-
able non-classical secretory proteins are worth mentioning.
Sequence entry 00063270.1 and 00065190.1 are interesting
orphan candidates as they display very little homology to
other proteins. Only one BLAST hit with an E-value <2.6
can be found for entry 00063270.1 and two BLAST hits
were found with an E-value <0.37 for entry 00065190.1.

Several high-scoring SecretomeP sequences with matches
to proteins with known function normally located in the cyto-
plasmic compartment caught our attention (not included in the
table). IPI entry 00154901.1 has very high homology to cyto-
chrome P450. Cytochromes are normally located in mitochon-
dria, thus carrying a mitochondrial transit peptide. As this
sequence also is without initial methionine we are not able
to determine whether this is due to poor gene finding or
whether this protein is actively being translocated without
the transit peptide. Another IPI entry 00154495.1 has similarity
to the PMS1 human homolog. This protein is involved in
mismatch repair of DNA and has an HMG box domain.
Even though this is a nuclear protein, proteins carrying similar
domains have been shown to enter the non-classical secretory
pathway (Gardella et al., 2002; Nickel, 2003).

The SecretomeP method presented here complements the
highly popular method for detection of classically secreted
proteins, SignalP (Nielsen et al., 1997). We believe that the
SecretomeP method also will have a significant user potential.
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