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Abstract
Motivation: The whole genomes submitted to GenBank
contain valuable information about the function of genes
as well as the upstream sequences and whole cell expres-
sion provides valuable information on gene regulation.
To utilize these large amounts of data for a biological
understanding of the regulation of gene expression, new
automatic methods for pattern finding are needed.
Results: Two word-analysis algorithms for automatic
discovery of regulatory sequence elements have been
developed. We show that sequence patterns corre-
lated to whole cell expression data can be found using
Kolmogorov–Smirnov tests on the raw data, thereby
eliminating the need for clustering co-regulated genes.
Regulatory elements have also been identified by sys-
tematic calculations of the significance of correlations
between words found in the functional annotation of
genes and DNA words occuring in their promoter regions.
Application of these algorithms to the Saccharomyces
cerevisiae genome and publicly available DNA array
data sets revealed a highly conserved 9-mer occuring in
the upstream regions of genes coding for proteasomal
subunits. Several other putative and known regulatory
elements were also found.
Availability: Upon request.
Contact: steen@cbs.dtu.dk

Introduction
Although the genomic sequence of Saccharomyces cere-
visiae has been determined (Goffeau et al., 1997), and
thereby the sequence of all the promoters, the regulation
of gene expression is far from being fully understood.
A few computational approaches have been applied
to the identification of upstream regulatory sequences
(Brazma et al., 1998; van Helden et al., 1998; Spellman
et al., 1998). These methods all search for motifs in the
upstream regions that are shared by a given group of genes
known to have a common biological function and/or

regulation. However, no systematic search for correlations
between upstream elements and gene function has been
reported yet.

The recent availability of whole cell expression data has
added a new way of finding groups of co-regulated genes:
clustering the expression profiles. Although obtaining
biologically meaningful clusters from the expression data
is not a trivial task, once accomplished, any algorithm
for finding shared sequence patterns can be used for
identification of regulatory elements.

In the analysis by van Helden et al. (1998) of word
frequencies in upstream regions of several co-regulated
clusters [some of which were based on whole cell ex-
pression data for the diauxic shift (DeRisi et al., 1997)],
many known regulatory sequences were found. It clearly
illustrated that although the word description is simplistic,
it is useful for finding transcription factor binding sites and
that grouping of similar words can provide a description
of degenerate patterns.

Clusters of genes with similar expression profiles during
the mitotic cell cycle have been investigated by Spell-
man et al. (1998). Although this approach was mainly
focused on identification of co-regulated genes, several
known transcription factor binding sites were found by an
analysis of upstream regions.

Here, we describe a new method that does not require
clustering, thereby circumventing problems like choosing
the optimal number of clusters to use in the analysis. An
entirely new approach that relies on functional annotation
of genes is also presented. Because no experimental data is
required this algorithm can be applied directly to existing
databases.

Methods
Data sets
From all 6269 ORFs annotated in the S. cerevisiae Gen-
Bank files (accession numbers U00091, Y13134, X59720,
Z71256, U00092, D50617, Y13135, U00093, Z47047,
Y13136, Y13137, Y13138, Z71257, Y13139, Y13140,
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and U00094) two 200 bp regions were extracted: one
region starting at 300 bp upstream and another starting
100 bp downstream of the ORF. The 100 bp gap between
the extracted regions and the ORFs serves to avoid 5′ and
3′ UTRs.

For systematic analysis of correlations between up-
stream regulatory sequences and gene function, another
set of 5097 upstream regions of 500 bp and the functional
annotation of the corresponding genes was compiled
based on the gene function annotations available from
SGD (http://genome-www.stanford.edu/Saccharomyces/).

A number of different DNA chip data sets were anal-
ysed, all of which were made using the Stanford method
described in DeRisi et al. (1997). One data set analysed
is the diauxic shift data—the first DNA chip data set ever
(DeRisi et al., 1997). This experiment shows the gene ex-
pression response of S. cerevisiae to glucose starvation at
seven time points. A similar time series of gene expression
during sporulation by Chu et al. (1998) and the data for
the variation in gene expression over the mitotic cell cycle
measured in various synchronized cultures (Spellman et
al., 1998) were also analysed.

The DNA chip data sets all consist of a set of red–green
ratios representing the relative expression level of a gene
in two different samples—usually the expression at some
time point compared to at the start of the experiment. For
analysis of these data 91 data sets were made—one per
time point in all experiments. These data sets consisted of
the 500 bp upstream regions and the red-green ratios of all
genes for which data were available at the time point in
question.

Hypergeometric statistics on sequence patterns
An algorithm was developed for identification of sequence
patterns—represented as non-degenerate words—that are
overrepresented in a set of sequences (positive set) com-
pared to a reference set (negative set). For each of the two
sets, the number of sequences that contain each pattern
was counted using a suffix tree. Counting the number of
sequences rather than the number of occurrences ensures
mutually independent observations, thereby allowing
for the use of sample statistics as a rigorous statistical
method for determining which patterns are significantly
overrepresented.

Unlike most other software, the two strands are treated
separately when counting patterns. By doing so we gain
sensitivity on patterns that show strong preference for one
orientation. The RPG box and the HOMOL1 box shown
in Table 2 are examples of such patterns. The price paid
is a lower sensitivity on patterns with little or no strand
preference.

Four numbers are needed for deciding whether a pattern
is significantly overrepresented: the number of sequences
in the positive set that contain the pattern (Pt ); the number

Positive set Negative set

With pattern Pt P f
Without pattern N f Nt

in the negative set that contain the pattern (Pf ); the number
of sequences in each of the two sets that do not contain
the pattern (N f and Nt for the positive and negative set,
respectively).
As the positive set is a sample of size Pt +N f from the pool
of all sequences (Pt + Pf + N f + Nt ) which contains Pt +
Pf sequences with the pattern, the expected distribution
for Pt is the hypergeometric distribution H(Pt + N f , Pt +
Pf , Pt + Pf + Nt + N f ). Using the AS R77 algorithm
(Lund, 1980; Shea, 1989) P(x<Pt ) was calculated for
all patterns that occurred in the positive set. The exact
significance potential (pα) of any pattern of length L being
overrepresented was then calculated as:

pα = − log(1 − P(x < Pt )
(4L ))

In this work we have analysed all correlations found
to have a significance potential of at least 4. All groups
of such overlapping pattern have been reported with the
exception of patterns stemming from the subtelomeric
regions (see discussion).

Because of numerical difficulties in calculating the
above expression for very high levels of significance
an alternative measure was also used for quantifying
the overrepresentation of patterns namely the Mathews
correlation coefficient (Mathews, 1975):

C = Pt Nt − Pf N f√
(Pt + Pf )(Pt + N f )(Nt + Pf )(Nt + N f )

.

The correlation coefficient attains the value 1 in case of
a perfect positive correlation, −1 for a perfect negative
correlation, and 0 for a completely random distribution of
the k-tuple between the two sets. However, one should
keep in mind that the Mathews correlation coefficient is
not a measure of statistical significance—in contrast to the
exact hypergeometric statistics.

Systematic analysis of functional annotation
The functional annotation associated with each gene or
ORF was converted into a pseudo-sequence by removal
of all non-alphanumeric characters (including spaces) and
conversion of lowercase letters to uppercase. A dictionary
of all words (k-tuples) up to a length of 10 letters that
occurred in at least two pseudo-sequences was made.

For each of the approximately 10 000 words in the dictio-
nary, the set of 500 bp upstream regions was divided into a
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corresponding positive set consisting of the sequences con-
taining the word in their functional annotation and a neg-
ative set not containing the word. In all the positive sets
and their corresponding negative set the number of DNA
sequences containing each k-tuple up to length 10 bp was
counted and analysed using hypergeometric statistics (the
two strands were again treated separately). Because we are
able to quickly perform this exact statistical test of all func-
tional words in the dictionary compared to all DNA pat-
terns, we do not preprocess the dictionary to reduce its size.

Kolmogorov–Smirnov statistics on DNA array data
A DNA word correlated to a specific time point can be
found by Kolmogorov–Smirnov statistics. Because the
Kolmogorov–Smirnov test is a rank test, the set of up-
stream regions is first sorted based on the red–green ratio
from the time point being analysed, thereby assigning each
sequence a rank in the form of its position in the dataset.

To calculate the significance of a given pattern being
correlated to the observed red–green ratios, the following
ratio is calculated:

max1≤i≤N
∣∣ xi

n − i
N

∣∣
√

n+N
n·N

N is the number of sequences in the set, n the number
of sequences containing the pattern, and xi the number
of sequences of rank up to i that contain the pattern. To
give a better balance between long and short patterns,
the Kolmogorov–Smirnov ratio divided by the pattern
length was used for evaluation of the patterns. In this work
all correlations with a ratio above 0.3 were examined
manually and all patterns with a ratio of 0.4 have been
reported.

This test value can be calculated from the summary
values N , n, and max |N xi − ni |. By using a suffix tree
with three counters per pattern, these can be obtained for
all patterns in just two sweeps through the set of sorted
sequences. In the first sweep, the number of sequences
containing each pattern is stored in one counter. During
the second sweep, the number of these sequences yet
encountered and the highest value of |N xi − ni | so far are
stored in two other counters.

Implementation
The algorithms described were implemented in C++ on
an SGI Power Challenge. Since all three algorithms are
implemented as pattern counting in suffix trees, their time
complexity is the same—O(kL), where k is the maximal
pattern length and L is the total length of the sequences.
For the analysis of functional annotation and DNA array
data this is the complexity of analysing one dictionary
word/one time point respectively. Because a suffix tree is
used for storing the patterns, there is no minimal pattern

Table 1. Patterns found more frequently upstream than downstream of genes.
The significance calculated using hypergeometric statistics is show as pα.
The column Corr contains the Mathews correlation coefficients and the
two last columns show the number of upstream and downstream regions
containing the pattern

Pattern pα Corr. Up Down

Reb1p CGGGTAA... 7.6 0.063 216 94
CGGGTA.... >10 0.066 304 149
.GGGTAA... 5.3 0.054 421 268

.TTACCCG.. >10 0.074 234 87

..TACCCGG. 6.0 0.058 109 32
GTTACCC... 5.9 0.058 154 60
..TACCCG.. >10 0.080 330 139
.TTACCC... >10 0.069 485 279
...ACCCGG. 6.4 0.058 173 73

MCB ..ACGCG... 5.2 0.051 466 311
...CGCGT.. 5.2 0.051 473 317
..TCGCG... >10 0.070 513 298
...CGCGA.. 5.7 0.053 469 309
...CGCG... >10 0.100 1426 937
....GCGA.. >10 0.084 2057 1581
..TCGC.... >10 0.081 2206 1736

Cbf1p-Met2p- ..CACGTG.. 5.0 0.053 182 86
Met28p

Curved .AAAATTTTT 4.2 0.056 240 122
element .AAAATTTT. 4.2 0.054 444 286

length; even patterns of length 1 are analysed. However,
we have so far not found any patterns shorter than four
nucleotides to be significant.

Results and discussion
We present here the results obtained by applying all three
approaches to the S. cerevisiae data sets. The few abundant
regulatory elements found by comparison of upstream and
downstream regions are shown in Table 1; as is a new pu-
tative curved element. We also present both novel putative
elements and known regulatory elements with significant
correlation to the functional annotation of genes (Table 2)
and whole cell expression data (Table 3).

Known TF binding sites
A simple comparison of patterns that are more frequently
present in upstream than in downstream regions (see
Table 1) reveals the recognition sites for some tran-
scription factors known to regulate many genes. One of
these is Reb1p which both plays an essential role in the
termination of transcription of ribosomal RNAs (Lang
and Reeder, 1993; Lang et al., 1994) and functions as
general transcription regulator (Remacle and Holmberg,
1992). This illustrates that although the method is very
simplistic, it does actually work.
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Table 2. Correlations between upstream sequence elements and functional
annotation of genes found by systematic analysis. The columns pα and Corr
contain the significance found by hypergeometric statistics and the Mathews
correlation coefficient for each pattern

Pattern pα Corr. Function

MCB ...ACGCGT.... >10 0.167 DNA replication
....CGCGTA... 6.0 0.121
...ACGCG..... >10 0.109
....CGCGT.... >10 0.113

Curved ..AAAATTTTTT. >10 0.178 Protein synthesis
element ...AAATTTTTT. >10 0.153

..AAAATTTTT.. >10 0.144

..AAAATTTT... 6.5 0.125

...AAATTTTT.. 6.3 0.126

...AAATTTT... 6.1 0.103

Proteasomal .GGTGGCAAAA.. >10 0.420 Proteasomal
element ..GTGGCAAAA.. >10 0.358 subunit

.GGTGGCAAA... >10 0.275

..GTGGCAAA... >10 0.286

.GGTGGCAA.... >10 0.232

..TTTGCCACC.. >10 0.157

...TTGCCACC.. 3.4 0.166

RPG .ACCCATACAT.. >10 0.144 Ribosomal
..CCCATACAT.. >10 0.161 proteins
..CCCATACA... >10 0.151
...CCATACAT.. >10 0.147
.ACCCATAC.... 5.8 0.142
..CCCATAC.... 5.5 0.122

HOMOL1 CATCCGTACA... >10 0.177 Ribosomal
.ATCCGTACAT.. >10 0.181 proteins
...CCGTACATTT >10 0.148
CATCCGTAC.... >10 0.185
.ATCCGTACA... >10 0.187
..TCCGTACAT.. >10 0.171
...CCGTACATT 5.4 0.167
CATCCGTA..... 6.1 0.149
.ATCCGTAC.... >10 0.205
..TCCGTACA... >10 0.210
...CCGTACAT.. >10 0.145

Met31p, ...AAACTGTG.. >10 0.204 Methionine
Met32p ....AACTGTG.. 4.6 0.138 biosynthesis

.....ACTGTG.. 3.6 0.100

..CCACAGTT... 2.5 0.172

..CCACAGT.... 2.8 0.132

Cbf1p-Met2p- ....CACGTG... 6.3 0.153 Methionine
Met28p ...ACGTGA.... 4.7 0.116 biosynthesis

Methionine ...GTGACTCA.. >10 0.157 Methionine
element ..CGTGACT.... 3.8 0.128 biosynthesis

....TGACTCA.. >10 0.157

....TGACTC... >10 0.145

.....GACTCA.. 6.2 0.116

.....GACTC... 6.1 0.087

The STRE element (Marchler et al., 1993), a general
stress response regulator, was not surprisingly found most

strongly correlated to the diauxic shift experiment but
also correlated to the elutriation cell cycle experiment
(Table 3). One might speculate that the yeast cells were in
fact stressed during the elutriation centrifugation.

The pattern CACGTG, which from functional annotation
was found to be correlated to methionine biosynthesis, was
surprisingly also found to be overrepresented in promoter
regions in general and even weakly correlated to the cell
cycle regulation (Tables 1, 2, and 3). The latter is consis-
tent with the results of Spellman et al. (1998), namely that
many genes involved in methionine biosynthesis are sub-
ject to cell cycle regulation. The global overrepresentation
may be explained by the word CACGTG being the consen-
sus sequence for both the Cbf1p–Met2p–Met28p complex
and PHO4 (O’Connell and Baker, 1992). The consensus
sequences of Met31p and Met32p, AAACTGTG, were also
found to be significantly correlated to methionine biosyn-
thesis.

The MluI cell cycle box (MCB) (McIntosh et al., 1991)
with the consensus sequence WCGCGW (ACGCGT being the
preferred sequence) was found by the three independent
methods used in this work (see Tables 1, 2, and 3). The
search for patterns overrepresented in promoter regions
revealed that several variations of the consensus sequence
occurred about 50% more in upstream regions than in
downstream regions. The systematic analysis of func-
tional annotation correctly identified all of these MCB-like
patterns as being strongly correlated to DNA replication.

Moreover, MCB was found to be correlated to regula-
tion in all DNA chip experiments concerning the mitotic
cell cycle as well as sporulation. This is reassuring since
DNA replication is a part of both sporulation and the ordi-
nary cell cycle. On the other hand the sporulation specific
elements URS1 (Park et al., 1992) and MSE (Ozsarac et
al., 1997) were both found to be strongly correlated to the
regulation during sporulation, but not to regulation in any
of the DNA chip data sets concerning the mitotic cell cy-
cle.

In the cell cycle experiments the most significant corre-
lations were found at time points during the first cycle of
the experiment. This is probably because the cell cultures
become less synchronized over time. This should be seen
in contrast to other experiments such as diauxic shift and
sporulation, where the most significant correlations are
found near the end of the experiments, where the gene
expression has changed the most compared to the initial
time point (data not shown).

The systematic analysis of functional annotations
also revealed a large number of words correlated to
ribosomal proteins. By assembling the words into a
longer sequence, the consensus sequence of the RPG
box (ACACCCATACAT) (Vignais et al., 1987, 1990) and
HOMOL1 (WACATCYRTRCA) (Larkin et al., 1987) were
obtained (Table 2).
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Table 3. Patterns found correlated to regulation by Kolmogorov–Smirnov statistics (ratio ≥ 0.3). All values are Kolmogorov–Smirnov ratios divided by pattern
length. The Diaux and Spo columns contain the results from the diauxic shift (DeRisi et al., 1997) and sporulation (Chu et al., 1998) datasets. The columns
Alpha, CDC15, CDC28, CLB2, CLN3, and Elu shows the results from different synchronized cultures in the the cell cycle data set by Spellman et al. (1998)

Diaux Spo Alpha CDC15 CDC28 CLB2 CLN3 Elu

MSE .TTTTGTG.. 0.411
..TTTGTG.. 0.538
...TTGTG.. 0.415

..CACAAAA. 0.434

.CCACAAA.. 0.423

..CACAAA.. 0.516

URS1 .TAGCCGCC. 0.419
..AGCCGCC. 0.450
...GCCGCC. 0.442

MCB ..ACGCGT.. 0.690 0.845 0.665 0.853 0.507 0.694 0.558
..ACGCGA.. 0.527 0.666 0.631 0.388 0.599 0.500
..TCGCGT.. 0.509 0.477 0.579 0.421 0.619 0.449
..ACGCG... 0.628 0.825 0.849 0.943 0.516 0.814 0.672
...CGCGT.. 0.640 0.858 0.696 0.940 0.589 0.913 0.652
..TCGCG... 0.389 0.647 0.554 0.644 0.387 0.664 0.421
...CGCGA.. 0.362 0.535 0.778 0.769 0.347 0.637 0.525
...CGCG... 0.493 0.669 0.737 0.937 0.481 0.820 0.534

Cbf1p-Met2p- ..CACGTG.. 0.326 0.313 0.359 0.349
Met28p

STRE ..AAGGGG.. 0.557 0.422 0.574
...AGGGG.. 0.630 0.329 0.689

..CCCCT... 0.541 0.381 0.382 0.668

Curved AAAAATTTT. 0.549 0.553 0.513 0.407 0.472 0.574
element .AAAATTTTT 0.520 0.536 0.494 0.400 0.347 0.560

AAAAATTT.. 0.518 0.540 0.492 0.473 0.433 0.612
.AAAATTTT. 0.666 0.685 0.720 0.539 0.546 0.422 0.706
..AAATTTTT 0.521 0.518 0.580 0.458 0.386 0.573
.AAAATTT.. 0.519 0.575 0.474 0.474 0.303 0.615
..AAATTTT. 0.593 0.596 0.662 0.516 0.398 0.652

Proteasomal GGTGGCAAA. 0.313 0.312
element GGTGGCAA.. 0.325 0.340 0.328

.GTGGCAAA. 0.307 0.316
GGTGGCA... 0.305 0.357 0.313
.GTGGCAA.. 0.354 0.328
.GTGGCA... 0.312 0.323

Putative proteasomal element
The perhaps most exciting result of the systematic analysis
of functional annotations was a highly conserved pattern in
upstream regions of genes encoding proteasomal subunits.
Because synthesis of proteasomes require expression of
the genes for all proteasomal subunits, it would make
biological sense to expect a shared regulatory element for
these genes.

The consensus sequence of the pattern, GGTGGCAAA,
was found within 200 bp of the translation start in 25 out
of 31 genes assigned as proteasomal subunits, whereas
only 26 of the more than 6000 other upstream regions

contain this pattern. Among these 26 apparent false
positives are two proteases and three genes with relation
to ubiquitin, all of which could very well be co-regulated
with proteasomes.

The program DIALIGN (Morgenstern et al., 1996)
was used for generating an alignment of regions with
local similarities from the set of 500 bp upstream regions
of proteasomal genes (Table 4). Only two such regions
were found—these were the consensus sequence and its
reverse complement. This consensus that allows for some
degeneracy was found in the upstream region of 28 of the
31 proteasomal genes.
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Table 4. The two locally homologous regions found by DIALIGN (Morgen-
stern et al., 1996) in the upstream regions of genes encoding proteasomal sub-
units. The two motifs are reverse complement of each other and match the
upstream element that was found correlated to proteasomal subunits. The ‘-’
characters represent gaps in the alignment

ORF Pattern

YBL041W GGGTGGCAAAA

YBR173C CAGTGGCAATT

YDL147W CGGTGGCAAAA

YDL097C GGGTGGCAAAT

YDL007W CGGTGGCAAAT

YDR394W AGGTGGCAAAA

YDR427W CGGTGGCAAAA

YER012W CGGTGGCAAAA

YER094C CGGTGGCAAAA

YGL048C AGGTGGCAAAA

YGR135W AGGTGGCAAAA

YGR253C CGGTGGCAAAA

YHR027C CGGTGGCAAAA

YJL001W CGGTGGCAAAA

YOR117W -GGTGGCAAAA

YOR157C GAGTGGCAAAA

YOR261C CAGTGGCAAAT

YOR362C CGGTGGCAAAA

YPR103W GGGTGGCAAAA

YER021W ATTTGCCACCC

YFR050C ATTTGCCACCT

YFR052W ATTTGCCACCC

YGL011C ATTTGCCACCG

YHR200W -TTCGCCACCG

YKL145W -TTTGCCACCC

YOL038W -TTTGCCACCG

YOR259C ATTTGCCACCG

YPR108W -TTTGCCACCC

A sequence logo (Schneider and Stephens, 1990) of the
28 true positives aligned at the pattern (Figure 1) was made
to investigate if this pattern could be an artifact from some
larger conserved sequence. This was found unlikely as
the information content dropped to near zero outside the
consensus sequence. This was further verified by pairwise
alignments of all 500 bp regions upstream of proteasomal
coding regions (data not shown). It is also improbable that
the pattern should be an RNA signal or a leader peptide
in the 5′-UTR, as the pattern shows only weak strand
preference.

Other putative elements
As was the case for the Cbf1p-Met2p-Met28p complex
and MCB, patterns similar to AAAATTTT were picked up
by all three methods used here. The pattern is two-fold
overrepresented in upstream regions compared to down-
stream and is found most strongly correlated to genes
involved in protein synthesis (Tables 1 and 2). Analysis
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Fig. 1. Sequence logo of aligned occurrences of the proteasome
pattern in 500 bp upstream regions of genes encoding proteasome
subunits.

of the expression data sets reveals strong correlation to
regulation during both normal cell cycle and sporulation
(Table 3). But unlike MCB and Cbf1p-Met2p-Met28p,
AAAATTTT is also including diauxic shift, which implies
that it is not specifically involved in regulation of the cell
cycle.

One possible explanation for the apparent lack of
specificity is that the sequence AAAATTTT is perhaps not a
regulatory site itself, but rather an element that enhances
the regulation by various transcription factors. Mea-
surements of gel mobilities have shown that AAAATTTT
has high intrinsic curvature (Hagerman, 1986), thus one
possible function of this element could be to bring other
regulatory sites into mutual proximity like the RPG box
(Vignais et al., 1987).

Like the consensus sequences for Cbf1p-Met2p-Met28p
and Met31p/Met32p GTGACTCA was also found to have
significant correlation to methionine biosynthesis (Ta-
ble 3). The core of this pattern (TGACTC) has been shown
to be involved in general control of amino acid biosynthe-
sis with GCN4 as the most likely binding factor. However,
GCN4 has a strong discrimination against GTGACTCAC
for which reason it cannot be the binding factor for the
methionine pattern (Tzamarias et al., 1992).

In addition to these putative elements a large number
of patterns were found to be correlated to the functions
of genes located in the subtelomeric regions. These
patterns have all been discarded, as the subtelomeric
regions appear to have a different oligonucleotide com-
position than the rest of the genome, for which reason
we do not believe that the patterns found are regulatory
elements.

Comparison of the three approaches
The three methods described for finding regulatory ele-
ments each have their strengths and weaknesses, which
make them applicable in different situations. The primary
strength of comparing upstream and downstream regions
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is that only the positions of genes need to be known. It is
therefore possible to identify regulatory elements in whole
genomes without knowledge of the function or regulatory
behavior of each gene. However, only the most abundant
elements can be determined by this approach.

Analysis of functional annotation has the very important
advantage over the other methods, that it finds not only
the regulatory element itself but also provides information
on the possible function of the element. In addition to
the sequence, this method also requires the availability of
functional annotations for the genes. This is not a major
limitation since the function of many genes can be inferred
from sequence similarity to known proteins. The most
important limitation is probably, that the method relies
on consistent use of words and phrases in the functional
annotations.

In contrast to the first two methods, additional experi-
mental results are required for the Kolmogorov–Smirnov
approach. But when whole cell expression data is avail-
able, the method can automatically find regulatory patterns
responsible for the co-regulation of sets of genes, without
the need for first performing a clustering of the data.

Possible applications
Although all results presented in this paper are related
to pattern finding in yeast promoters and analysis of
DNA chip expression data, the algorithms presented are
applicable to a much broader class of problems.

Because no experimental data are needed for the ap-
proach using hypergeometric statistics for correlating
upstream patterns and functional annotation of genes, this
algorithm can be applied to all of the fully sequenced
and annotated genomes as well as any other database of
annotated sequences. Ongoing efforts in this regard will
be published elsewhere.

The Kolmogorov–Smirnov algorithm can be used for
pattern finding in any set of ranked sequences. This
implies that the algorithm should be equally well suited
for analysing whole cell expression generated by SAGE
(Velculescu et al., 1995) or differential display PCR (Habu
et al., 1997), as for analysis of data from DNA arrays.
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