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Abstract

Today, many genomes have been sequenced (including that of humans), and the
pace at which new genomes are being sequenced is constantly increasing. When
analyzing the protein coding genes, it is typically only possible to assign function
to half of all protein sequences based on sequence similarity. There is thus a great
need for sequence-based protein function prediction methods.

Even if a protein sequence is not similar to any other known protein, it will
still have to perform its function in the same cellular context—making use of
the same molecular machinery. As this will be reflected in the properties of the
protein, it is reasonable to expect that proteins with related function will have
similar properties, even if they are not evolutionarily related. By using neural
networks to integrate a large number of predicted protein features, a protein
function prediction method has been successfully developed. The features used
for encoding a protein sequence include the predicted subcellular localization of
the protein, post/co-translational modifications, and protein structure (in the
form of secondary structure and transmembrane helices).

As protein function is multi-faceted, many definitions of “function” exist. To
cope with this, predictors have been trained for both cellular role categories,
enzyme classification, and a subset of Gene Ontology classes (several of which
are interesting from a pharmaceutical point of view). Even though the method is
capable of generalizing between very distantly related organisms, predictors have
also been trained for several organisms.

Furthermore, the representation of proteins in feature space has been stud-
ied, leading to several interesting discoveries concerning the evolution as well as
function of proteins.
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Dansk resume

Forudsigelse af proteinfunktion fra sekvensafledte

proteinegenskaber

I dag, hvor adskillige hele genomer er sekventeret (herunder det humane), kan
et bud p̊a sekvensen af alle proteiner i de tilsvarende proteomer f̊as ved gen-
findingsmetoder. P̊a basis af sekvenssammenligning med proteiner fra andre or-
ganismer er det muligt at tilskrive en funktion til omkring halvdelen af disse—
funktionen af den anden halvdel er fortsat ukendt. Det vil derfor være meget
værdifuldt at have en metode til at forudsige funktionen af disse proteiner ud fra
deres sekvens.

Selv om proteinernes sekvens ikke ligner noget andet vi kender, skal de dog
fungere i det samme cellulære miljø og h̊andteres af de samme biologiske mekanis-
mer som øvrige proteiner. Det kan derfor forventes, at proteiner med lignende
funktion har visse lignende egenskaber, til trods for at deres sekvenser er helt
forskellige. Ved at forudsige et stort antal egenskaber for proteinerne og benytte
disse som input til kunstige neurale netværk, er det lykkedes at udvikle en metode
til forudsigelse af proteiners funktion. Egenskaberne som benyttes repræsen-
terer hvor i en celle proteinet befinder sig, hvordan proteinet bliver modificeret
(s̊akaldte post-translationelle modifikationer) samt forskellige aspekter af pro-
teinets struktur (specielt sekundær struktur og position af eventuelle transmem-
brane segmenter).

Da der findes flere forskellige definitioner af “proteinfunktion” er adskillige
forudsigere blevet trænet. Metoden er s̊aledes nu i stand til at forudsige s̊avel
proteiners cellulære rolle, deres eventuelle enzymklasse samt et antal farmaceutisk
interessante proteinklasser (herunder receptorer, hormoner og vækstfaktorer).

For at forst̊a den biologiske baggrund for at forudsigerne fungerer, er de kun-
stige neurale netværk som er blevet trænet for hver proteinklasse, blevet analy-
seret. Herved er et antal interessante karakteristika for forskellige typer af pro-
teiner blevet opdaget.
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Chapter 1

Systems biology and protein
function

Currently one the hottest topics in molecular biology is systems biology. It covers
the study of entire biological systems as one entity—in sharp contrast to the
traditional reductive approach of molecular biology where one gene is studied at
a time. However, the term is still so new that it is unclear exactly what is meant
by “systems biology” (Bonetta, 2002).

The vast amounts data generated by modern high throughput methods (e.g.
whole genome shotgun sequencing) forms the foundation of systems biology. One
of the major challenges will be to turn the raw data into biological discoveries.
Due to the sheer amounts of data, computational methods must be developed
for analyzing them. For this reason, bioinformatics is quickly becoming a central
part of systems biology.

1.1 The age of ’omes

The systems biology approach to molecular biology has brought with it not only
vast amounts of data, but also a number of new words. While the word genome
itself was coined by H. Winkler in 19201 (even though scientists did not then
know what it was made of), the related word genomics as well as transcriptomics
and proteomics are all fairly new terms describing previously non-existent areas
of research.

1.1.1 Whole genome sequencing

The age of ’omes is still young, not really starting until 1995 when the 1,830,138
basepair genome of Haemophilus influenzae was published (Fleischmann et al.,
1995). This, the sequencing of the of the first complete bacterial genome, is one
of the milestones in molecular biology.

Only 3 month later the same research group published the second complete
bacterial genome, that of Mycoplasma genetalium (Fraser et al., 1995). Consist-
ing of a mere 580,074 basepairs, it is the smallest and most compact genome

1First recorded use of the word according to The Oxford English Dictionary
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sequenced yet (with the exception of viral genomes). From thereon, the pace
at which new genomes are being sequenced has been constantly increasing. In
1996 three more genomes were published: a second mycoplasma (Himmelreich
et al., 1996), a cyanobacterium (Kaneko et al., 1996), and the first archaeal
genome (Bult et al., 1996). Yet another 6 genomes were sequenced in 1997 alone.
These included three of the most important model organisms, namely the Gram-
negative Escherichia coli (Blattner et al., 1997), the Gram-positive Bacillus sub-
tilis (Kunst et al., 1997), and the yeast Saccharomyces cerevisiae (Goffeau et al.,
1997). The latter got much attention, as it was the first eukaryotic genome to be
sequenced—and that only two years after sequencing of the first bacterial genome
was completed.

Around this time people in the field started to realize, that while genomes
might contain all the genetic information underlying an organism, extracting
and interpreting this information is far from trivial. Since then it has become
increasingly evident, that the work has only just begone when a genome has been
sequenced. After all, the purpose of the recently finished sequencing of the human
genome (Int. Human Genome Sequencing Consortium, 2001; Venter et al., 2001)
was not to get strings of three billion G’s, A’s, T’s, and C’s—we want to gain
insight of how human cells work.

1.1.2 The transcriptome

1997 also marked the entry of another ’ome: the transcriptome. By spotting
cDNA of each individual gene in a genome onto glass slides, the mRNA expression
levels of all genes can be measured simultaneously by hybridization (Schena et al.,
1995). This technique is commonly referred to as Stanford cDNA microarrays or
just microarrays for short.

The first transcriptome analysis using microarrays was an analysis of the di-
auxic shift in S. cerevisiae (DeRisi et al., 1997). Around the same time, the first
transcriptome analysis of the S. cerevisiae mitotic cell cycle was also published
(Velculescu et al., 1997). In this experiment the mRNA concentrations were mea-
sured at three timepoints using a very different method called serial analysis of
gene expression (Velculescu et al., 1995). The year after, the cell cycle was an-
alyzed at more timepoints using a cDNA microarray based analysis (Spellman
et al., 1998).

Today two methods are being used extensively for transcriptome analysis: the
Stanford cDNA microarrays that have already been described and the Affymetrix
GeneChips. The latter also works by hybridization, although instead of spotting
the probes, they are synthesized in situ by a photolithographic process (Lipshutz
et al., 1999).

Transcriptome data contain much information which is not evident from the
genome sequence. Clustering of genes that show similar expression patterns can
be used for identifying genes with similar cellular functions (Eisen et al., 1998;
Hughes et al., 2000a). Analysis of the promoter regions of co-expressed genes can
further reveal novel promoter elements (Pesole et al., 1992; Brazma et al., 1997,
1998; van Helden et al., 1998; Jensen and Knudsen, 2000; Lawrence et al., 1993;
Workman and Stormo, 2000). Systematic analysis of gene expression changes
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in knockout (and/or over-expression) mutants can reveal regulatory coupling of
genes. This is called regulatory network reconstruction, and is probably the most
ambitious use of transcriptome data to date.

Although it is easy to get carried away by this, it is important to keep in mind
that the ultimate product of most genes is not RNA but protein. Therefore, many
aspects of a cell cannot be understood by studying the transcriptome. This is a
large part of the reason why reconstruction of regulatory networks have proven a
very elusive goal indeed.

1.1.3 Proteomics

The proteome covers the full complement of proteins in a cell and is immensely
complex compared to the genome and the transcriptome. Proteomics take into
account not only the sequence of each protein but also their location and all co-
and post-translational modifications (Pandey and Mann, 2000). This includes
reversible modifications responsible for regulation at the protein level, making
the proteome a dynamic entity like the transcriptome. Because the proteome
encompasses essentially all aspects of proteins, it is also intimately related to
understanding protein function at the systems level.

This increase in complexity when going from the genome to the proteome is
not equal for all organisms, as more complex organisms tend to have much more
elaborate regulatory mechanisms at the protein level. Consequently, the number
of genes in a genome has turned out to be a poor measure for the complexity
of the organism (Claverie, 2001), like the genome size was realized to be many
years ago (Callan, 1972). Another more unfortunate consequence is that knowing
the genome sequence of a higher eukaryote (e.g. Homo sapiens) may turn out to
be much less informative than would be anticipated from the analysis of lower
eukaryotes (e.g. Saccharomyces cerevisiae).

Due to the inherent complexity of the proteome, no methods currently exist
for “measuring the proteome”. Instead different experiments focus on different
aspects of proteomes: protein concentration, subcellular localization, phosphory-
lation or glycosylation.

1.1.4 The many other ’omes

The words genome, transcriptome, and proteome seems to have started a trend:
whenever something new is studied for a complete cell, a new ’ome is coined
(together with the related ’omics research field). Examples include the physiome,
metabolome, interactome, glycome and secretome (Greenbaum et al., 2001).2

As more and more ’omes are being defined, they also start to overlap more
and more. For instance it can be argued that both the glycome and the secretome
are parts of the proteome. Although the proteome is very complex and difficult to
understand, this tendency to break the proteome into smaller parts is unfortunate,
as it would seem to defy the purpose of proteomics: large scale data integration
through which proteins can be analyzed in their proper context.

2The many ’omes invented by now have caused Henrik Nielsen from CBS to suggest one
more: the omome, defined as the complete set of ’omes describing an organism.
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There are several databases which claim to be genome or proteome databases,
e.g. the Yeast Proteome Database (YPD) (Hodges et al., 1998). Although data
are collected for the whole genome, the focus is on providing as much information
as possible for the individual gene—not on standardizing these data to allow
simultaneous analysis of many genes (Greenbaum et al., 2001). It may sound
like a paradox, but today’s genome databases are simply not designed for doing
genomics.

However many ’omes may be defined, the ultimate goal is to elucidate all
functions of all gene products and thereby understand how a cell works—only
then can we really claim to have “solved” a genome (Johnson, 2000; Greenbaum
et al., 2001). This task will most likely require all the ’omes to be integrated.3

1.2 “Protein function”—an important but

fuzzy concept

The majority of functions in cells are governed by proteins, be they enzymatic
or not. Assigning functions to the proteins encoded by a genome it therefore
one of the crucial steps in gaining understanding of the organism. Because the
function of half of all proteins in newly sequenced genomes often is completely
unknown, complete genome sequencing gives much less insight into the organism
than initially hoped for (Walhout and Vidal, 2001).

Even though everybody talk about the “function” of various proteins, there
is still no clearcut definition of what “function” actually means. Instead the is a
multitude of different interpretations of what the word means.

One interpretation is the precise biochemical actions of the protein, which to-
day is often termed the molecular function. This definition is particularly useful
for enzymes, where the function then becomes a matter of which chemical reac-
tions the enzyme catalyze. However attractive this definition may seem, knowing
the chemistry a protein is involved in does not always provide much understanding
of why the cell needs the protein.

1.2.1 Function and interactions

Part of the reason why it is difficult to relate the chemical function of a protein
to its biological purpose is that proteins do not function alone. To understand
the function of a protein, it must be considered in its proper cellular context,
for example by appreciating how the cell would behave without it (Attwood
and Miller, 2001). Many proteins are parts of larger complexes, which are the
functional units that fulfill a role in the cell (Gavin et al., 2002). In this case it
can be argued that all the proteins that form the complex should also have the
same function.

Since a protein does not perform its function alone but in the context of
many other proteins as well as other biomolecules, it is highly relevant to study

3Although the omome was originally intended as a joke, it may turn out to be a completely
meaningful term.
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the interaction partners of a protein in order to understand its function (Bork,
2000; Eisenberg et al., 2000; Yaspo, 2001; Ho et al., 2002). In fact the somewhat
fuzzy concept of protein “function” is by some defined as the protein’s interactions
with other substances (Karp, 2000; Ho et al., 2002). To see that this is not an
unreasonable definition, one only needs to try to come up with a possible function
of a protein which does not interact with anything.

In line with this argumentation, a very different definition of “function”, has
been suggested: that of cellular role. Rather than giving a precise description of
what a protein does at the molecular level, the cellular role tries to describe what
use the cell has of a protein. As it is not clear exactly how these cellular roles are
best defined, several closely related classification systems have been developed for
use on different organisms (Riley, 1993; Andrade et al., 1999b).

1.2.2 Breadth and depth of function classification

Classifying proteins is difficult because many mutually overlapping definitions
of function exist. In addition to molecular functions and cellular roles, one can
also look at how a protein is involved in, for example, physiology, development
or diseases (Liu and Rost, 2001). When biologists ask for the function of a
protein, they are usually not referring to any one of the above definitions of
protein function. Instead they want a sentence or two describing the biologically
interesting aspects of the protein (Benner and Gaucher, 2001).

These different parallel systems for classifying different aspects of protein func-
tion, is what I call the breadth of protein function prediction. Many of the schemes
also have different levels of detail at which the function can be described, which
lead to the distinction between “narrow and deep” function descriptions and
“broad and shallow” descriptions (Lewis et al., 2000). This is commonly known
as the depth of function classification.

The accuracy with which function can be predicted by various methods should
be expected to depend strongly on both the definition of function and the level of
detail that is used (Benner and Gaucher, 2001). For instance co-expressed genes
could be expected to be involved in the same cellular role, but do not necessarily
have similar molecular function. Conversely, proteins with very similar structure
would be likely to have similar molecular functions, but they may play entirely
different roles in the cell.

1.2.3 Controlled vocabularies for describing function

Until recently, databases contained only free text descriptions of protein function.
While such annotation is great for the biologist studying a few proteins, it is next
to worthless for large scale studies.

The main problem with free text annotation is that it is only human
readable—it cannot be parsed by a computer. A second problem is, that having
different people write down protein function as free text almost encourages in-
consistent annotation. Together these problems make it next to impossible to use
free text annotation for large automated jobs, e.g. annotation of new genomes by
comparative genomics methods (Lewis et al., 2000).
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The solution is to create controlled vocabularies or ontologies for protein func-
tion. Several such function classification schemes exist, many of which have
been developed in the past few years: the enzyme classification system (En-
zyme Nomenclature, 1965, 1992), SWISS-PROT keywords (Bairoch and Apweiler,
2000), cellular role classes and and interaction based ontology for E. coli proteins
(Riley, 1993; Karp, 2000), the MIPS classes (Mewes et al., 2002), the Gene On-
tology system (Ashburner et al., 2000) as well as specialized classifications like
the IMGT-ONTOLOGY (Giudicelli and Lefranc, 1999). Making these many al-
ternative classification systems converge to one single standardized ontology for
protein function is one of the key challenges in automated large scale function
annotation and comparative genomics (Weir et al., 2001). Fortunately a de facto
standard appears to be emerging, this standard being Gene Ontology.



Chapter 2

Assignment and prediction of
protein function

One of the most fundamental tools in the field of bioinformatics is sequence align-
ment. By aligning sequences to one another, it is possible to evaluate how similar
the sequences are and identify conserved regions in sets of related sequences. This
is used extensively to assign function to genes in newly sequenced genomes.

Sequence alignment also forms the basis for many other types of bioinformat-
ics analysis. All practical methods for reconstructing phylogenetic trees rely on
sequence alignment, some explicitly require a multiple alignment as input while
others require a matrix of all pairwise evolutionary distances. However, such ma-
trices are estimated either from a multiple alignment or from a set of all pairwise
alignments. Furthermore alignment is used for ensuring independence between
test and training sets used as input for machine learning algorithms like artificial
neural networks.

2.1 Pairwise alignment

The first and simplest type of alignment to be developed was pairwise alignment,
which as the name implies allows only two sequences to be compared at a time.
Today it is still the most commonly used form of sequence alignment, because it
can be used to answer one of the most basic questions in sequence analysis: how
similar is sequence A to sequence B?

2.1.1 Alignment scores

To be able to optimally align two sequences, one must first define a scoring
function to evaluate the quality of an alignment. The scoring function used is
sum over the similarity of aligned residues combined with a penalty function
for gaps in the alignment. A substitution matrix is used to define the pairwise
similarity scores between residues. Many different substitution matrices have
been derived by various approaches (Dayhoff et al., 1978; Henikoff and Henikoff,
1992; Benner et al., 1994), the most commonly used one being the BLOSUM62
matrix. The gap penalties are usually defined as affine functions, i.e. the penalty
for each gap is a linear function of the length of the gap.
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It is important to realize that both the alignment score as well as the alignment
itself will depend on the choice of substitution matrix and gap penalties. The
“optimal alignment” found for two sequences is therefore not necessarily the best
one from a biological perspective.

2.1.2 Global and local alignment algorithms

In theory the optimal alignment of two protein sequences could be found by scor-
ing all possible alignments to find the best one. In practice this is not possible as
the number of possible alignments grows exponentially with the sequence length.
Fortunately, there is a smarter solution for the scoring function described above,
as the optimal alignment can be found using dynamic programming algorithms.
The runtime for aligning two sequences using these algorithms is proportional to
the product of the two sequence lengths.

Two different variations of dynamic programming are frequently used in bioin-
formatics: the Needleman–Wunsch algorithm for global alignment (Needleman
and Wunsch, 1970) and the Smith–Waterman algorithm for local alignments
(Smith and Waterman, 1981). Global alignment algorithms align two sequences
in their entirety—as a result, if two sequences only share a common protein do-
main, the alignment score will be very poor. While local alignment methods are
also capable of aligning two entire sequence if they are similar over their entire
length, they are also able to find regions of similarity between two otherwise un-
related sequences. This makes local alignment the more flexible of the two, for
which reason it is also the most used of the two.

2.1.3 Fast heuristic alignment methods

While the dynamic programming algorithms are very fast for aligning two typical
protein sequences, it is still prohibitively slow for comparing a complete proteome
with all known protein sequences from other organisms. To address such mas-
sive pairwise alignment problems various heuristic alignment methods have been
developed, the two best known programme packages being FASTA (Pearson and
Lipman, 1988) and BLAST (Altschul et al., 1997). Since the introduction of
gapped BLAST in 1997 most people have been using BLAST.

The heuristic alignment methods can drastically speedup database searches
compared to dynamic programming. The price paid is that the method is no
longer guaranteed to find the optimal alignment, hence matches that would be
found by a full dynamic programming approach can in theory be lost when using
methods like BLAST. However, benchmarks have shown that in practice this
happens very rarely (Park et al., 1998). The BLAST programme has therefore
been used instead of the Smith–Waterman algorithm for the majority of sequence
comparisons in this thesis.

2.1.4 Statistics of pairwise alignment

At this point it should not come as a surprise to anyone, that pairwise alignment
algorithms align sequences. However, one should bear in mind that they always
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do so—whether it makes sense or not. It is for this reason important to have a
framework for evaluating the statistical significance of a pairwise alignment.

The significance of a match can be evaluated by comparing its alignment
score to the distribution of maximal alignment scores for independent sequences.
In the case of ungapped alignment, the scores for independent sequence align-
ments have been proven to follow a normal distribution, and the distribution for
the highest score can be approximated then by the extreme value distribution
(Karlin and Altschul, 1990). A similar result has never been proven for gapped
alignments, but it has been convincingly argued to hold for reasonable choices of
gap penalties (Mott, 2001; Waterman and Vingron, 1994). From this it follows
that the expected number of matches with a score better than S between two
sets of sequences (either of which could be a single sequence) can be written as:

E(S) = Knme−λS ,

where n and m are the number of residues in the two sets of sequences, while K
and λ are constants that depend on the choice of substitution matrix and gap
penalties.

It may seem odd at first that the same alignments become less significant
(or even insignificant) when the database is made larger. It is obvious that the
alignment scores arising from truly evolutionarily related proteins remain constant
as the database grows. However, the noise arising from the database increases
with the size of the database, giving a worse signal to noise ratio, thus decreasing
the credibility of the alignment (Spang and Vingron, 2001).

2.2 The problems of inferring function by simi-

larity

Pairwise alignment is likely the single most important tool in a bioinformatician’s
toolbox. However, this does not mean that pairwise alignment methods are flaw-
less. An overview will be given of the most important issues when using pairwise
local alignment algorithms in the context of database searches.

2.2.1 Similarity vs. homology

When using sequence alignment methods to assign function based on similarity,
there are several different concepts that tend to get confused with each other.
The most common case is to confuse the concepts “similarity” and “homology”.
When saying that two proteins are “similar”, one simply states the observation
that two protein sequences look alike. In sharp contrast to this, stating that
two proteins are “homologs” implies that the two proteins have evolved from a
common ancestor (or that one protein has evolved from the other) (Fitch, 1970).

Homology search methods are based on a strictly statistical rationale: if the
similarity detected is very unlikely to occur by chance, there must be a differ-
ent explanation (Spang and Vingron, 2001). It is normally assumed that the
explanation is that the two proteins in question are related through evolution.
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Although this is often the case, one should keep in mind that statistical tests
never provide explanations—they only state that something is highly unlikely to
occur by chance alone.

One alternative explanation to evolutionary relationship that can give rise to
similar sequences is low complexity regions. For instance, two serine–threonine
rich proteins are bound to have local high similarity, simply because they have
the same highly biased amino acid composition. Several other such examples
exist (e.g. leucine rich proteins). Similar simple sequences can easily evolve inde-
pendently and thus tend to fool pairwise alignment search tools. To circumvent
this problem, sequences are commonly masked by a so-called low complexity fil-
ter, which simply excludes all residues that, according to some criteria, belong
to a low complexity region. However, this means that it is very difficult to find
homologs for sequences containing large amounts of low complexity regions.

A related problem to low complexity regions are transmembrane helices.
While they are not low complexity regions as such, they share certain features,
such as a bias in amino acid composition. Transmembrane helices tend to cause
the same types of problems in sequence searches as low complexity regions, namely
that two transmembrane helices will look alike to alignment methods simply be-
cause they are both transmembrane helices. One way to approach this problem
is to create special substitution matrices designed for transmembrane helices (Ng
et al., 2000).

2.2.2 The detection limit of pairwise alignment methods

Not only can two proteins be similar without being homologs—remotely related
homologs can also be quite dissimilar in sequence. A consequence of the latter is
that it is very difficult to transfer functional information from remote homologs
because the homology cannot be established based on very weak sequence simi-
larity. There is thus an inherent limit to how remote homologs can be detected
by pairwise alignment methods. This is the main reason why bioinformaticians
are constantly on the lookout for new ways to improve sequence similarity search
methods.

Although it is never possible to infer homology with absolute certainty based
on sequence similarity, it is generally safe to assume that very similar sequences
are close homologs. For this reason the function of a protein is rarely assigned
incorrectly based on a match to a very similar protein.

2.2.3 Orthologs vs. paralogs

There are unfortunately exceptions to even this rule. While very similar sequences
are almost guaranteed to be homologs, this guarantee does not extend to the
proteins necessarily having the same function. Knowing that two proteins are
related through evolution is not enough, it is also important how they are related.
This is in particular true when dealing with remote homologs.

In this context it is crucial to distinguish between homologs, orthologs and
paralogs. Two proteins are said to be orthologous if they have arisen through
a speciation event, while they are said to be paralogous if they they stem from
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a gene duplication (Fitch, 2000). In the case of paralogous proteins, one of the
two copies that have arisen by the gene duplication will often mutate to fulfill a
different functional role in the cell. It is thus more dangerous to transfer functional
information between paralogs than to do so between orthologs (Jensen, 2001).

This has sparked an interest in computational methods for determining if two
homologous sequences are in fact orthologs or paralogs. The right way to do this
would be to reconstruct phylogenetic trees for related genes to establish their
internal evolutionary relationship. Once this has been established, it is trivial to
extract which pairs of proteins are orthologs and which are paralogs. Unfortu-
nately, phylogenetic tree reconstruction is as much a craft as it is a computational
method, and it has therefore proven very difficult to successfully automate this
procedure. However, it has turned out to be possible to discriminate between
orthologs and paralogs using a much simpler heuristic method (INPARANOID)
which is closer related to clustering than to tree reconstruction (Remm et al.,
2001).

2.3 Methods for assigning function based on

pairwise sequence similarity

The most commonly employed method for assigning function to a protein is to
infer it from a homologous protein found by sequence alignment. This is likely
the main usage of sequence alignment methods. Recent improvements in search
algorithms combined with the tremendous growth in sequence databases have
resulted in this approach being ever more powerful.

2.3.1 Best match

The simplest possible way to utilize sequence alignment for assignment of protein
function, is to simply search the sequence of unknown function against a database
of proteins with known function. If one or more significant matches are found,
the function of the best match is transfered to the query sequence. There is of
course always a risk that the homologs have different functions, especially for
remote homologs (Devos and Valencia, 2000).

One of the big problems with the best match method is to know how much
information can be safely transfered. If, for instance, a protein is a remote ho-
molog of a tryptophan transporter, it may be that it is an amino acid transporter
but for a different amino acid than tryptophan (Casari et al., 1996). It is difficult
to do anything about this problem, in particular if the functional annotation is
not available in a computer readable form.

2.3.2 EUCLID

A more advanced method for assigning protein function from pairwise sequence
alignment is the EUCLID method (Tamames et al., 1998; Andrade et al., 1999a).
This method assigns proteins to the broad cellular role categories originally de-
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fined for the E. coli genome (Riley, 1993). The EUCLID method has been used
extensively for the work presented in this thesis.

For each protein sequence to be assigned, the method first identifies all BLAST
matches in SWISS-PROT with an expectation value better then 10−5. The key-
words assigned to each of these SWISS-PROT entries are looked up, and a con-
sensus subset of keywords is identified.

Based on large number of SWISS-PROT entries that were manually assigned
to cellular role categories, a dictionary has been created. Every keyword in this
dictionary is associated with a score for each cellular role category. To classify
a protein of unknown function, a score is calculated for each cellular role by
summing over the dictionary scores for all the consensus keywords. The protein
is then assigned to the category that receives the highest score. A quality factor
for the assignment is also calculated as the relative difference between the highest
and the second highest score. However, this quality measure does not compare
well across different categories (Damien Devos, personal communication). For
our purpose the scores will be used differently, to allow a single protein to belong
to more than one class. This modification is described in Chapter 4.

By looking for the consensus keyword of all matches rather than looking at
only the best match, EUCLID avoids the danger of transferring too much func-
tional information from a single homolog. But the most important advantage over
the best match method is, that EUCLID assigns protein function according to a
classification system whereas the best match algorithm transfers the annotated
function from a database entry. The latter is problematic because most of the
functional annotation in databases is available only as free text, as was discussed
in Chapter 1.

2.4 Utilizing multiple sequences by iterative

search methods

One inherent problem of pairwise alignment of sequences is, that there is only
so much information in two sequences. Sometimes it is therefore simply not
possible from two sequences to reliably tell if they share a common evolutionary
background—and if they are thereby likely to have a common function. The
way to address this problem is quite simply to use more than two sequences.
EUCLID does this partially as the functional annotation of all database matches
are considered when assigning function. However, EUCLID does not make use
of the additional information available when having several related sequences in
the alignment step.

2.4.1 Intermediate sequence search

The gradual change of one sequence into another through evolution can—
although the mutations are small discrete events—be viewed as a trajectory in
sequence space. This is the rationale behind a simple way to make use of more
than two sequences when inferring evolutionary relationships: intermediate se-
quence search also known as ISS or transitive homology search. Such methods



15

have been shown to give 24% better sensitivity than pairwise alignment at same
specificity (Bolten et al., 2001).

In its simplest form, an intermediate sequence search consists of two steps.
First the query sequence is searched against a large database to identify all se-
quences with significant similarity to the query. These sequences, the intermediate
sequences, are then all searched against the database to again identify all similar
proteins. The sequences found in this second step are considered to be linked to
the query sequence through an intermediary sequence. Sequences identified in
this way may not themselves align sufficiently well to the query sequence to be
picked by traditional pairwise alignment methods.

An obvious extension of this system presents itself: rather than stopping
after the second round of database searches, why not continue and use the new
sequences obtained to search once again? This method, which could be continued
for any number of steps or until convergence, is known as multiple intermediary
sequence search (MISS). While it may be an obvious extension, it has however
not been a very successful one.

ISS methods in general and MISS in particular, seem to have been plagued by
one problem especially. While good methods exist for estimating the significance
of pairwise alignment scores, it is not obvious how to combine the E-values of the
individual pairwise alignments into one ISS E-value. It is thus difficult to assess
if two sequences found through ISS methods are in fact significantly related.

As a result of the lacking statistics, it has turned out to be very difficult to
automate MISS methods (Li et al., 2000). Since it is not possible to reliably
evaluate if a sequence is significantly related to the query, MISS methods tend
to suffer from convergence problems. Rather than converge after finding a set of
related sequences, MISS tends to at some stage pick up one or more false positives
and then begin to diverge. This has made multiple intermediate sequence search
methods next to impossible to automate.

Because the first stage of ISS (and MISS) is a simple pairwise similarity search,
these methods shed no light on sequences where close homologs (possibly of un-
known function) are not already known.

2.4.2 Sequence profile methods

A better known class of methods that make use of multiple sequences are the
sequence profile methods. These rely on multiple alignment algorithms to align a
set of related protein sequences to obtain a sequence profile, which describes the
amino acid propensities of each individual position in the sequence.

Such a profile provides a better description of a protein than the single se-
quence itself. Not only do profiles reveal which amino acid is preferred at each
position (the consensus sequence), they also contain information of the degree
of conservation and preferred mutations along the amino acid chain. This addi-
tional information allows for much improved scoring schemes of similarity, where
matches to highly conserved positions are emphasized over matches to highly
variable ones.

Similar to the multiple intermediate sequence search method, many sequence
profile methods iteratively pick up more and more sequences. As new sequences
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are picked up, they are included in the multiple alignment and thus help improve
the quality of the profile. Like the intermediary sequence search methods and so
many other iterative approaches, iterative profile methods suffer from convergence
problems.

Two such methods deserve to be mentioned, the first is SAM-T99 which rep-
resents the current state of the art of profile methods. It makes use of HMMs
to model the sequence profiles, thereby having not only position specific amino
acid scores but also position specific gap penalties. Its predecessor, SAM-T98, is
sufficiently good at finding remote homologs that it was entered in the CASP3
assessment in the fold prediction class where it performed comparable to more
advanced fold recognition methods (Sternberg et al., 1999). It was in other words
capable of identifying remote homologs with known structure for some of the
targets for which the CASP organizers thought that none existed. The main
problem with this method is that it is computationally very intensive.

The other method which should be mentioned is PSI-BLAST, which is by far
the fastest and most used of the profile methods. Like the BLAST programme,
PSI-BLAST is a heuristic method which cuts corners to gain speed. In contrast
to SAM-T99, PSI-BLAST uses a position specific scoring matrix rather than
an HMM and therefore has fixed gap penalties. Furthermore, PSI-BLAST uses
pairwise alignments rather than a multiple alignment to estimate the position
specific amino acid distributions. It is for these reasons less sensitive than the
SAM T99 method, although much more sensitive than simple pairwise alignment
methods. However, this small loss in sensitivity is well compensated for by the
much higher speed of PSI-BLAST compared to SAM-T99.

2.4.3 Manual intervention in iterative approaches

It has already been mentioned that the iterative methods for identifying remote
homologs all suffer from the problem that they are hard to automate. In general to
obtain the best possible performance, an expert should judge if the sequence found
should be included in the sequence profiles (or used as intermediate sequence in
the case of ISS). This is both a difficult and a very time consuming job and would
thus be desirable to eliminate. A somewhat successful approach for doing this
with PSI-BLAST is the SAWTED method (Liu and Rost, 2000). By comparing
the textual similarity of matches found in SWISS-PROT, it is possible to imitate
some of what an expert would do.

2.5 Databases of known protein families

Although much more powerful than simple pairwise alignment, the iterative
schemes for using multiple sequences have two things in common: they are dif-
ficult to automate and they do not work for orphan sequences. Both of these
problems can be addressed by making databases of multiple alignments rather
than using multiple alignments to search sequence databases.
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2.5.1 Databases of protein families

One of the first such databases is Pfam, which is simply an abbreviation for Pro-
tein Families. Pfam is split in two parts: a curated database of known protein
domains (Pfam-A) and an automatically generated set of non-characterized pro-
tein families (Pfam-B). For all Pfam-A families, a curated multiple alignment of
a representative set of sequences has been constructed, and from this alignment
an HMM has been built. It is thus possible to search a query sequence against
all known protein families to see if there are any matches.

Functional annotation describing the functions is also present for domains in
Pfam-A. This is a very valuable source as it gives a good idea of the variation
of functions within the family, and hence a good idea of how much functional
annotation can safely be transferred.

Other databases like PROSITE (Falquet et al., 2002) and SMART (Schultz
et al., 2000) also contain this type of information. Both of them—together with
Pfam—have been integrated in the InterPro database (Apweiler et al., 2000),
which also comes with a search tool called InterPro-Scan. Furthermore all Inter-
Pro families have been annotated according to the Gene Ontology classification
scheme, which makes it an even more powerful resource for function annotation.

2.5.2 SUPERFAMILY

Unlike the other domain databases mentioned so far, SUPERFAMILY is a
database of protein superfamilies rather than protein families (Gough and
Chothia, 2002). A protein superfamily contains several families, which have very
similar structure and are believed to be evolutionarily related. However, the se-
quence similarity is often so weak, that it is difficult to detect the relationship at
the sequence level.

In SUPERFAMILY, HMMs have been constructed for each superfamily by
aligning the sequence profiles of the individual protein families using structural
information. Results show that using these HMMs, it is possible to assign some
sequences to a superfamily even though they do not belong to any of the known
families making up the superfamily. This allows assignment of structure to these
sequences and can also give an idea of the function.

2.6 Alignment based methods for obtaining

functional links

In many cases it is not possible to infer a protein’s function based on sequence
similarity to a sequence or sequence family of known function. Sometimes this
is due to the protein being a so-called “orphan” protein, i.e. no homolog protein
sequences can be detected at all. In such cases it is obviously impossible to get
any further by using alignment methods.

Often homologous proteins are detected by similarity based methods, although
the function of these related proteins is unknown. In recent years a number of
methods have been developed to allow alignment to be used to assign a putative
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function to such proteins. What all these methods have in common is that they
try to establish functional links between proteins. These links will then hopefully
link proteins of unknown function to proteins of known function.

2.6.1 The Rosetta stone method

The Rosetta stone method—named after the famous Rosetta stone—is also com-
monly referred to as the “protein fusion”, a name which is somewhat more de-
scriptive of how it works. The basic idea is that if two proteins A and B in one
organism are found as one large fused protein sequence (C) in one or more other
organisms, then the two proteins are likely to be somehow functionally related.
It is important to note that although the proteins A and B are both similar to
protein C, the are not themselves similar. It is thus possible to transfer function
from B to A due to the existence of C (Enright et al., 1999; Marcotte et al.,
1999a).

One can however argue that this is not that big a step forward. Since protein
C was similar to B, it would be tempting to infer a putative function of C based
on this similarity. When A is then subsequently similar to C, this function could
again be transferred. However, this would normally be considered a dangerous
thing to do. The protein fusion method refines the approach, but more impor-
tantly it gives a biologically meaningful reason for why we should believe such
predictions.

Although the method is as such biologically sound, it should be approached
with care. The two proteins linked together by a protein fusion will almost always
correspond to different domains in the fused protein. There are however certain
domain families that are found in combination with a wide variety of other do-
mains. These are called “promiscuous domains” and cause huge problems for the
protein fusion method since they will often link together functionally unrelated
proteins. This problem can be dealt with by either masking all occurrences of
promiscuous domains or by filtering the search results. When used correctly, the
protein fusion method can be a powerful tool: it provides many putative links for
orphan proteins—although these might not be of the highest quality.

2.6.2 Phylogenetic profiles

By aligning a protein sequence against the proteins from all completely sequenced
genomes, it is possible find out which organisms have homologs of the protein and
which do not. By constructing a binary vector from this information one gets an
evolutionary fingerprint of the protein, known as a phylogenetic profile (Pellegrini
et al., 1999; Marcotte et al., 2000). If proteins have identical (or at least very
similar) phylogenetic profiles, it is an indication that they are involved in the
same function. The reason is that if a set of proteins form a functional unit, an
organism would often have no advantage of having only part of the proteins—it
should either have all of them or none of them.

The quality of the functional links obtained by comparing phylogenetic pro-
files appears to be much higher than that of protein fusion links (Marcotte et al.,
1999b), and the quality can be expected to improve as more genomes are se-
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quenced. The main weakness of the method is that some types of phylogenetic
profiles are non-informative: knowing that a protein exist in all sequenced organ-
isms only indicates that it is essential—not why it is essential, that is its function.
Similarly, phylogenetic profiles will not tell much about proteins present in all eu-
karyotes but not in prokaryotes, nor will they tell anything about proteins not
seen in other genomes. This problem is inherent to the method and will not be
solved by sequencing more genomes.

2.6.3 Genome proximity

Several genes involved in the same biochemical pathways are often found within
a small region of the genome. This is in particular true in bacteria where such
genes are often encoded by an operon (Jacob and Monod, 1961). The simple fact
that two proteins are located close to each other within a genome obviously does
not provide much evidence for the two proteins having related functions. But if
two proteins appear close to each other in several different genomes, the evidence
becomes stronger. This method for providing functional links between proteins is
known as “conserved gene order” and “genome proximity”(Dandekar et al., 1998;
Galperin and Koonin, 2000; Yanai et al., 2001).

The probability that two genes are functionally related increases with the
number of genomes in which they are in chromosomal proximity (Yanai et al.,
2001). Accuracy better than 90% can be obtained by using a stringent threshold.
However, quite few links are observed for such stringent thresholds (Yanai et al.,
2001). Links with an estimated accuracy of 80% (on KEGG pathways) were
reported to the Predictome database, averaging only approximately 400 links per
genome for medium sized prokaryotic genomes (Yanai et al., 2001).

This method for linking together proteins of common function is somewhat
related to the phylogenetic profile method described above, as genes obviously
have to be conserved in the same genomes in order to have conserved relative
location . It still remains to be seen how well this method works for eukaryotes—
although a poorer performance should be expected as eukaryotes lack operons
(Marcotte, 2000).

2.6.4 Co-evolution of proteins

If two proteins perform a function together—often by forming a complex—it is
not only their phylogenetic profiles that should be expected to be similar, but also
the phylogenetic trees. This is because changes to one component of a complex
will often require some adaptation of the other components as well. This is known
as co-evolution.

Similar phylogenetic trees of proteins thus indicate that the proteins may
interact and that they are likely to have the same function (Pazos and Valencia,
2001). The main strength of phylogenetic profiles is, that this method can be used
for proteins where the phylogenetic profiles are very uninformative, e.g. proteins
that are present in all eukaryotes but not in prokaryotes or even essential proteins
which are present in all organisms.
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There are two obstacles standing in the way of using this method on complete
proteomes. One is that reconstruction of phylogenetic trees is computationally
intensive. The other is that the comparison of phylogenetic trees is difficult to
automate, as no good scoring function for the similarity of two phylogenetic trees
exists (to this authors knowledge). Both of these obstacles can be circumvented by
inferring co-evolution of proteins by comparing distance matrices directly, without
actually having to reconstruct the phylogenetic trees (Pazos and Valencia, 2001).

2.6.5 Combining evidence

If used individually, the types of functional links described in this section only
give hints that proteins have similar function. More confident predictions can be
made by combining the methods to look for functional links supported by more
than one method (Marcotte et al., 1999b; Eisenberg et al., 2000; Pellegrini, 2001).

Still, two points should be noted. First of all, the high confidence links ob-
tained by requiring linkage by either phylogenetic profiles or two other methods
only provide a coverage of around 15% of the proteome (Galperin and Koonin,
2000). Secondly, providing a functional link between two proteins does not clearly
state how the two proteins are related in terms of function (Galperin and Koonin,
2000). Predictions made from functional links are thus interpretations that are
open for discussion.

2.7 Prediction of protein function via structure

When function cannot be inferred based on sequences similarity, one must rely
on true ab initio prediction methods. It is a generally accepted paradigm that
the function of a protein is determined by its three-dimensional structure, and
that the structure is determined by the sequence of the protein (Anfinsen, 1973).

Given this paradigm, it would be logical to think that ab initio function
prediction could be done by first predicting the structure of the protein, and
subsequently predict the function from the structure. However, both steps in this
approach are likely to be very difficult to solve.

2.7.1 From sequence to structure

The challenge of predicting, ab initio, the structure of a protein from its se-
quence is known as the protein folding problem. This is a problem which has
been worked on intensively for many years. There is still belief that structure
prediction is feasible (Pillardy et al., 2000), ab initio methods have outperformed
dedicated fold recognition methods for a few targets in fold recognition part of
CASP (Sternberg et al., 1999). However, judged from the biannual CASP exper-
iments ab initio prediction of protein structure is currently not a viable option
(Lesk et al., 2001).

It therefore seems that the only realistic approach to obtaining a good model
is homology modeling. While a model created this way can be very interesting
for understanding the function of a protein, it is not very useful from a function
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prediction point of view: as very few structures exist for proteins of unknown
function, one might as well infer the function directly based on sequence similarity
rather than go via structure. However, it is possible that this will change with
the many new structures being determined by structural genomics efforts.

2.7.2 Predicting protein function from structure

Knowing the structure of a protein does not mean that we can necessarily figure
out what the protein does, even though it is of course a big help (Norin and
Sundström, 2002). This is in part because the function of a protein depends on
its cellular context. Also, post-translational modifications can profoundly alter
the function (and structure) of a protein. Predicting the function of a protein
from its structure may therefore very well turn out to be as difficult as the protein
folding problem. No methods known to the author have been developed which
attempt to predict protein function from structure alone.

A somewhat less ambitious approach, is to simply infer the function of a
protein from other proteins with similar structure. Conceptually this is very
similar to inferring function from proteins with similar sequence, but could work
for more remote homologs as structural similarities are detectable over longer
evolutionary distances than sequence.

However, when stating that similar structure implies similar function, peo-
ple often forget to define what they mean by “similar structure” and “similar
function”. Without these terms defined, the statement is empty. A reasonable
definition of “similar structure” would be that the proteins belong to the same
superfamily, as it is clear the proteins with the same fold do not necessarily have
the same function (Todd et al., 2001). Defining “similar structure” to mean the
same family also would not be meaningful, as the sequence would then always be
similar as well.

It is more difficult to say how “similar function” is best defined in this context,
although some people argue that the method is more likely to work well for
predicting molecular function than cellular role (Weir et al., 2001). Still, in
about 10% of the cases where structure is known for two remotely homologous
enzymes, the substrate binding site has changed indicating a complete change of
molecular function. It will therefore be difficult to predict the enzyme activity of
an uncharacterized protein from knowing its superfamily (Todd et al., 2001).

2.7.3 Structure is important for understanding function

From the discussion above, one might think that the author disagrees with the
paradigm that structure determines function. This is however not the case: the
structure of a protein is responsible for its interactions with the environment and
hence its function. However, it should be noted that the structure mentioned
includes post-translational modifications like glycosylations, which are very im-
portant for protein function but are typically not included when protein structures
are determined. Although studying structure is very important for understanding
protein function, this author will argue that it is not very useful from a function
prediction point of view.
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Chapter 3

To be or not to be—that’s the
first question

When it comes to analysis of whole genomes nothing is perfect. The sad fact is
that many things are far from perfect. This includes gene finding: even the best
of gene finders make many false positive predictions. That is in particular true
for eukaryotes where gene finding is complicated by the presence of introns.

Even for prokaryotes gene finding turns out to be a nontrivial problem though.
This is mainly due to the occurrence of random open reading frames (ORFs) that
lead to false positive predictions. The expected length distribution of random
ORFs is an exponential distribution, i.e. most of the ORFs will be very short
while only a very small fraction of the ORFs will be long. However, the number
of random ORFs as long or longer than many real protein coding genes is still
large enough to pose a significant problem (Johnson, 2000). Also, a number of
very short ORFs turn out to in fact be protein coding genes presenting a serious
problem for gene finders (Basrai et al., 1997; Johnson, 2000). A largely arbitrary
cutoff of 100 aa is often used when annotating ORFs as being coding genes. While
it may give a reasonable compromise between false positives and false negatives,
it unfortunately gives plenty of both.

Perhaps because it is much easier than gene finding in eukaryotes, gene finding
in prokaryotes is by many considered to be a “solved” problem (Lewis et al.,
2000). A possible explanation for this optimism is the often good agreement
between genome annotations and predictions made by a gene finder. One must
however not forget that most of the genes annotated in complete genomes have
not been experimentally verified, but are themselves predictions made by a gene
finder. Because the many different gene finders suffer under the same inherent
difficulties described above, the errors they make can be expected to be heavily
correlated. Evaluating gene finders on current complete genome annotations thus
paints too pretty a picture of the current state of prokaryotic gene finding.

3.1 False positive predictions look like orphans

One property that the false positive predictions share is that the corresponding
protein sequences are not similar to any other proteins in the databases (Fischer
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and Eisenberg, 1999). Thus they all appear as orphan proteins, making it very
difficult to assess the number of genes as well as the number of novel genes.

This problem only becomes more pronounced when studying eukaryotes where
gene finding is further hampered by the presence of intervening sequences called
introns. One illustration of these difficulties is that 30% of all introns predictions
in S. cerevisiae have been shown to be wrong (Davis et al., 2000)—although
yeast have unusually short introns which should cause relatively few problems. A
perhaps even better illustration of the current state of Eukaryotic gene finding is
the four fold spread of the guesses on the number of genes in the human genome.
The guesses published in high profile journals range from 30,000 human genes
(Claverie, 2001) to 120,000 human genes (Liang et al., 2000), where the lower
figure appears to be closest to the current consensus.1 However, the dust has not
quite settled. There are still convincing arguments that the estimates of 30,000
to 40,000 genes may be quite a bit too low (Hogenesch et al., 2001).

The difficulties of making reliable gene finding in eukaryotes do not only result
in prediction of spurious genes and real genes being missed. It also causes errors in
genes that are otherwise correctly predicted: wrong splice sites may be predicted,
exons can be missed, non-existing exons may be included, two genes may be
predicted as one transcript or one gene may be split into two. All in all, these
errors cause approximately half of the “correctly” predicted genes in the human
genome to contain serious errors (Dunham et al., 1999; Hattori et al., 2000).
These errors are of course reflected in the predicted protein sequence, which is
likely to cause trouble for functional annotation efforts.

1Partially as a joke, a sweepstake on the number of genes in the human genome, Genesweep,
was organized by the Cold Spring Harbor Laboratory. Here the guesses ranged from 25,000 to
312,000 (Attwood and Miller, 2001). Predicting more genes is not necessarily better.
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In sequenced microbial genomes some of the annotated genes, usually
marked in the public databases as hypothetical, are actually not pro-
tein coding genes, but rather open reading frames (ORFs) that occur
by chance. Therefore, the number of annotated genes is higher than
the actual number of genes for most of these microbes. Comparison
of the length distribution of the annotated genes with the length dis-
tribution of those matching a known protein reveals that too many
short genes are annotated in many genomes. Here we estimate the
true number of protein coding genes for sequenced genomes by two
different methods. The first estimate is based on the assumption that
the fraction of long genes matching the SWISS-PROT database equals
the fraction of all genes that matches SWISS-PROT. The second esti-
mate, which is included as a database-independent check of the first,
is the number of non-overlapping open reading frames longer than 100
triplets reduced by the number expected by chance. While it is often
claimed that E. coli has about 4300 genes (Blattner et al., 1997), we
show that it is likely to have only around 3800 genes, and that a simi-
lar discrepancy exists for almost all published genomes (see Table 3.1).
In one extreme case we estimate that half of the annotated genes are
wrong.
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The most reliable method for identifying genes is by similarity to a protein
in another organism. Genes with no match to known proteins can be predicted
using statistical measures. The most important measure is the codon usage: the
frequency of codons in true genes is different from what would be expected at
random from a given base composition. However, the discriminatory power of a
codon usage measure becomes less reliable for shorter ORFs, and this is true also
for other measures of coding potential, such as dicodon or hexamer statistics.
Together with the large number of short random ORFs, this tends to give an
over-prediction of short genes. Since stop triplets (TAA, TGA, TAG) are A-
T rich, their frequency is generally higher in A-T rich organisms than in G-C
rich organisms, so the likelihood of long ORFs occurring by change is higher the
higher the G-C content of the organism. Therefore the problem of discriminating
between short proteins and random ORFs is generally less in A-T rich organisms
than in G-C rich organisms, as shown in Figure 3.1.

The growing use of sequence databases in molecular biology makes it im-
portant to consider the correctness of the information stored in them. Careful
annotators have clearly marked non-confirmed genes as hypothetical. However,
many users of the databases assume that all annotated genes indeed correspond
to true genes, and this can easily lead to wrong conclusions. An example is a
recent study of protein length distributions for the three kingdoms of life (Zhang,
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Figure 3.1: Estimated over-annotation of genes in sequenced genomes. For each or-
ganism the SWISS-PROT based estimate is calculated and the difference to the number of
annotated genes shown in percent of the estimated number of genes.
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Figure 3.2: Average length of annotated and confirmed proteins. Red bars show aver-
age length of all proteins having matches to non-hypothetical proteins in SWISS-PROT (see
Methods) and gray bars show the average length of all annotated proteins. The ordering of
organisms is the same as in Table 3.1.

2000). Based on the annotation, it was concluded (among other things), that the
average or median length of proteins is smaller in Archaea than Bacteria. This is
due to the fact that a very large number of short ORFs are annotated as genes
in some of the Archaeal organisms. When including only proteins confirmed by
a match to a known protein, there seems to be no significant difference in the
average (or median) lengths (Figure 3.2).

Length distributions

Shortly after the publication of the complete S. cerevisiae sequence it was shown
that there was a systematic error in the CDS assignments. More than 400 se-
quences with lengths between 100 and 110 amino acids had no matches to previ-
ously assigned proteins (Das et al., 1997). This group stood out as a peak in the
length distribution and seemed to be an artifact.

Similarly, we have plotted the distribution of lengths for each organism found
in GenBank (rel. 119), see http://www.cbs.dtu.dk/krogh/genomes/. Fig-
ures 3.3 and 3.4 are examples showing the length distribution of the unique data
set confirmed by a match to a non-hypothetical protein in SWISS-PROT, and the
length distribution of those that are not. A very large protein family would result
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Figure 3.3: Protein length distributions for E. coli. The red and blue lines show the
length distributions of unique sequences matching and not matching entries from SWISS-PROT,
respectively. The black line shows the distribution of unique proteins from SWISS-2D-PAGE.
All length distributions are normalized and have been smoothened by Gaussian kernel density
estimation.

in a peak in the length distribution, which is avoided when using the unique data
set, in which sequences with similarity to others are taken out (see Methods).
At the same time, strong similarity reduction is expected to make the random
sequences more dominant in the unique set, because it is not very likely that two
random ORFs are similar.

E. coli is one of the most studied microbial organisms and the plot in Fig-
ure 3.3 reveals a significant difference between the length distributions of unique
sequences matching and not matching SWISS-PROT. The sequences not match-
ing SWISS-PROT are generally shorter than the ones matching. Actually, 81%
of the 974 proteins that were excluded as ‘not matching SWISS-PROT’ did
have matches to hypothetical proteins in SWISS-PROT, which were not counted.
These were mostly from E. coli or closely related organisms. The definition for the
keyword hypothetical in a SWISS-PROT entry is “predicted proteins for which
there is no experimental evidence that they are expressed in vivo.”

The length distribution of the annotated coding sequences in the Archaea
A. pernix is shown in Figure 3.4. This is quite extreme, because rather than
performing actual gene finding, all ORFs with a length of at least 100 triplets
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Figure 3.4: Protein length distributions for A. pernix. Similar curves as in Figure 3.3
except that there is no 2D-gel data.

were annotated as coding regions in the GenBank entry (Kawarabayasi et al.,
1999). The subset of the unique data set with matches in SWISS-PROT has a
distribution comparable to the distribution seen in other prokaryotic organisms,
whereas the length distribution of non-matching annotated genes has a peak
which is not too different from the geometric distribution expected in a random
sequence of DNA.

Estimating the true number of protein coding genes

The length distributions indicate that too many protein coding genes are anno-
tated. To obtain an estimate of the true number of proteins in each organism
we have used the proteins in the SWISS-PROT database (Bairoch and Apweiler,
2000), which are not labeled hypothetical, as a reference. The estimate is based
on the assumption that the fraction of proteins with a match in SWISS-PROT
is independent of the length of the proteins. Since ORFs longer than 200 amino
acids are unlikely to occur by chance in most organisms (apart from long repetitive
sequences), the fraction of those matching SWISS-PROT was used as an estimate
of the fraction of the total number of true proteins that match SWISS-PROT.
Then the estimated number of genes is easily obtained by dividing the total num-
ber of matching proteins with this fraction. For instance, assume that 1400 of
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Table 3.1: Complete microbial genomes from GenBank release 119 The table contains
the number of annotated proteins, the A+T content, the number of proteins estimated from
matches to SWISS-PROT and from stop triplet frequency. The last column shows the number
of clusters of orthologous genes (COGs) for the organism. The list is ordered by kingdoms
(Archaea, Bacteria, Eukaryota) and A+T content.

A+ T No. anno- No. genes estimated from Number
(%) tated genes SWISS-PROT stop triplet of COGs

A. pernix 44 2694 1376 1423 1169
M. thermoautotro. 50 1869 1466 1535 1375
A. fulgidus 51 2407 1818 1927 1849
P. abyssi 55 1765 1497 1635 1443
P. horikoshii 58 2064 1448 1616 1365
M. jannaschii 69 1715 1350 1573 1320

D. radiodurans 33 2937 2323 1904 2176
P. aeruginosa 33 5565 4753 3508 4191
M. tuberculosis 34 3918 3410 2537 2668
T. pallidum 47 1031 920 820 707
X. fastidiosa 47 2766 1770 1792 1491
N. meningitidis A 48 2121 1539 1447 1455
N. meningitidis B 48 2025 1530 1500 -
V. cholerae 48 3828 2991 2931 2745
E. coli 49 4289 3771 3463 3327
Synechocystis 52 3169 2559 2550 2113
T. maritima 54 1846 1576 1564 1507
B. subtilis 56 4100 3263 3330 2803
A. aeolicus 57 1522 1337 1412 1317
C. pneumoniae 59 1052 903 909 647
C. pneumoniae AR39 59 997 790 913 -
C. pneumoniae J138 59 1070 921 910 -
C. trachomatis 59 894 772 754 631
C. muridarum 60 818 698 763 -
M. pneumoniae 60 677 610 617 423
H. pylori 61 1566 1303 1384 1081
H. pylori J99 61 1491 1316 1351 1062
H. influenzae Rd 62 1709 1479 1526 1504
M. genitalium 68 480 461 474 376
C. jejuni 69 1654 1420 1494 1289
B. burgdorferi 71 850 756 772 694
R. prowazekii 71 834 759 795 674
U. urealyticum 75 613 564 556 401

S. cerevisiae 62 6269 5560 5728 2175

2000 annotated genes longer than 200 amino acids have a match in SWISS-PROT
(70%). If there is a total of 2100 annotated genes with a match in SWISS-PROT,
we estimate that the total number of genes is 2100/0.7 = 3000. These estimates
are shown in Table 3.1 and the percent over-annotation according to the estimate
is shown in Figure 3.1.

We have argued that some of the short annotated genes are not real. Due
to the difficulty in discriminating a short ORF from a truly expressed gene, it is
also quite likely that there are short genes which has not been annotated. The
alignment based estimate implicitly assumes that there are quite few of these
unannotated genes. This might not hold for all organisms, which would also
mean that the estimate is too low. Thus, the alignment based estimate is really
an estimate of how many of the annotated genes are correct.

It is possible that proteins matching SWISS-PROT are biased in length, be-
cause of the local search method (e.g. due to domain structure) and possibly
an inherent length bias in SWISS-PROT, which would both invalidate our as-
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sumption that the fraction of matching genes is approximately the same for long
and short genes. If matching proteins are biased towards long proteins (which is
perhaps most likely) our estimate is too low. For the genomes we have studied,
approximately 15–20% of the proteins matching SWISS-PROT have lengths be-
low 200 amino acids. To get an idea of the worst-case error, let us assume that
proteins longer than 200 amino acids are twice as likely to match SWISS-PROT
as compared to those shorter than 200. Then the true number of genes would
be 15–20% larger than our estimate (equal to the fraction of matching proteins
shorter than 200).

As a control of the above alignment estimate, we have calculated another
estimate, which is completely independent of database matches. The maximal
number of non-overlapping open reading frames longer than 100 triplets was
found and the estimate of the true number of genes was obtained by reducing
this number by those expected to occur at random. The reduction was calculated
approximatively from the stop triplet frequency. These estimates are also shown
in Table 3.1. ORFs shorter than 100 triplets were excluded since relatively few
genes are expected, and the estimate becomes ill-behaved because of the huge
number of short ORFs. For high A-T content the number of non-overlapping
ORFs is a reasonably good estimate in itself, whereas the corrections become
more and more important the lower the A-T content. The approximation of the
corrections is quite crude, and overall the estimate is not very good for low A-T
content. Indeed, the largest discrepancies between the two estimates is seen for
the organisms with low A-T, whereas they are quite small for intermediate to
high A-T content. The stop triplet based estimate is usually higher than the
alignment estimate.

The number of genes that are members of clusters of orthologous genes
(Tatusov et al., 2001) (COGs) are also shown in Table 3.1. A COG is defined if
a gene is found in at least three lineages, so this should be an approximate lower
bound on the number of protein coding genes in an organism. These numbers are
lower than the alignment based estimates except for A. fulgidus and H. influenzae
where they are very close.

It is notable that such a large fraction of the hypothetical E. coli ORFs had
no significant matches to verified SWISS-PROT entries. The two-dimensional
polyacrylamide gel electrophoresis data from SWISS-2DPAGE (Hoogland et al.,
2000) was used as an independent control of the length distribution. 271 E. coli
sequences were retrieved from the database, and the length distribution of the
similarity reduced set of 226 is shown in Figure 3.3. Although it is a fairly
small set of genes, it is experimentally confirmed and independent of biases in
alignment. These data support our assumption that the length distribution of
SWISS-PROT matches is reasonably unbiased. We investigated the possibility
of using DNA expression array experiments, but they turned out to be unreliable
as a control, because a probe for a wrongly annotated gene can be located in
an untranslated region of an mRNA from an expressed gene, and will therefore
appear to be expressed. Secondly, probes are often made for the annotated genes,
making the results dependent on the annotation.
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Conclusion

Our estimates of the number of real protein coding genes reduce the number
of true proteins by 10–30% for the majority of microbial organisms. The two
extremes are represented by M. genetalium where the estimates are 1–5% lower
and A. pernix where they are close to 50% lower. The large over-annotation of
A. pernix has previously been noted (Natale et al., 2000; Cambillau and Claverie,
2000). Natale et al. (2000) estimate the correct number of protein coding genes
to be between 1,550 and 1,700 based on the assumption that the total fraction
of confirmed genes should be about the same as for other organisms. However,
since the other organisms are also over-annotated, this estimate is perhaps still too
high, which explains our slightly lower estimate of about 1,400 genes in A. pernix.
It is also possible that our estimates are a bit too low, as discussed above.

The problem with wrongly annotated protein coding genes is almost entirely
due to the difficulty in distinguishing short non-coding ORFs from real genes.
The problem cannot be solved at present, but there are several ways in which
the situation can be improved until better gene identification methods are devel-
oped. Firstly, a measure of statistical significance for gene prediction is needed.
Secondly, an ORF should only be annotated as a coding sequence (CDS) if it has
either a trustworthy protein match or if it has very high significance. Thirdly,
other possible genes should be annotated as ORFs, clearly showing that they are
hypothetical.

Methods

We have analyzed 34 fully sequenced microbial genomes as found in GenBank
release 119. For each organism all sequences annotated as ‘CDS’ in the feature
table were extracted and translated to proteins. To generate the unique set, these
sequences were aligned against themselves using gapped BLASTP (Altschul et al.,
1997). With a threshold of 10−3 on the expectation scores, we subsequently gen-
erated maximal similarity reduced versions of the data sets using the algorithms
by Hobohm et al. (1992). This procedure reduced the sets by 13–36%.

The full sets were searched against the SWISS-PROT database (Bairoch and
Apweiler, 2000) (releases 38 to 39.7) using BLASTP. Matches to sequences with
the keyword ‘hypothetical’ were disregarded. Sequences giving no hits in SWISS-
PROT with an expectation score better than 10−3 were categorized as not match-
ing SWISS-PROT, while sequences were considered to match SWISS-PROT only
if at least one match with a score better than 10−6 was obtained. Sequences for
which the best match had an expectation score between 10−3 and 10−6 were con-
sidered in the ‘gray zone’ and were not included in any of the categories (typically
3–5%).

Average lengths of all annotated genes and for all matching SWISS-PROT
were calculated and used for the histogram in Figure 3.2.

Length distributions were calculated for all annotated CDSs, the unique set
of annotated CDSs, the unique set having matches to SWISS-PROT, and the
ones not matching SWISS-PROT. Rather than plotting raw histograms we made
a Gaussian kernel density estimation of the logarithmic length distribution and
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log-transformed the distribution back to an ordinary length distribution. The
width of the kernel was estimated from the data (Silverman, 1986).

An estimate of the true number of genes was calculated by extrapolating
from the proportion of annotated genes of length greater than 200 amino acids
(ORF200) that matches SWISS-PROT entries (SP200). The total number of an-
notated genes matching SWISS-PROT (SPall) was then divided by this ratio to
get an estimate of the total number of genes (SPallORF200/SP200).

Another estimate of the total number of genes, independent of database
matches, can be obtained from the ORF lengths and stop triplet frequencies:

G =
L
∑

i=100

Nmax(i)
Norf (i)− Apran(i)

Norf(i)
,

where L is the length of the genome divided by 3, Norf(i) is the observed number
of ORFs of triplet-length i, and Nmax(i) is the number of these in a set of non-
overlapping ORFs longer than 100 triplets constructed by excluding the shortest
ORFs first. pran(i) is the probability of finding an ORF of triplet length i at a
specific position in the genome, which can be approximated by pran(i) = 2p2stop(1−
pstop)

i, where pstop is the stop triplet frequency. A is the number of triplets in
the genome not occupied by true genes, which can be found by solving the self-
consistency equation,

L− A =
L
∑

i=100

i Nmax(i)
Norf (i)− Apran(i)

Norf(i)
.

The number of open reading frames grows exponentially as the length i goes
to zero. Therefore the difference Norf(i) − Apran(i) between the two very large
numbers in these formulas is not well determined for short ORFs. This is why
we estimate G only from ORFs longer than 100 triplets.
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3.3 The consequences of poor annotation

At a first one might ask why it is so important that the annotated genes are
correct. After all, random protein sequences should not give significant matches
when using alignment methods. One should bear in mind that the significance
of a given alignment depends upon the size of the database against which the
search was performed. This means that a heavy pollution of the databases with
non-proteins will reduce the significance of all hits made by any search method
against this database.

While this is serious enough, there are worse problems. Many people who
are not themselves working on doing whole genome annotation, are not aware of
the poor quality of the data sets. They therefore tend to trust the annotation
almost blindly, which can lead to wrong conclusions since conceptual translations
of large amounts of non-coding DNA regions become included in their analysis.

3.3.1 The Aeropyrum pernix sequel

There are several examples of researchers, who have been fooled by the A. pernix
genome annotation, in which all open reading frames over 300 bp (corresponding
to proteins of 100 aa) have been annotated as coding regions. Mistakes made on
this genome further tend to become generalized to Archaea due to the compara-
tively poor annotation of most Archaeal genomes.

One such mistake has already been mentioned in Paper I: A. pernix proteins
in particular and archaeal proteins in general appear to be shorter on average
than bacterial and eukaryotic proteins (Zhang, 2000). Sadly, this is not a lone
example. Essentially all types of analysis of protein sequences from complete
genomes are bound to give odd results if the annotation is trusted as is.

In a review of hyperthermophilic proteins, the amino acid composition of all
proteins from a range of different organisms was compared with the purpose
of revealing how hyperthermophile proteins achieve their stability (Vieille and
Zeikus, 2001). Unfortunately conceptual translations of all annotated coding
regions were once again used as the basis of the analysis. The results were much as
should be anticipated: archaeal proteins were found to have different amino acid
compositions that those of bacteria. Also A. pernix proteins were noted to have
a very different amino acid composition—both when compared to proteins from
bacterial and archaea. While it may very well be true that archaeal and bacterial
proteins differ, such conclusions should not be made based on all annotated coding
regions. Instead one ought to limit the analysis to only include proteins with clear
sequence matches to known proteins (for instance SWISS-PROT).

The differences between A. pernix protein coding genes and other of other
organisms seems to be something many people can agree on. When again taking
the annotation for granted, A. pernix was further noted to contain an unusually
low percentage of coiled coil proteins (Liu and Rost, 2001). Also only 20% of all
predicted protein sequences from A. pernix can be assigned a fold—this should be
compared to 30–40% for most other prokaryotes. The difference is not as drastic
when viewed at the residue level where 23% of all protein residues annotated in
the A. pernix genome can be assigned to a fold, which is only slightly lower than
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for other prokaryotes (Liu and Rost, 2001). The obvious explanation is that short
ORFs cannot be assigned to folds, most likely because they do not correspond to
real proteins. Although the length distributions of proteins from all the analyzed
genomes were actually plotted in the article, the authors did not comment on
this possible source of biases.

3.3.2 Similar problems in other organisms

More recently, the Xylella fastidiosa genome sequence has been published (Simp-
son et al., 2000). The genome annotation contains 1,083 ORFs with no significant
matches and has an average ORF length of 799 bp—about 20% shorter than most
other prokaryotes. Because of these many supposedly orphan proteins, only 47%
of CDSs annotated in the X. fastidiosa genome could be assigned a function,
which is suggested to be due to no phytopathogenic bacteria having been se-
quenced before (Simpson et al., 2000).

3.4 Synonymous vs. non-synonymous substitu-

tions

While our approach can estimate how many ORFs are incorrectly annotated as
protein coding genes in a genome, we make no attempt at predicting which of the
genes without matches to known proteins are true genes. Recently a technique for
discriminating between short protein coding genes and random ORFs has been
suggested (Ochman, 2002). The method relies on calculating Ka/Ks ratios for
short ORFs that are conserved in a pair of closely related organisms, e.g. E. coli
and Salmonella typhimurium.

In Ka/Ks ratios, Ka is rate of non-synonymous substitutions while KS is the
rate of synonymous substitutions, i.e. substitutions at the DNA level which do not
affect the protein sequence. A ratio of 1 corresponds to neutral evolution, in the
sense that there is neither selection for or against changing the protein sequence.
For most protein coding regions Ka is significantly lower than Ks, indicating a
selection against changing the protein sequence. In very special cases Ka can be
significantly larger than Ks. This is known as positive selection—this indicates a
strong selection for changing the protein sequence.

Because the method only works for pairs of closely related organisms, it cur-
rently cannot be applied to all sequenced genomes and the method is also not
applicable to all short ORFs. But for the ORFs for which the method can be
used, the results are very interesting: more than 90% of the ORFs with a Ka/Ks
ratio greater than 1 are shorter than 300 bp. In summary the majority of the
genes that do not exhibit a preference for synonymous substitutions are short,
have an unusual codon usage, and are of unknown function—all signs pointing
in the direction that they are not protein coding regions (Ochman, 2002). These
results are in good agreement with our own conclusions.



39

3.5 Experimental verifications

Since Paper I was submitted, one of our predictions have been experimentally
verified by others. Based on both comparative genomes of four yeasts and whole
genome expression analysis, Lander has concluded that approximately 500 of the
6,100 protein coding genes currently annotated in the Saccharomyces Genome
Database (SGD) are in fact not genes2. This corresponds to an estimated 5,600
genes which is only 40 genes more than our SWISS-PROT estimate.

Although this is obviously only one example, it does add to the credibility of
our estimates. Many people would tend to reject our estimates, which indicate
that approximately 15% of all annotated protein coding genes in the most studied
organisms are false positives. The validation of our prediction for S. cerevisiae
makes it harder to simply reject the rest of our predictions.

2Announced in BioMedNet News (http://news.bmn.com/news/) by Eric S. Lander, May
30, 2002.
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Chapter 4

Predicting protein function from
sequence derived features

In Chapter 1 it was discussed that the function of a protein can be defined in
terms of the proteins interactions with its environment. Since proteins performing
similar functions would thus have to interact with the same environment, they
should be expected to share certain properties. This should be the case also for
proteins which are not evolutionarily related through a common ancestor.

The cell and its different subcellular localizations make up the environment in
which the majority of proteins function. Proteins use the same cellular machine
to achieve the same things—it is thus natural to expect that prediction of post-
translational modifications can give hints to function.

The fundamental idea behind ProtFun is to integrate all protein features de-
scribed above in order to predict protein function. However, most of the proper-
ties described above are unknown to us. Since all we have is the protein sequence,
we have to rely on predicted (or in some cases calculated) features to form the
input for the method (see Figure 4.1). Fortunately many methods for prediction
of various protein properties had already been developed both at the Center for
Biological Sequence Analysis and by other research groups.

Considering the starting point—nothing but a sequence with no known
homologs—one should not expect the unreasonable. It is in my opinion unlikely
that protein function in general can be predicted with the accuracy of similar-
ity based methods. The predictions made by the method I will now describe
are therefore much better suited for computational screening purposes than for
predicting the function of individual sequences.

4.1 Similar approaches

The idea of using different types of sequence derived features to predict func-
tion has been used by others as well. A protein function prediction system for
E. coli, which can predict protein function both in the presence and absence of
similar sequences was developed around the same time as ProtFun (King et al.,
2001). When not making use of matches to similar sequence of known function,
this predictor has several similarities to the ProtFun method. The system makes
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Figure 4.1: The concept of ProtFun. Based on sequence alone, a large number of protein
properties are calculated or predicted. These features are integrated into functional category
predictions by using neural networks.

use of sequence derived properties such as the amino acid composition, phys-
ical/chemical properties estimated from the composition, and secondary struc-
ture prediction. The crucial difference between their system and ours is that
they do not make use of predicted subcellular localization signals nor co- and
post-translational modifications. This is largely because they have focused on
prokaryotic rather than eukaryotic proteins.

The company Virtual Genetics has developed a method for prediction of brain
specific proteins which is very similar to ProtFun (Huss et al., 2001). The method
makes use of many of the same prediction servers in ProtFun including the ones
developed at CBS that are publicly available. The main difference is that Virtual
Genetics use various types of decision trees (a different class of machine learning
algorithms) instead of neural networks. This way they manage to predict 68%
correct on a balanced data set of brain specific and non-brain specific proteins.

4.2 Generation of an “orphan” data set

In order to be able to train a method for predicting protein function of orphan
proteins, proteins of known function are used. To emulate the “orphan situation”
a test set must be constructed so that it shares no similarity with the training
set. The most conventional way to achieve this would be to perform a homology
reduction of the data and subsequently split the data set into a training and a
test set. To ensure that no two sequences share significant similarity, a very strict
threshold would have to be used, thereby reducing the data set enormously. To
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avoid this undesirable reduction of the data set, a different scheme is used. The
simple idea is to split the set of sequences into two sets of specified size, with the
objective to minimize the total similarity between the sets. This is described in
more detail in Paper II.

4.3 Function assignment of the sequences

4.3.1 Using the EUCLID dictionary to annotate cellular

roles

A large data set of human protein sequences assigned to functional categories
was unfortunately not available. For this reason the scoring system of the EU-
CLID method developed at Alfonso Valencias lab was used to assign human
sequences from the SWISS-PROT database to cellular role categories (Tamames
et al., 1998; Andrade et al., 1999a). These categories themselves (Andrade et al.,
1999b) were derived from an earlier proposed scheme for E. coli (Riley, 1993) and
comprise 13 functional classes which are subsets of three superclasses: Energy,
Communication and Information. Proteins which cannot be assigned to one of
the 13 categories are assigned to other or to unknown. There is a subtle differ-
ence between other and unknown: contrary to proteins assigned to the unknown
category, the function of proteins assigned to other is known but it does not fit
into any of the classes. Although neither of these two groups of proteins can be
used for training a function prediction method, it would not be meaningful to
attempt to use the predictor on the proteins assigned as other.

The EUCLID automatic assignment method was developed as part of the
GeneQuiz annotation project, where it is used to assign proteins to cellular role
categories based on BLAST matches. To assign a protein of unknown function,
it is first compared to all protein sequences in the SWISS-PROT database, and
a consensus set of keywords associated with the matches is extracted. These
keywords are then used as input to an additive scoring system (Z-scores) in which
each keyword has a score for each cellular role category. What is obtained is thus
a Z-score for each category. Based on these scores, the protein is assigned to the
category having the highest Z-score and a confidence class is assigned based on
the difference between two highest Z-scores.

Since we use sequences from SWISS-PROT, they already have keywords. The
BLAST step is thus not performed—instead the keywords of each entry simply
enter the scoring system directly. Since a protein can belong to more than one
functional class, we do not use the scores as done originally in EUCLID. Instead
we studied the spread of the Z-scores and assigned a “high” and a “low” threshold
of 3 and 0 respectively. We thus assign a protein as belonging to a class if
the corresponding Z-score is above 3, while it is considered a negative example
for a class if the Z-score is negative. Scores between the “high” and the “low”
thresholds were considered unclear and were consequently not labeled. A protein
can thus be assigned to multiple classes—or if no sufficiently high scores occur it
may not be assigned to any of the classes.
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4.3.2 Extracting enzyme classification from SWISS-
PROT

The human SWISS-PROT sequences were also assigned to enzyme classes, both
to enzyme vs. non-enzyme and to their major enzyme class, i.e. the first digit
of the EC number (Enzyme Nomenclature, 1965, 1992). In the SWISS-PROT
database most enzymes have the EC number annotated in the description line.
These entries were assigned as enzymes and to the major enzyme class in question.
Entries without an EC number but with a description word ending in “ase”’ were
manually assigned to the enzyme and non-enzyme categories or excluded from
training if ambiguous. Sequences without EC numbers or the suffix “ase” were
assumed to be non-enzymatic.

4.4 Correlations between different classification

systems

While many different schemes for classifying protein function exist, these are cor-
related with one another. This can be exemplified by the two schemes described
above, cellular role and enzyme classes (see Table 4.1).

As should be expected, the majority of proteins involved in various types
metabolism are enzymatic whereas most proteins belonging to other functional
categories, e.g. transport and binding, are non-enzymatic (see Table 4.1).

The enzyme classification does not only correlate with cellular roles at the
enzyme/non-enzyme level. A large overrepresentation of oxidoreductases is ob-
served for the energy metabolism category, which is consistent with the many ox-
idative steps taking place in aerobic respiration. Also, a large fraction of ligases
turn out to be involved in translation. This too is consistent with the underlying
biology.

A consequence of these correlations is that the performance of the predictors
are bound to be correlated as well. If energy metabolism proteins can be predicted
with high accuracy, it will be able to predict oxidoreductases with a certain

Table 4.1: Correlations between cellular role classes and enzyme classes. For the
labeled data set the number of sequences belonging to each pair of a cellular role and an
enzyme category is listed.

nonenzyme enzyme EC1 EC2 EC3 EC4 EC5 EC6

Amino acid biosynthesis 14 70 20 22 1 30 3 3
Biosynthesis of cofactors 75 163 77 39 14 19 7 7
Cell envelope 107 65 2 7 54 1 1 0
Cellular processes 172 87 46 0 35 1 0 0
Central intermediary metabolism 5 208 0 96 103 7 1 1
Energy metabolism 38 289 204 22 38 14 10 1
Fatty acid metabolism 0 52 8 32 0 5 1 10
Purines and pyrimidines 175 345 76 168 88 8 3 10
Regulatory functions 551 30 1 9 4 0 1 0
Replication and transcription 621 115 0 56 24 1 7 3
Translation 135 38 1 0 12 1 0 21
Transport and binding 1201 237 15 69 131 5 2 0
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accuracy and vice versa.
Because the cellular role predictors and the enzyme predictors are correlated,

self consistency of a prediction is not as strong an indication of the accuracy as
could be anticipated. However, inconsistency of a prediction is still an indication
that something is likely to be wrong, e.g. a prediction of a non-enzymatic central
intermediary metabolism protein is unlikely to be correct.

4.5 Protein length distributions revisited

In Paper I we made use of length distributions of proteins to estimate the number
of genes in genomes. We saw that the shorter a claimed protein coding regions
is, the more likely it is to only be a random ORF. What else can the length of a
protein sequence tell us?

From the set of 5,494 SWISS-PROT sequences annotated with cellular roles as
described above, a histogram of the protein length distribution was constructed
for each cellular role category (see Figure 4.2). It is evident that the protein
length distribution is not identical for the 12 different cellular roles: cell envelope
and translation related proteins tend to be short while proteins from the central
intermediary metabolism have a quite narrow distribution around 400 aa.

Although knowing the length of a protein is obviously not sufficient to predict
its function, the length does give a weak hint to the function. The fundamental
idea of ProtFun is to integrate many such hints, to obtain a much more qualified
guess of what the function might be.

4.6 Sequence derived features

In ProtFun many different predicted protein features are used as input and even
more have been tried but rejected. Two features are very closely correlated to
the protein length discussed above: the number of atoms in the protein and the
molecular weight. Both of the numbers are reported by the ExPASy ProtParam
tool, a programme from the Swiss Institute of Bioinformatics which also provides
a number of other simple protein properties. I will here give an overview of all the
the features used, starting with the simple properties reflecting the amino acid
composition, continuing with structural features and ending with localization
features and post-translational modifications.

4.6.1 Number of positively/negatively charged residues

Charged residues play an important role in a proteins interactions with its en-
vironment, including other proteins, DNA and RNA. Two very simple features
related to this have been used, both of which are reported by the ExPASy Prot-
Param tool: the total number of negatively charged residues (aspartic and glu-
tamic acid) and the total number of positively charged residues (arginine and
lysine). As large proteins will tend to have a larger number of charged residues
simply due to their size, these two features also contain some information about
the length of the protein.
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Amino acid biosynthesis

Sequence length distributions
Biosynthesis of cofactors, etc. Cell envelope

Cellular processes Central intermediary metabolism Energy metabolism

Fatty acid and lipid metabolism Purines, pyrimidines, etc. Regulatory functions
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Figure 4.2: Protein length distributions for cellular role categories. Histograms with a
bin size of 200aa were created from the positive examples for each category in our labeled data
set. The length distributions for different classes of proteins are clearly not identical.
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4.6.2 Estimated isoelectric point

A alternative way to represent composition of charged residues is to estimate the
isoelectric point (pI). The isoelectric point of a protein is defined as the pH at
which the protein has no net charge. Proteins with a surplus of basic residues
have high isoelectric points as high pH is required for these residues to titrate.
Conversely, proteins with a surplus of acidic residues have low isoelectric points.

For a given pH value, the net charge of a protein can be estimated by using
the formulas for mixtures of acids and bases in basic chemistry. In this equation
all chemical groups in the protein that can titrate at biologically relevant pH
values must be taken into account: aspartic acid (D), glutamic acid (E), cysteine
(C), histidine (H), arginine (R), lysine (K) and tyrosine (Y) as well as the N- and
C-terminal groups. By numerically solving the mixture equation to find the pH
at which the net charge is zero, the ExPASy ProtParam tool finds an estimate of
the isoelectric point of the protein.

The distribution of isoelectric points has been observed to be bimodal for other
completely sequenced genomes (Klenk et al., 1997; Kawashima et al., 2000). Fig-
ure 4.3 shows that the distribution of estimated isoelectric points is also bimodal
for our data set. It may seem puzzling that bimodal distributions are almost al-
ways obtained—however this can be fully explained by the fairly low frequencies
of histidine and cysteine residues, the only residues to titrate around neutral pH.
The pI thus tend to be determined by the titration points of either very basic or
very acidic residues (Kawashima et al., 2000).

2 4 6 8 10 12
Estimated isoelectric point (pI)

0

0.1

0.2

0.3

Figure 4.3: Distribution of isoelectric points for the data set used to train ProtFun.
Based on the estimated isoelectric points of all proteins in our data set, a Gaussian kernel
density estimate of the pI distribution was constructed. This distribution is bimodal with
peaks around pH 6 and pH 9, which is also observed proteins from other organisms (Klenk
et al., 1997; Kawashima et al., 2000).
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4.6.3 Extinction coefficient

The extinction coefficient is a protein parameter that is commonly used in the
laboratory for determining the protein concentration in a solution by spectropho-
tometry. It describes to what extend light is absorbed by the protein and depends
upon the protein size and composition as well as the wavelength of the light.

For a wavelength of 280 nm, the extinction coefficient of a protein can be
calculated in a simple additive fashion from the number of tryptophans (nTrp),
tyrosines (nTyr), and cystines (nCys) in the protein:

εprotein = nTrpεTrp + nTyrεTyr + nCysεCys,

where εTrp, εTyr, and εCys are the extinction coefficients of the individual amino
acids residues. This calculation is performed by the ExPASy ProtParam tool. It
should be noted that εCys is much smaller than εTrp and εTyr, meaning that the
extinction coefficient mainly reflects the number of tryptophans and tyrosines in
the protein.

4.6.4 Grand average of hydropathicity

The hydropathicity of an amino acid residue is defined as the average hydropho-
bicity of the residues in a window centered at the residue, where the window size
is typically 19 residues (Kyte and Doolittle, 1982). The ExPASy ProtParam tool
calculates a measure called the grand average of hydropathicity (GRAVY ) which
is simply defined as the average hydropathicity over the entire sequence. Whereas
the hydropathicity has a value for each position in the sequence, GRAVY is only
a single value for each protein.

This measure becomes less mystical when realizing that GRAVY is simply
the average of a running average of the hydrophobicity, which is the same as
the average hydrophobicity (except for sequence end effects). Examples of the
proteins with high GRAVY values include membrane proteins.

4.6.5 Aliphatic index

The aliphatic index is defined as the relative volume of a protein occupied by
aliphatic side chains (Alanine, Valine, Isoleucine, Leucine), and is again calcu-
lated by the ExPASy ProtParam tool. Although the mentioned residues are all
hydrophobic, the aliphatic index is not a measure of hydrophobicity like the grand
average of hydropathicity since aromatic residues are not included in the measure.
As the aliphatic side chains are both hydrophobic and flexible, they play an im-
portant role in the hydrophobic packing of the protein core. Consistent with this,
the aliphatic index has been proposed to be correlated with the thermostability
in the case of globular proteins.

4.6.6 Protein instability index

The stability of a protein as defined by its half-life turns out to be correlated to
the dipeptide composition. These correlations can be summarized in a measure
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called the protein instability index, which relies on a weight value (DIWV) for
each of the 380 possible dipeptides (Guruprasad et al., 1990). The instability
index (ii) is defined as:

ii =
10

L

i=L−1
∑

i=1

DIWV (AAi, AAi+1),

where L is the sequence length and AAi the amino acid in position i. The score
for a protein is in other words simply 10 times the average instability contribution
of all dipeptides in the sequence. Like the other features mentioned so far, it is
calculated by the ExPASy ProtParam tool. Proteins with high instability scores
(above 40) are typically unstable, whereas low scores are characteristic of stable
proteins.

4.6.7 Predicted PEST regions

A different type of instability stems from the active degradation of certain proteins
by the proteasome complex. The degradation of some proteins by the proteasome
has been shown to be caused by sequences called PEST regions (Rechsteiner and
Rogers, 1996). The regions are called this because they are rich in Proline (P),
Glutamic acid (E), Serine (S), Threonine (T) and to a lesser extend Aspartic acid
(D) residues. There does not seem to be a true consensus sequence, only strong
sequence biases.

The requirements for a PEST region appear to be a hydrophilic stretch of
at least 12 residues rich in P, E, S, and T residues. This stretch should be
flanked by the positively charged residues Lysine (K), Arginine (R) and Histidine
(H), which are not allowed with in the PEST sequence itself (Rechsteiner and
Rogers, 1996). An algorithm developed elsewhere called PESTfind has been used
to predict candidate PEST sequences in proteins.

4.6.8 Low complexity regions

PEST regions constitute only one type of region with a compositional bias, that is
regions that are composed of only a few amino acid residue types. Other examples
include homo-polymeric amino acid runs and short tandem repeats. Although
such “simple” sequences have been largely neglected in protein sequence studies,
it is becoming increasingly evident that various types of biased regions exist and
play important structural and/or functional roles (Wootton, 1994b; Karlin, 1995).

Compositionally biased regions can be defined in terms of their low sequence
complexity, and were identified using the SEG programme (Wootton, 1994a),
which is the programme used for masking of protein sequences in the BLAST
package (Altschul et al., 1997).

4.6.9 Protein secondary structure

Because the structure of a protein is very important for its function, predicted
secondary structure was included as a feature. While it is not clear how much of
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the structurally important features can be captured at the secondary structure
level, it is all that we can currently predict with reasonable accuracy for globular
proteins.

Prediction of secondary structure was done using PSI-Pred, which compared
very favorably to other methods in the CASP experiment (Sternberg et al., 1999).
However, it should be kept in mind that we will get a poorer performance as PSI-
Pred must run in single sequence mode to allow prediction on orphan proteins.
The output of PSI-Pred is a three state prediction of the secondary structure
(helix, sheet, or coil) for each residue in the protein.

4.6.10 Transmembrane helix predictions

In addition to globular proteins, a large fraction of non-globular proteins exist,
many of which reside in the various membranes of the cell. With the excep-
tion of β-barrel porins, such proteins all span the membranes by hydrophobic
alpha-helices known as transmembrane helices. The perhaps most famous class
of transmembrane proteins are the 7TM receptors.

From a function prediction point of view, it is interesting to predict not only
whether a protein is transmembrane or not, but also the amount and sequence
location of transmembrane segments as well as the membrane topology of the
protein, i.e. the orientation of the protein in the membrane.

To make these predictions we made use of the TMHMM method also de-
veloped at CBS (Sonnhammer et al., 1998; Krogh et al., 2001). As the name
indicates, the central part of the method is an HMM of transmembrane proteins.
By Viterbi decoding of a protein sequence, each residue of the sequence is as-
signed as being either inside the membrane, outside, or part of a transmembrane
helix.

4.6.11 Signal peptide prediction

Many proteins have N-terminal signal peptides which cause the protein to be
translocated across the membrane to enter the endoplasmic reticulum (ER). This
is initiated by interaction between the signal peptide and the signal recogni-
tion particle (SRP) during translation. This guides the ribosome, mRNA, and
emerging polypeptide chain to the ER membrane where the protein chain is co-
translationally translocated into the ER and the signal peptide is cleaved off.
Once in the ER, the protein can either become secreted, be transferred to the
Golgi apparatus or a lysosome, or be retained in the ER.

Signal peptides are characterized by having a short positively charged N-
terminal region, a longer hydrophobic region and finally a cleavage site region
required to contain small residues at positions −3 and −1 relative to the point
of cleavage. Signal peptides are predicted using the SignalP prediction method
which combines several neural networks trained to pick up these signals (Nielsen
et al., 1997a,b, 1999). For each of the first 60 residues of the protein sequence
several scores are calculated: an S-score which tells if the residue appears to be
part of the signal peptide, a C-score which should ideally be high for the cleavage
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site only, and finally a combined Y-score, being the geometric mean of the C-score
and a smoothed derivative of the S-score.

Since the development of the original ProtFun method, SignalP has been com-
bined with a separate mitochondrial transit peptide predictor and a chloroplast
transit peptide predictor to make a method called TargetP (Emanuelsson et al.,
2000). For non-plants, this method gives three scores predicting the type of
protein: secreted/cell surface protein, mitochondrial protein, or protein without
N-terminal signal peptides. The three TargetP scores have been included as a
feature in later applications of the ProtFun approach.

4.6.12 Subcellular localization

The eukaryotic cell is divided into several subcellular compartments or localiza-
tions each containing a different complement of proteins. Two features related to
subcellular localization have already been described, namely prediction of trans-
membrane helices and signal peptides which are in part controlling the sorting
of proteins into their respective compartments. However, many other sequence
signals exist as well.

To predict the subcellular localization of proteins, we used the PSORT pre-
diction method (Nakai and Horton, 1999). PSORT discriminates between 11
different localizations: extracellular (including cell wall), endoplasmic reticulum,
vacuolar, mitochondrial, cytoplasmic, nuclear, cytoskeletal, Golgi, vesicles of se-
cretory system, peroxisomal, and plasma membrane.

PSORT relies on an array of different prediction methods, including predictors
for signal peptides and transmembrane helices. These are combined by a rule
based expert system to assign a probability to each of the subcellular localizations
for each protein. A full list of the features used by PSORT can be found at
http://psort.nibb.ac.jp.

4.6.13 N-linked GlcNAc glycosylation sites

Many types of sugar-amino acid linkage are known today, making glycosylation
the most complex of the co- and post-translational modifications. Different types
of glycoproteins are found to be involved in a wide variety of functions, in par-
ticular in eukaryotes (Spiro, 2002).

N-linked GlcNAc glycosylation of asparagine (N) is the most widely occurring
type of glycosylation, mainly targeting secreted and membrane bound proteins.
The oligosaccharide is co-translationally linked to the protein in the endoplas-
mic reticulum (ER) by the enzymatic protein complex oligosaccharyltransferase,
which is conserved among eukaryotes and also has been found in archaea (Spiro,
2002).

The oligosaccharyltransferase recognizes the motif Asn-Xaa-Ser/Thr, where
Xaa is any other amino acid than proline. As this motif is a necessary but not
sufficient condition for glycosylation to take place, we used the neural network
based predictor NetNglyc developed at CBS for predicting N-linked GlcNAc gly-
cosylation sites.
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4.6.14 O-linked GalNAc glycosylation sites

O-linked glycosylations constitute a varied class of sugar-amino acid linkages, as
several types of sugars can be linked to various amino acid residues and in different
configurations (Spiro, 2002). The most studied of such glycosylation is the O-
α-GalNAc glycosylation of serines and threonines. Like the N-linked GlcNAc
glycosylation described above, this type of glycosylation is mainly observed for
secreted and membrane bound proteins. However, this type of glycosylation
takes place post-translationally in the Golgi, where sugars are added successively
to form branched oligosaccharide structure.

O-linked GalNAc glycosylation is mediated by several different GalNAc-
transferase, which are likely to have different sequence specificities. As a result of
this, a real consensus sequence is not known. However, O-linked GalNAc glycosy-
lations often can be found clustered in repeat regions rich in serines, threonines,
prolines, glycines and alanines, which make PEST regions likely targets for this
type of glycosylation.

Although no good consensus sequence is known, a prediction method for O-
linked GalNAc glycosylation, NetOglyc, has been successfully developed at CBS
(Hansen et al., 1998). This method uses a set of neural networks to score possi-
ble glycosylation sites and subsequently subtracts a variable threshold based on
the surface accessibility predicted by other networks. The NetOglyc scores for
potential O-α-GalNAc were used as an input feature for function prediction.

4.6.15 O-linked β-GlcNAc glycosylation

A different type of O-linked glycosylation of serines and threonines, which has
recently received much attention, is the O-β-GlcNAc glycosylation. This type of
glycosylation targets nuclear and cytoskeletal proteins, and is the first type of
glycosylation reported to occur outside the endoplasmic reticulum (ER) (Hart,
1997). It is also characteristic by being a monosaccharide modification. O-
β-GlcNAc glycosylations are linked by the enzyme GlcNAc-transferase, which
like the oligosaccharyltransferase complex is highly conserved among eukaryotes
(Spiro, 2002).

Intriguingly, this type of glycosylation appear to often target serines and
threonines that can also be phosphorylated. Such sites that can be both gly-
cosylated and phosphorylated are known as Yin-Yang sites. Since these two
post-translational modifications are mutually exclusive, O-β-GlcNAc glycosyla-
tion has been proposed to play a reciprocal regulatory role to phosphorylation.

At CBS a neural network based method for prediction of O-β-GlcNAc glyco-
sylation has been developed as part of the YinOYang prediction server (http:
//www.cbs.dtu.dk/services/YinOYang/). Only the O-β-GlcNAc predictions
were included in this feature as phosphorylations were handled separately.

4.6.16 Serine and threonine phosphorylation

Phosphorylation of serines and threonines, which was mentioned in parsing above,
is one of the most important regulatory mechanisms. Because phosphate groups



53

can be reversibly added and removed by kinases and phosphorylates, phospho-
rylation often acts as a direct on/off switch of protein activity. This is a very
common regulatory mechanism, which is used for regulation of essentially all
processes that take place in a cell (Cohen, 2000).

Although phosphorylation of serines and threonines are performed by a large
number of different kinases, each with its own motif specificity, the same kinases
are often involved in phosphorylation of serines as well as threonines. It is thus not
meaningful to discriminate between serine and threonine phosphorylation. Also,
because ≈ 1000 kinases are believed to be encoded by the human genome (Cohen,
2000), no general consensus sequence for phosphorylation sites exist (Blom et al.,
1999).

As it is rarely known which kinase is responsible for the phosphorylation of a
particular site, kinase specific predictors cannot be constructed. Therefore, the
generic phosphorylation predictor, NetPhos, was used for predicting serine and
threonine phosphorylation sites (Blom et al., 1999).

4.6.17 Tyrosine phosphorylation

Like serines and threonines, tyrosines residues are also subject to reversible phos-
phorylation. Although tyrosine phosphorylation is also used as a regulatory mech-
anism, it is governed by an entirely different complement of kinases and phos-
phorylases. It might therefore be used to control different processes, for which
reason it has been considered a separate input feature. Tyrosine phosphorylation
sites were also predicted using NetPhos (Blom et al., 1999).

4.7 Feature representation

The features described are of two fundamentally different types: global features
and local position specific features. The global features are characterized by
consisting of one or more values for each protein—but always the same number
of values. Examples of global features included are all the properties calculated
by the ExPASy ProtParam program. After normalization, these features can be
used as input to neural networks.

The reason for normalizing the data is, that the values representing different
features can differ by orders of magnitude. Experience shows that such large
differences often give rise to numerical difficulties when training neural networks
by backpropagation. This is avoided by normalizing all values to the same scale.
With the exception the PSORT probabilities which are already on the right scale,
we converted all values to Z-scores, i.e. subtracted the mean value and divided
by the standard deviation. For features related to the sequence length this was
preceded by a log-transformation.

Position specific features, in contrast to global features, consist of one or more
values per residue. Consequently, the number of values will vary with the sequence
length and cannot be used directly as input to neural networks, as they require
a fixed number of inputs. It is important to find a good way to encode this type
of features as there are many of them. Examples include all the glycosylations,
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phosphorylations and structure related features.

4.7.1 Encoding positional information

In order to preserve some positional information, the position specific features
were encoded as average values within a number of bins representing different
parts of the sequence. Several binning schemes were tested. The simplest was to
simply divide the sequence into a number of evenly sized bins—we call this dy-
namic bins. The main drawback of dynamic is that a bin does not represent the
same amount of sequence for all proteins. In an alternative approach called fixed
bins, a number of bins of fixed size are located along the sequence with equal dis-
tance between their centers. The size of the bins is such that for all but the longest
sequences the bins are overlapping, thus covering the complete sequence. Using
this scheme a bin always represent the same amount of sequence—the price paid
is that a residue can be part of more than one bin. Finally a composite scheme
was tried where a fixed size bin was located at either end of the sequence and the
remainder of the sequences was put into dynamic bins. This was motivated from
the knowledge that the ends of sequences often convey special information, e.g.
signal peptides and GPI anchors.

4.7.2 The choice of feature of representations

Encoding of the global features is as mentioned not a big problem, and the final
representations were decided based by careful considerations rather than exper-
imentation. Many features were simply subjected to a linear transformation to
normalize them to a proper interval. Features with very skewed distributions,
e.g. number of positively and negatively charged residues, were log-transformed
first (see Table 4.2).

The representation of the SignalP feature deserved special attention. The
SignalP predictor does not output one but four different scores for judging if a
sequence starts with a signal peptide or not. The two most indicative of these
(the meanS and maxY scores) were included in the representation leaving it
to the ProtFun neural networks to join them into one prediction. Also the log
transformed position of the maxY score was included as an indicator of the length
of the possible signal peptide.

It is not at all obvious which of the binning schemes to use to encode each
of the various positional features. Neural networks were thus trained for each
positional feature individually to find the best representation. As it is also im-
portant to keep the dimensionality of each feature down to allow more features to
be combined later on, the choice of feature encoding was often a tradeoff between
high individual feature performance and low feature complexity. For this reason
the final choices were largely subjective (see Table 4.2), but could instead have
been made based on a minimal description length criterion.
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Table 4.2: Encoding of the individual features. For each feature is listed the abbreviation
of the feature, the encoding scheme used, and a brief description of the feature.

Abbreviation Encoding Description

EC single value Extinction coefficient predicted by ExPASy ProtParam
GRAVY single value Hydrophobicity predicted by ExPASy ProtParam
Nneg single value Number of negatively charged residues counted by

ExPASy ProtParam
Npos single value Number of positively charged residues counted by

ExPASy ProtParam
Nglyc potential in 5 bins N-glycosylation sites predicted by NetNGlyc
Oglyc potential-threshold GalNAc O-glycosylations predicted by NetOGlyc

in 10 bins
PEST fraction in 10 bins PEST rich regions identified by PESTfind
PhosST potential in 10 bins Ser and Thr phosporylations predicted by NetPhos
PhosY potential in 10 bins Tyr phosporylations predicted by NetPhos
PSI-Pred helix, sheet, and coil Predicted secondary structure from PSI-Pred

in 5 bins
PSORT 20 probabilities Subcellular location predtions by PSORT
SEG fraction in 5 bins Low complexity regions masked by SEG filter
SignalP meanS, maxY, and Signal peptide predictions made by SignalP

log(cleavage position)
TMHMM inside, outside, and Transmembrane helix predictions made by TMHMM

membrane in 5 bins

4.8 Developing the prediction method

At this point, a labeled data set, split into test and training sets, has been cre-
ated for each cellular role and enzyme category. A wide range of predicted or
calculated proteins as well as their representations are also in place. All is ready
for developing the actual prediction method.

4.8.1 Individual neural network training

In the development of ProtFun, all neural networks were trained using the back-
propagation algorithm (Werbos, 1974; Parker, 1982; Rumelhart et al., 1986) to
minimize the squared error function. For finding the best networks, the Pearson
correlation coefficient on the test set has been used consistently as the measure
for neural network performance. This may appear as strange, since most peo-
ple would prefer to use Mathews correlation coefficient (Mathews, 1975) for such
classification problems. The main reasoning for this is, that the Pearson corre-
lation coefficient fluctuates much less during training than Mathews correlation
coefficient, which makes the feature selection procedure described next more ro-
bust. Also, I will argue that the Pearson correlation is appropriate when the final
predictions are to be probabilistic rather than discretized.

4.8.2 Optimization of feature combinations and network
architecture

The first strategy attempted to find the best feature combination for each func-
tional class was, to initially train a neural network for each class and subsequently
prune it to remove features not contributing to the performance. However, this
approach proved to not be possible due to the large number of sequence derived
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features. The neural networks could simply not generalize to the test set at all,
as the input space was of too high dimensionality compared to the number of
training examples. There were thus no networks to prune.

It was also not possibly to simply try out all possible combinations of features,
as this would give rise to a combinatorial explosion in the number of networks
that should be trained. Instead we opted for a bootstrap approach, in which
networks were initially trained for each individual feature, the best of which were
subsequently combined to form larger and larger feature combinations.

The traditional way to do this would be to use a greedy search algorithm
for selecting the features to include. Here, we instead choose to use the greedy
algorithm for selecting features to exclude. Given a finite number of features,
specifying which features not to be included is obviously just as good as specifying
which ones to include. The motivation for doing it this way was that, due to cross
correlations between features, there were not always features that clearly would be
a part of the optimal feature combination. Yet, there were always some features
that showed no correlation at all to the functional class in question.

Briefly, our feature selection algorithm works as follows: First neural networks
are trained for each of the individual features. Judging from the maximal test set
Pearson correlation coefficient, the best nine features are selected and networks
are trained for all pairwise combinations of these. Each feature is assigned the
correlation coefficient of the best combination it is involved in, and best eight
features are retained. For these, all combinations of three features are used as
input for neural networks and the worst feature is again discarded, leaving seven
features. All combinations of 4 to 7 of these were then tested.

The five best feature combinations encountered during the training procedure
were noted. For each of these, the number of units in the hidden layer was
varied in steps of 10, to find an approximate optimum, again maximizing the
test set Pearson correlation coefficient. The resulting feature usages and network
architectures for cellular role and enzyme categories are listed in Table 4.3.

4.8.3 Estimating probabilities neural network outputs

The many very different neural networks used present a problem: the output
scores of such neural networks follow different distributions, reflecting that the
outputs from different networks are incomparable. This makes simple averaging
of the network ensemble dangerous as well as making interpretation of the scores
for different functional classes difficult.

To my knowledge, the solution that I came up with is novel although it should
be applicable to a wide range of such problems. Based on the test set output scores
of each neural network, Gaussian kernel density estimates were made of the score
distributions for positive and negative examples. These probability densities are
for a given neural network denoted fpos(x) and fneg(x). From these it is possible
to estimate the probability that an example is positive given a network output x:

P (x) =
Nposfpos(x)

Nposfpos(x) +Nnegfneg(x)
,

where Npos and Nneg are the number of positive and negative examples in our
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labeled data set, specifying for the prior probability of a positive example.
Having estimated P (x) for a neural network, this function can now be used

to normalize the raw output scores from the network to P-values, which are com-
parable both within and across categories. In the final output of the method, the
P-values of the networks in each ensemble are averaged to estimate the probability
for each cellular role and enzyme class.
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Table 4.3: Architecture and feature usage of the individual neural networks used for
prediction of cellular role and enzyme categories by the ProtFun server. All five
neural networks in each ensemble are listed with their number of hidden neurons (H) and input
features. Refer to Table 4.2 on page 55 for feature abbreviations.

Category H Input features

Amino acid 30 EC, PSI-Pred, PSORT, TMHMM
biosynthesis 30 EC, PSI-Pred, TMHMM

30 EC, netOglyc, PSI-Pred, PSORT
30 GRAVY, PSI-Pred, PSORT
30 Oglyc, PSI-Pred, PSORT

Biosynthesis 50 GRAVY, PEST, PSORT, TMHMM
of cofactors 50 EC, PSI-Pred, PSORT, SEG

30 EC, PSI-Pred, PSORT, TMHMM
30 GRAVY, PSI-Pred, PSORT, SEG
40 EC, PSI-Pred, PSORT, SEG

Cell envelope 40 SignalP, TMHMM
40 Nglyc, PSORT, SignalP, TMHMM
30 Nglyc, PSI-Pred, PSORT, SignalP

TMHMM
30 PSORT, SignalP, TMHMM
30 PSI-Pred, PSORT, SignalP, TMHMM

Cellular 30 GRAVY, Nglyc, PSORT, SEG
processes 30 GRAVY, PhosST, PSI-Pred

30 PhosST, PEST, PSORT, SEG
30 PEST, PSORT, SEG
30 PSORT, SEG

Central 50 EC, Nneg, Npos, PSI-Pred, PSORT,
intermediary TMHMM
metabolism 30 Nneg, Npos, PSI-Pred, PSORT,

TMHMM
30 Nneg, Npos, PSI-Pred, TMHMM
30 EC, PSI-Pred, PSORT
30 Nneg, Npos, PSI-Pred

Energy 10 EC, PhosST, PhosY, PEST, PSORT,
metabolism SignalP

40 EC, PhosST, PhosY, PSORT,
SignalP

50 EC, PEST, PSORT, SignalP
30 PhosY, PEST, PSORT, SignalP
30 PEST, PSORT, SignalP

Fatty acid 30 GRAVY, PhosST, PEST, SignalP
metabolism 30 GRAVY, SEG, SignalP

30 GRAVY, PEST, SEG, SignalP
30 GRAVY, SEG
30 PEST, PSI-Pred, SEG, SignalP

Purines and 10 GRAVY, Nneg, Npos, PSORT
pyrimidines 40 GRAVY, Nneg, TMHMM

20 GRAVY, Nneg, Npos, TMHMM
30 GRAVY, Nneg, Npos, PSORT
30 EC, GRAVY, Nneg, TMHMM

Regulatory 30 PhosST, PhosY, PEST, PSORT
functions 30 Oglyc, Nglyc, PEST, PSORT

30 Oglyc, PhosST, PhosY, PEST,
PSORT

30 Npos, Nglyc, PEST, PSORT
40 PEST, PSORT

Replication 30 Oglyc, Nglyc, PSORT, TMHMM
and 30 Oglyc, PSORT,
transcription 30 Oglyc, PSORT, TMHMM,

30 Nglyc, PSORT, TMHMM,
30 GRAVY, Nglyc, PSORT, TMHMM

Category H Input features

Translation 30 PhosY, Nglyc, PEST, SignalP
30 Oglyc, PEST, SignalP
30 Oglyc, PhosY, Nglyc, SignalP
10 Oglyc, PEST, SignalP, TMHMM
10 PhosY, Nglyc, PEST, SignalP

Transport 40 EC, Nglyc, PSORT, SignalP
and 30 Npos, PSORT
binding 40 EC, GRAVY, Nglyc, PSORT,

SignalP
30 GRAVY, Nglyc, PSORT, SignalP
30 EC, PSORT

Enzyme/ 40 EC, Nneg, Npos, PSORT, TMHMM
non-enzyme 40 EC, Npos, PhosY, PSI-PRED, PSORT

10 EC, Nneg, PSORT
10 EC, Nneg, Npos, PSORT
40 EC, PSORT, TMHMM

Oxireductase 10 EC, Oglyc, PEST, PSORT, SignalP
30 EC, Oglyc, PSORT, SignalP
30 EC, GRAVY, PhosY, PEST, PSORT
50 EC, PhosY, PEST, PSORT, SignalP
40 EC, Oglyc, PSORT, SignalP

Transferase 50 Nneg, Nglyc, PSORT, TMHMM
30 Nneg, PhosY, PSORT, SEG
30 Nneg, Nglyc, PSORT, SEG
20 Nneg, phosY, PSORT
50 EC, Nneg, PhosY, PSORT, TMHMM

Hydrolase 50 EC, GRAVY, PSI-PRED, PSORT,
SignalP, TMHMM

30 EC, Nneg, PSI-PRED, TMHMM
20 EC, GRAVY, PSI-PRED, SignalP
30 EC, GRAVY, PSI-PRED, TMHMM
50 EC, PSORT, SignalP, TMHMM

Lyase 50 GRAVY, Nneg, PhosST, Nglyc,
TMHMM

30 Nglyc, PSORT, TMHMM
50 Nneg, Npos, PhosST, PSORT, TMHMM
30 GRAVY, Nneg, PhosST, Nglyc,

PSORT, TMHMM
30 GRAVY, Nneg, Nglyc, PSORT, TMHMM

Isomerase 30 Nneg, Npos, PSI-PRED, SEG, TMHMM
30 Nneg, PEST, PSI-PRED, TMHMM
30 Nneg, PEST, PSI-PRED, SEG
30 EC, Nneg, PSI-PRED
30 EC, Npos, PEST, PSI-PRED, TMHMM

Ligase 30 Nneg PSI-PRED, PSORT
30 PEST, PSI-PRED, PSORT, TMHMM
10 Nneg, PSI-PRED, SignalP, TMHMM
30 EC, GRAVY, Nneg, PSI-PRED
30 GRAVY, Nneg, PSI-PRED
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We have developed an entirely sequence-based method which identifies
and integrates relevant features that can be used to assign proteins of
unknown function to functional classes, and for enzymes enzyme cate-
gories. We show that strategies for the elucidation of protein function
may benefit from a number of functional attributes which are more di-
rectly related to the linear sequence of amino acids—and hence easier
to predict—than protein structure. These attributes include features
associated with post-translational modifications and protein sorting,
but also much simpler aspects such as the length, isoelectric point and
composition of the polypeptide chain.
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Introduction

Out of the 30,000 to 45,000 genes believed to be present in the human genome no
more than 40-60% can be assigned a functional role based on homology to proteins
with known function (Int. Human Genome Sequencing Consortium, 2001; Venter
et al., 2001). Traditionally, protein function has been related directly to the three-
dimensional structure of the poly-peptide chain, which currently, for an arbitrary
sequence, is quite hard to compute (Lesk et al., 2001). The method presented here
operates in the “feature” space of all sequences, and is therefore complementary
to methods which are based on alignment and the inherent, position-by-position
quantification of similarity between two sequences. The method does not require
knowledge of gene expression (Eisen et al., 1998), gene fusion and/or phylogenetic
profiles (Marcotte et al., 1999b,a; Hughes et al., 2000a; Pellegrini et al., 1999).
Although the latter type of method does not rely on finding direct matches to
proteins of known function, it does require sequence similarity to other candidates
that can be phylogenetically linked to a protein of known function.

For any function assignment method, the ability to correctly predict the rela-
tionship depends strongly on the function classification scheme used. One would
for example not expect that a method based on co-regulation will work well for a
category like “enzyme”, since enzymes and the genes coding for their substrates
or substrate transporters often may display strong co-regulation. A similar argu-
ment holds true for the phylogenetic profile method.

Our approach to function prediction is based on the fact that a protein is
not alone when performing its biological task. It will have to operate using the
same cellular machinery for modification and sorting as all the other proteins do.
Essential types of post-translational modifications (PTMs) include: N- and O-
glycosylation, (S/T/Y) phosphorylation, and cleavage of N-terminal signal pep-
tides controlling the entry to the secretory pathway, but hundreds of other types
of modifications exist (Garavelli et al., 2001) (a subset of these will be present in
any given organism). Many of the PTMs are enabled by local consensus sequence
motifs, while others are characterized by more complex patterns of correlation
between the amino acids (Blom et al., 1999).

This suggests an alternative approach for function prediction, as one may
expect that proteins performing similar functions would share some attributes
even though they are not at all related at the global level of primary structure. As
several predictive methods for PTMs have been constructed (Blom et al., 1999;
Hansen et al., 1998; Nielsen et al., 1999; Nakai and Horton, 1999), a function
prediction method based on such attributes can be applied to all proteins where
the sequence is known.

Results and discussion

The ProtFun method described here integrates (using a neural network approach)
14 individual attribute predictions and calculated sequence statistics (out of more
than 25 tested for discriminative value). The integrated method predicts func-
tional categories as defined originally by Riley for E. coli, that in modified form
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has been used to describe many entire genomes in recent publications (Int. Hu-
man Genome Sequencing Consortium, 2001; Venter et al., 2001; Riley, 1993; Fleis-
chmann et al., 1995). In addition, it predicts whether a sequence is likely to
function as an enzyme, and if so, its category according to the classes defined by
the Enzyme Commission (Enzyme Nomenclature, 1965, 1992). The same scheme
can be used to predict any other set of functional classes including more narrowly
defined class ones. We have applied the approach to for instance specifically iden-
tify hormones, receptors and ion channels in the human genome as defined by the
Gene Ontology Consortium (Ashburner et al., 2000).

We have used combinations of attributes in a collection of neural network
ensembles for predicting the functional category of a protein. Combinations of
attributes were selected by evaluating their discriminative value for a specific func-
tional category, say proteins involved in transcription. Attributes useful function
prediction must not only correlate well with the functional classification scheme,
but must also be predictable from sequence with reasonable accuracy.

Interestingly, the combinations of attributes selected for a given category also
implicitly characterize a particular functional class in an entirely new way. The
method identifies without any a priori ranking of their importance, the biological
features relevant for a particular type of functionality, see Figure 4.4. It appears
that the use of post-translational modifications (PTMs) is essential for the predic-
tion of several functional classes. In addition to attributes related to subcellular
location the most important features for predicting if a protein is for example,
regulatory or not, are PTMs. Similarly PTMs are very important for correct
assignment of proteins related to the cell envelope, replication and transcription.

The fact that (predicted) PTMs correlate strongly with the functional cate-
gories fits well with biological knowledge. For example, predicted N-glycosylation
sites turn out to be important for prediction of cell envelope proteins. In fact, it
has been shown that removal of carbohydrates linked to asparagines from a pro-
tein normally targeted for the cell envelope retains it in the endoplasmic reticulum
(Chen and Colley, 2000).

For proteins with “regulatory function” two of the most important features
were S/T phosphorylation and Y-phosphorylation, respectively (Figure 4.4). It
is very satisfying that this correlation was found by the neural networks when
considering that reversible phosphorylation is a well known and widely used reg-
ulatory mechanism (Cohen, 2000). Glycosylation was also found to be a strong
indicator for regulatory proteins. This is true for both N-glycosylation and O-
GalNAc (mucin type) glycosylation of serine and threonine residues. For these
proteins, two additional features had significant predictive value: The predicted
subcellular location, and PEST regions (rich in proline, glutamic acid, serine, and
threonine residues), where the latter targets proteins for degradation. Again, it
makes sense that proteins involved in fast regulatory mechanisms should be de-
graded quickly (Rechsteiner and Rogers, 1996).

In order to understand further how PTMs correlate with the functional cat-
egories, we investigated the effect of alternative representations of the PTM at-
tributes. For example, when phosphorylation of serine and threonine residues
were encoded as two separate features the result was a slightly reduced predictive
performance. Joining all three types of phosphorylation (S/T/Y) into one single
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Amino acid biosynthesis

Biosynthesis of cofactors

Cell envelope

Cellular processes

Central intermediary
metabolism

Energy metabolism

Fatty acid metabolism

Purines and pyrimidines

Regulatory functions

Replication and
transcription
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Figure 4.4: The discriminative impact of features for the different functional cat-
egories and enzyme classes. The figure shows how often a given feature (out of the 14
retained) was included in the five network ensemble performing the classification for a given
category and thus it importance. The retained feature predicting methods were: NetNG-
lyc (Ramneek Gupta, unpublished results), NetOGlyc (Hansen et al., 1998), NetPhos (Blom
et al., 1999), PEST regions (Rechsteiner and Rogers, 1996), PSIPRED (Jones, 1999), SEG filter
(Wootton, 1994a), SignalP (Nielsen et al., 1999), PSORT (Nakai and Horton, 1999), TMHMM
(Krogh et al., 2001). In addition, a number of calculated features were retained: extinction
coefficient, grand average hydrophobicity, and the numbers of positively and negatively charged
residues. During the feature selection process 11 features were not retained due to their low dis-
criminatory value (or their correlation to other features retained): the amino acid composition,
the composition of residues predicted to be buried or exposed, the aliphatic index, instabil-
ity index, number of atoms, the net charge, the isoelectric point, predicted GlcNAc sites, the
sequence length, and predicted coiled coil regions.
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feature led to a much larger drop in performance. Again this makes biological
sense as serine and threonine residues are known often to be phosphorylated by
the same group of kinases, while tyrosine residues typically are phosphorylated
by different kinases.

The most important single feature for distinguishing between enzymes and
non-enzymes turned out to be protein secondary structure as predicted by
PSIPRED (Jones, 1999). This also makes sense, as enzymes are known to be
overrepresented among all-alpha proteins, and more rarely are found to be e.g.
all-beta proteins.

We also trained networks for predicting the enzyme subclasses. Although
these networks were trained specifically to discriminate between a given enzyme
subclass and all other enzyme subclasses, they implicitly make an enzyme/non-
enzyme prediction as well. The enzyme class predictions can thus be used as
additional support for the predictions made by the enzyme/non-enzyme networks.

Quantitative description of the ProtFun predictive perfor-
mance

The selection of category-relevant attributes is based on quantitative assessment
of the ability to predict (assign) categories for new sequences non-similar to the
sequences used to train the method (see below). Figure 4.5 shows how the Prot-
Fun method fairs for the prediction of functional and enzyme categories in terms
of sensitivity and the level of false positives. When the sensitivity is below 40%,
the level of false positive predictions is very low. The confidence in the predic-
tions can be used directly to sift out those predictions which almost certainly are
correct. The way the probabilities are estimated gives rise to an almost linear
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Figure 4.5: The predictive performance shown as sensitivity vs. false positive rate for
cellular role and enzyme categories. The plot was constructed from results obtained for the
independent test set, and corresponds to the expected performance for novel, uncharacterized
proteins. For a given category, e.g. transport and binding a sensitivity of 90% can be archived
with false positive rate of 10% corresponding to 90% correct prediction on both categories.
Random performance would correspond to a line along the diagonal.
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relationship between the probability threshold used and the false positive rate.
For a given probability threshold, the rate of false positives is essentially 1 minus
the threshold. The best performance values are comparable to the upper limits
estimated from the consistency in the assignment of the SWISS-PROT keywords
(Devos and Valencia, 2000).

Relation to the linguistic analysis of SWISS-PROT entries

The classification into functional categories is based on linguistic analysis and
clustering of SWISS-PROT keywords by the EUCLID method (Blaschke et al.,
1999; Tamames et al., 1998). The EUCLID method computes scores for placing
a protein into each of the 14 categories (Riley, 1993; Andrade et al., 1999b). The
classification is not mutually exclusive, i.e. a protein sequence may have scores
high enough to be placed into two or more categories.

In general we found a strong relation between the prediction quality of EU-
CLID and ProtFun. This should not come as a surprise considering that the
quality of prediction from EUCLID determines the quality of the data set on
which ProtFun was trained. Two of the worst categories are “cellular processes”
and “central intermediary metabolism” which are both very loosely defined—
especially the former in which many different functions ranging from cell division
to chaperones and detoxification are included.

One noticeable exception from this rule is the class of regulatory proteins.
Because the class of regulatory proteins tends to overlap other categories a lot,
these proteins are hard to categorize correctly by EUCLID. However, this has not
been a problem for ProtFun which allows a protein to belong to more than one
category. Indeed regulatory proteins are one of the best predicted categories.

Functional characterization of the complete human genome

Using ProtFun it is possible to estimate the breakdown on functional categories
of the entire human genome. Ideally a data set with all proteins encoded by
the human genome should be used. As no final and highly reliable set is yet
available, we have used the database of confirmed sequences made available by
the Ensembl initiative (Birney et al., 2001). This database consists of ∼27,000
protein sequences from the human genome, all of which are supported by EST
matches. One should be aware that this database is likely to have a bias towards
highly expressed proteins. Using the predicted probability for each category, the
number of proteins in each category was subsequently estimated by summing over
the probability of the category in question for every protein (Figure 4.6). The
functional breakdowns in the human genome publications (Int. Human Genome
Sequencing Consortium, 2001; Venter et al., 2001) are based on function assigned
by sequence similarity and are therefore based on approximately 50-70% of the
genes (depending on the gene number). Direct comparison to what we predict
is also made difficult by the fact that different classification systems are used
in the two articles. The most striking difference from the Venter et al. (2001)
paper is that we predict a much larger fraction of the proteins to be enzymes,
while the distributions over enzyme subcategories agree quite well. Part of the
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Amino acid biosynthesis: 3.3 %
Biosynthesis of cofactors: 6.8 %

Cell envelope: 18.6 %

Cellular processes: 2.7 %

Central intermediary metabolism: 6.9 %

Energy metabolism: 7.2 %
Fatty acid metabolism: 1.3 %Purines and pyrimidines: 16.2 %

Regulatory functions: 5.2 %

Replication and 
transcription:  9.3 %

Translation: 5.6 %

Transport and binding: 16.8 %

Oxireductases:  8.6 %

Transferases: 13.1 %

Hydrolases: 10.9 %

Lyases: 3.6 %

Isomerases: 1.6 %

Ligases: 3.5 %

Nonenzyme: 58.7 %

Figure 4.6: Statistics for the human genome based on the Ensembl gene set (Birney
et al., 2001). From the probabilistic ProtFun output, the number of proteins belonging
to a given category was estimated by summing over all 27,000 sequences. The most striking
difference from the Venter et al. (2001) paper is that a larger fraction of the proteins is predicted
to be enzymes, while the distributions over enzyme subcategories agree quite well.

explanation for the enzyme bias can be that the complete Ensembl data set
(Birney et al., 2001) may have a bias towards highly expressed proteins. We
also investigated the spread of functionally related proteins across the different
chromosomes (data can be found at the ProtFun WWW site). Among several
interesting observations (for example that endoplasmic and Golgi proteins are
highly abundant at chromosome 6), was the fact that chromosome 11 seems to
contain many uncharacterized proteins (belonging to other categories), which falls
outside the classification used in this study.
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Individual sequence prediction

The ProtFun method is perhaps best suited for obtaining functional hints for
individual sequences for later use in assay selection and design. The first ex-
ample shown here relates to the human prion sequence (ACC PRIO HUMAN)
which is being associated with the Creutzfelt-Jacobs syndrome. The functionality
of this protein, which seems to produce no phenotype when knocked out in mice
(Collinge et al., 1995), is still not fully understood. The ProtFun method predicts
with high confidence that the human prion sequence belongs to the transport and
binding category, and also that it is very unlikely to be an enzyme (Table 4.4).
Indeed prions have been shown to be able to bind and transport copper while
no catalytic activity has ever been observed (Brown et al., 1997; Brown, 2001).
Interestingly, as the prion is a cell surface glyco-protein (expressed by neurons)
it has a distinct pattern of post-translational modification, which most likely
contain information which can be exploited by the system for functional infer-
ence. Incidentally, the cell envelope category is the third highest scoring category
for the prion sequence. The purine/pyrimidine class is second, however no ex-
perimental evidence supports this functionality. Functional information was not

Table 4.4: ProtFun output for the human prion (PRIO HUMAN P04156) and for an inter-
acting pair of proteins, the amyloid A4 protein (A4 HUMAN P05067; P09000; Q16011) and
transthyretin (TTHY HUMAN P02766), which at the sequence level are entirely unrelated.
Both of these proteins are with high confidence predicted to be cell envelope related as well as
transport and binding proteins in agreement with the known functionality of these proteins.

Prion A4 TTHY

Amino acid biosynthesis 0.011 0.011 0.011
Biosynthesis of cofactors 0.041 0.161 0.034
Cell envelope 0.146 0.804 0.698
Cellular processes 0.027 0.027 0.051
Central intermediary metabolism 0.047 0.139 0.059
Energy metabolism 0.029 0.023 0.046
Fatty acid metabolism 0.017 0.017 0.023
Purines and pyrimidines 0.528 0.417 0.153
Regulatory functions 0.013 0.014 0.014
Replication and transcription 0.020 0.029 0.040
Translation 0.035 0.027 0.032
Transport and binding 0.831 0.827 0.812

Enzyme 0.233 0.367 0.227
Nonenzyme 0.767 0.633 0.773

Oxidoreductase (EC 1.-.-.-) 0.070 0.024 0.055
Transferase (EC 2.-.-.-) 0.031 0.208 0.037
Hydrolase (EC 3.-.-.-) 0.101 0.090 0.208
Lyase (EC 4.-.-.-) 0.020 0.020 0.020
Isomerase (EC 5.-.-.-) 0.010 0.010 0.010
Ligase (EC 6.-.-.-) 0.017 0.078 0.017



Paper II: Prediction of human protein function 67

transferred by sequence similarity from the nearest neighbor, as the maximal
similarity between the prion sequence and the data set (training and test) is
14.8% to proline-arginine-rich end leucine-rich repeat protein (PARG HUMAN
P02766). We believe that predictions like these are very useful when resolving
protein function, because they can be used to generate specific hypotheses and
direct laboratory experiments.

Using function prediction in conjunction with protein–

protein interactions data

The method is also relevant for obtaining additional evidence on protein-protein
interactions, where database information may contain many false negatives (as
not all possible interactions have been screened). We did, as an example, predict
the function of both sequences in all interaction partners found in the Database
of Interacting Proteins (DIP) (Xenarios et al., 2001). If the functional categories
of the interacting proteins are predicted to be the same for otherwise unrelated
sequences, that should increase the likelihood of the prediction being correct
(as well as the validity of the interaction). Others have successfully employed
a similar approach based on subcellular localizations to lower the rate of false
positives on yeast two-hybrid data (Schwikowski et al., 2000).

An interesting example of such an interacting protein-pair is the Alzheimer’s
disease amyloid A4 protein and transthyretin, which at the sequence level are
entirely unrelated. Both of these proteins are with high confidence predicted to
be cell envelope related as well as transport and binding proteins, see Table 4.4.
Amyloid A4, a neural receptor, and transthyretin a thyroid hormone binding
protein believed to transport thyroxine into the brain, have functionalities which
are in full agreement with the prediction. The two sequences have a maximal
similarity to the data set of 12.4% (to Citrate synthase (CISY HUMAN O75390)).

When evaluating the functional category profiles for all interacting pairs in
DIP (vs. non-interacting pairs) we found that interacting pairs indeed more often
tend to have the same functional categorization (data not shown). However, while
interacting non-enzymes in many cases will have the same functional role (belong
to the same pathway), it may be more typical for enzyme-substrate pairs to belong
to different categories.

Conclusion

The method presented here has the ability to transfer functional information be-
tween sequences which are far apart in sequence space. Not even the primary
structures of the individual features (which are integrated by the method) need
to be alike, or be related by evolution. The ProtFun method performs its non-
linear classification in the feature space defined by 14 predicted and calculated
attributes, which have been selected by the approach (out of more than 25 differ-
ent attributes considered initially for discriminative value). The mapping between
the space of all sequences and this feature space is also highly non-linear as very
different sequences, by the individual feature predictors, may be converted to the
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same patterns of, for example, posttranslational modification or secondary struc-
ture. This paper demonstrates that it is indeed possible to transfer functional
information from the knowledgebase accumulated by experimental biology, even
to proteins which are completely isolated in sequence space.

WWW server

Correspondence and requests for materials should be addressed to
brunak@cbs.dtu.dk. The ProtFun method is made available online at the
URL http://www.cbs.dtu.dk/services/ProtFun/.

Materials and methods

Data sets and functional class assignment

Classes of cellular function were defined after the 14 class classification originally
proposed by M. Riley for the E. coli genome (Riley, 1993) and later extended by
the TIGR group. The automatic class assignment to sequences was made by an
extension of the EUCLID system performing linguistic analysis of SWISS-PROT
keywords (Tamames et al., 1998). The system detects sequences similar to a query
sequence by a BLAST search in the SWISS-PROT database and extracts common
keywords from the entries. As we work with sequences from SWISS-PROT (with
known function) we used the keywords directly and include no alignment step.
For each functional class the informative weight (Z-score) of each keyword was
extracted from a dictionary (Tamames et al., 1998). For each sequence a keyword
sum leads to scores for the 14 classes.

The central point of the EUCLID system is the dictionary. The primary
version of this dictionary was generated from an initial set of carefully, hand an-
notated proteins from different organisms spanning every kingdom of life. From
this initial set, a first dictionary was defined which was used to assign all SWISS-
PROT proteins and the process of dictionary definition and assignment was reit-
erated until convergence.

This final dictionary was used to assign functional classes to around 5,500
human proteins from SWISS-PROT. In the selection we omitted SWISS-PROT
sequences representing fragments and hypothetical proteins and therefore the
“high-quality” subset is smaller that the entire set of human proteins in this
database.

The values obtained from the method were then compared to two thresholds:
If the score for a category was above 3 it was considered a positive example while
examples with a score below 0 were used as negative examples. Examples scoring
between 0 and 3 were considered unclear and were thus not used. By labeling our
data set this way we eliminate the most uncertain functional annotations thereby
improving the quality of our data set. The composition of the data set obtained
is shown in Table 4.5.



Paper II: Prediction of human protein function 69

Table 4.5: The number of sequences included in the data sets when training networks
for the various categories.

Category Pos. Neg.

Amino acid biosynthesis 85 3691
Biosynthesis of cofactors 240 2964
Cell envelope 173 2599
Cellular processes 259 3339
Central intermediary metabolism 216 3127
Energy metabolism.id 330 3310
Fatty acid metabolism 53 3846
Purines and pyrimidines 535 1649
Regulatory functions 586 3037
Replication and transcription 746 2591
Translation 174 3677
Transport and binding 1461 2126

Enzyme 1620 4038
Oxidoreductase 319 1213
Transferase 529 1003
Hydrolase 485 1047
Lyase 72 1460
Isomerase 49 1483
Ligase 78 1454

Enzyme class assignment

SWISS-PROT provides enzyme class information for most enzymes in the “DE”
field. For those without an EC assignment, the suffix “ASE” and the presence (or
absence) of the words “INHIBITOR” and “PRECURSOR” were additional con-
siderations when assigning proteins into the categories “Enzyme”, “Non-enzyme”
or “Neither”. The “Neither” category comprised ambiguous cases which were
excluded from training. For the six enzyme classes only proteins with EC assign-
ments were used. The negative set for each class contained enzymes assigned to
other enzyme classes.

Similarity screening of test sets vs. training sets

To generate a training set A, and a test set B, in which the similarity between
the two sets were minimal, the following heuristic algorithm was used: A sim-
ilarity measure D(a, b) between all pairs of sequences (a, b) in the original set
was calculated using the Smith-Waterman score for the optimal local align-
ment between each sequence pair. A similarity measure H(A,B) was defined
as the sum of similarities between sequences in set A and sequences in set B.
H(A,B) = sum(D(a, b)|a ∈ A ∧ b ∈ B)

The algorithm for generating the two sets A and B started by having all
sequences in A. The algorithm selected a sequence x ∈ A that maximized the
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value H(A,B)−H(A|x,B ∩ x). New sequences were selected from A until set B
had the desired size.

Feature prediction and encoding

A number of different prediction methods were used as input features for the
method (see Figure 4.4). All the servers were run on all 5,500 sequences con-
stituting the training and test sets. The output was parsed and the scores ob-
tained from the different predication servers were normalized and/or converted
into probabilities.

Encoding positional feature information (e.g. phosphorylation sites) for pro-
teins of variable length is non-trivial. We tested a number of encoding schemes
for the positional information in the input to the neural networks. One ap-
proach was to divide each sequence into a number of equally sized bins, where
the bin size was dynamically calculated for each sequence. The most impor-
tant disadvantage of this approach is that each bin does not represent the same
number of residues for sequences of different length. An alternative method is
to define a fixed number of bins of fixed size. Because the sequences have dif-
ferent lengths this can result in overlapping bins and redundant information in
the encoding. For very long sequences the fixed size binning scheme gives rise
to gaps between the bins in which case the method will fail to encode all the
features fully. Finally a combined approach was tried with one fixed size bin
in either of the sequence and dynamic bins to encode the rest of the sequence.
Full details of the feature encoding can be found at the ProtFun WWW site
(http://www.cbs.dtu.dtk/services/ProtFun).

Each of these encodings were tested with different number of bins on all fea-
tures having positional information. The performance of each binning scheme
was evaluated by training a neural network on each feature separately. For each
feature the binning scheme that gave the highest test set correlation coefficients
across the different functional categories on most categories was chosen.

Feature combinations and network ensembles

Optimal combination of parameters for each of the different categories were
found using a boot-strap strategy. First, for every category a simple net-
work with one fully connected hidden layer was trained on each separate fea-
ture. Details can be found elsewhere (Brunak et al., 1991), while information
about specific network architectures can be found at the ProtFun www site
(http://www.cbs.dtu.dk/services/ProtFun). Based on the test set perfor-
mance of these networks we judged which features were potentially useful for
prediction of at least one category. Networks were then trained for every pair of
these features, to obtain information on the correlations between features. Many
networks using increasing numbers of these features were then trained, and the
best five were picked as an ensemble.

The output of these networks were subsequently transformed into probabilistic
scores. Based on the predictions performed by each network on the test set,
the network output distributions for positive (fpos(x)) and negative examples
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(fneg(x)) were estimated using Gaussian kernel density estimators on the output
activities with no squashing function applied. From these density estimates and
the number of the positive and negative examples (Npos and Nneg) the probability
that an example is positive (P (x)) can be calculated from the network output:

P (x) =
Nposfpos(x)

Nposfpos(x) +Nnegfneg(x)

To calculate the combined prediction of an ensemble of networks we simply take
the average of their probabilistic predictions. It is these values that are reported
by the method.

Chromosomal gene location

Chromosome locations for the human SWISS-PROT sequences were obtained
by web-linking through SWISS-PROT references to the OMIM database (On-
line Mendelian Inheritance in Man) maintained at NCBI (http://www3.ncbi.
nlm.nih.gov/Omim/). From OMIM, by further linking to LocusLink (http:
//www.ncbi.nlm.nih.gov/LocusLink/), one could obtain the chromosome num-
ber for the gene being considered. Not all proteins could be tracked down to
their chromosome number in this fashion. For the remaining sequences, BLAST-
ing them against the human genome database at NCBI revealed the chromosome
number in most cases.
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4.10 Caveats of ProtFun

4.10.1 Highly skewed distribution over cellular roles

The priors used for calculating the probability scores in the ProtFun and genome
wide predictions both show a very uneven distribution over the different cellular
role categories (see Paper II). In humans large numbers of proteins are believed
and predicted to be involved in transport and binding and regulatory functions
whereas a relatively small fraction of the proteins belong to the many categories
related metabolism (Liu and Rost, 2001). This is a bit unfortunate since it means
that transport and binding is a very broad category, thus predicting a protein to
belong to this category is not very informative.

This is a consequence of the system originally having been designed for
prokaryotes, more specifically for E. coli (Riley, 1993). For prokaryotes, in which
a much larger fraction of the genes is devoted to metabolism, the distribution
over cellular roles is much more even. The problems that EUCLID encounters
when sorting human proteins into cellular roles may also in part be explained by
the lack of a clear definitions of the categories for eukaryotes.

4.10.2 Labeling errors in the training data sets

Because of the sheer size of the data sets, the assignment of functional categories
to human protein sequences had to be done in an automated fashion. As has al-
ready been described in Chapter 1, it is difficult to extract functional information
from current databases where most of the information is present as free text.

The EUCLID method that we used for assignment of cellular roles thus relies
only on the SWISS-PROT keywords, which are a controlled vocabulary. Unfor-
tunately, these keywords often capture only part of the proteins function. It is
thus unavoidable that EUCLID will make some misclassifications on this basis.

A clear example of this from our training set is the BCL2 protein, which is
involved in the complex regulation of apoptosis. It should be assigned to the
regulatory functions category, but is in fact labeled as a negative example for
this category. Instead it is labeled as a positive example for both biosynthesis
of cofactors and purines and pyrimidines. The prediction made by ProtFun are
unfortunately consistent with the incorrect labeling.

It cannot be denied that these types of errors exist in the data set used for
training the neural networks predicting cellular role. However, given that the
categories are not clearly defined for eukaryotes, it is very difficult to assess how
much higher the error rate is than what would be expected by manual curation.
The accuracy of a manual curated data set would also depend on who did the
curation.

4.10.3 Biologically meaningful prediction errors

In some cases neural networks simply cannot learn certain examples, in which
case there is usually a good reason. One such example from our training set is
Protein Z, which is involved in hemostasis by binding thrombin. Based on the
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SWISS-PROT keywords, it has correctly been assigned as a transport and binding
protein which has also been learned by ProtFun.

The interesting part is, that while Protein Z is also correctly labeled as a
non-enzymatic, the neural networks insist on incorrectly predicting this training
example to be an enzyme. In fact, Protein Z is homologous with vitamin K-
dependent clotting factors which are enzymes. In the MEROPS database (Rawl-
ings et al., 2002), Protein Z is classified as a non-enzymatic member of peptidase
family S1A. It is thus for a good reason why Protein Z looks like an enzyme
according to ProtFun: it was an enzyme but has lost its enzymatic activity.

4.11 Good but far from perfect

At this point it is clear that ProtFun works well for predicting both cellular roles
and enzyme classes of human proteins. But although the predictions are good,
even the predictions with the highest confidence are too uncertain to be used
for annotation purposes. The predictions made by ProtFun should be considered
qualified guesses—hints telling what it looks like. However, proteins are not
always what they appear to be, which BCL2 is a good example of. The ProtFun
predictions should therefore always be considered putative functions which can
be used for guiding experimental work.



Chapter 5

A look into the black box

Having convinced ourselves that ProtFun indeed is capable of predicting protein
function far better than should be expected from a random expectation leads to
a new question: What rules have the neural networks learned, which allow them
to predict the function of proteins they have never been shown before? Neural
networks have often been accused of being “black boxes”, indicating that it is not
possible to understand how they work.

While it is certainly difficult to fully understand what a neural network has
learned, one should keep in mind that a neural network is nothing but a mathe-
matical function that is used to fit a given set of data—it is not black magic.

5.1 Known relations between protein properties

and protein function

The first approach taken to interpret the neural networks is to look at which
sequence derived features they make use of for predicting the different functional
categories. It is comforting to realize that many of the correlations between
protein features and protein function, discovered by our completely data driven
approach, are in fact supported by current biological knowledge.

5.1.1 Protein structure and function

Differences between the secondary structure composition of enzymes and non-
enzymes have previously been observed (Zhang and Zhang, 1999). Compared
to other proteins, a strikingly different content of secondary structure elements
have also been noted for proteases, which are subclass of hydrolases (Stawiski
et al., 2000). Both of these studies rely on secondary structure derived from the
three-dimensional protein structures in PDB.

There are two major differences between these two observations and our re-
sults. The first is that we work with predicted secondary structure, which allows
us to analyze a much larger (and hopefully less biased) data set. The downside
is that the predictions are not perfect. The second difference is that we take into
account the positional information of the secondary structure—not only the over-
all content. This should to a limited extent allow us to find correlations between
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protein fold classes and function.
We find that secondary structures play a quite important role for classification

of enzymes, whereas it appears to be of much more limited use for predicting
cellular roles. This observation is consistent, with the idea that structure is more
closely related to molecular function than to cellular role.

In addition to secondary structure, we have also made use of transmembrane
helix predictions, from which prediction of replication and transcription proteins
benefits greatly. This is a clear illustration that ProtFun makes use of not only
positive, but also negative evidence: very few if any transmembrane proteins are
involved in replication and transcription. Cell envelope is the only other cellular
role for which transmembrane helices play such an important role. Again this
makes biological sense as a large fraction of cell envelope proteins span the cell
membrane. One can in fact argue whether it is most reasonable to regard trans-
membrane helix prediction as a structural feature or a subcellular localization
feature, as proteins with transmembrane helices are restricted to membranes.

5.1.2 Different compartments serve different functions

Features representing subcellular localization of proteins appear to constitute
the overall most important single class of features. This is well supported by
our knowledge of organization of the eukaryotic cell—the different compartments
tend to serve different functions. Knowing (or predicting) where in the cell a
protein is localized can therefore give valuable clues to its function (Chou and
Elrod, 1999; Johnson, 2000; Bannai et al., 2002).

In the ProtFun method, we make use of several features for predicting subcel-
lular localization. In addition to prediction of transmembrane helices, which has
already been discussed, we make use of both predicted signal peptides, made by
SignalP, and the more general subcellular localization predictions by PSORT.

PSORT predicts a large number of different compartments, but with low
accuracy on particularly the minor localizations. Overall it gets 57% correct
(on a non-balanced data set) which, although far from perfect, is still very useful
(Nakai and Horton, 1999). The SignalP method predicts only two protein sorting
categories: proteins that have a signal peptide and those that do not. While
this gives a lot less information than PSORT, the advantage is that the quality
the predictions made by SignalP is much higher than that of PSORT (Nielsen
et al., 1999). The TargetP method included in later versions of ProtFun can be
thought of as an intermediate between SignalP and PSORT, as it predicts more
localizations than SignalP but fewer than PSORT (Emanuelsson et al., 2000).

While predictors that make use of sorting signals like N-terminal signal pep-
tides are closest related to and give most insight into the biology underlying
protein sorting, they are not without caveats. One objection has been raised by
several groups predicting subcellular localization based on amino acid or dipeptide
frequencies: given the accuracy of current gene finding algorithms, the N-terminal
sequence can easily be incorrectly predicted, causing methods relying on signal
peptide prediction to fail (Chou and Elrod, 1999; Hua and Sun, 2001). While this
is a valid point, I still favor the more “biological” methods over composition based
ones, in particular for protein function prediction purposes, where composition
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derived features are likely better used directly.

Due to different chemical characteristics of the various cell compartments,
differences are observed between the amino acid compositions of proteins from
different compartments. Given that it is the surface of a protein that interacts
with its environment, it is not surprising that the majority of such adaptations
involve the exposed residues (Andrade et al., 1998). Because of the current meth-
ods for prediction exposed residues mainly rely on amino acid propensities, the
predicted surface composition can just as well be encoded as the global composi-
tion. In our encoding, the protein surface composition would thus be represented
by features such as the number of positive/negative residues.

Perhaps the best example of a compartment serving a particular function are
the mitochondria. Although it does serve other purposes as well, the main purpose
of mitochondria is oxidative phosphorylation. As a result of this, essentially all
proteins imported into the mitochondria will be somehow involved in the energy
metabolism. Although this is the case, the reverse is not true: proteins from the
energy metabolism category also exist outside of the mitochondria. For which
reason a perfect predictor of mitochondrial proteins would not suffice for making
a perfect predictor of energy metabolism proteins.

There is thus firm support for using protein subcellular localization predictors
for predicting the function of proteins. The usefulness for function prediction was
actually a large part of the motivation behind the development of methods for
predicting protein localization (Chou and Elrod, 1999; Bannai et al., 2002).

5.1.3 Protein lifetime and protein degradation

As was mentioned in Chapter 4, the degradation of many proteins is a highly reg-
ulated process that takes place through several different pathways. Degradation
mediated by the ubiquitin–proteasome system is the best understood pathway for
regulated degradation of proteins. Proteins are tagged for destruction by becom-
ing polyubiquitinated and are then degraded by the huge proteasome complex.
Proteins can also become monoubiquitinated, although this does not result in the
protein being degraded. Instead it appears to be involved in membrane trafficking
at least in yeast (Pole et al., 2002).

One likely mechanism for initiating ubiquitin mediated degradation of pro-
teins is phosphorylation of PEST regions (Nakai, 2001). PEST regions are as
described earlier regions that are rich in proline, glutamic acid, serine and thre-
onine residues. Such regions contain many possible phosphorylation sites, and
there is evidence that once phosphorylated, these regions act as recognition sig-
nals for ubiquitin ligases that target the protein for subsequent degradation.

Consistent with this theory, PEST regions are often found in regulatory pro-
teins and other proteins with short life spans (Nakai, 2001). This trend was picked
up by ProtFun, which uses PEST regions as one of the most important features
for the prediction of regulatory proteins.
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5.1.4 Phosphorylation

As mentioned earlier, reversible phosphorylation of serines, threonines and ty-
rosines constitute possibly the most important regulatory mechanism, one which
is used for regulation of essentially all cellular processes (Cohen, 2000). This
provides a well supported biological explanation for the predictor of regulatory
functions to make use both predicted serine/threonine and tyrosine phosphory-
lation sites.

The biological relation between PEST regions an serine/threonine phospho-
rylation also seems to be reflected in the ProtFun feature usage, as all predictors
that include serine/threonine phosphorylation sites also include PEST regions.

5.1.5 Glycosylation

The by far most varied type of covalent modification of proteins is glycosylation
which happens either co- or post-translationally. Post-translational glycosylations
can play much the same kind of regulatory purposes as phosphorylation. In fact
one type of glycosylation, O-β-GlcNAc, is known in some cases to compete with
serine/threonine-phosphorylation for the same residues (so-called Yin-Yang sites),
allowing the two modifications to regulate protein function in a reciprocal fashion.

Unlike O-β-GlcNAc glycosylation which takes place in the cytoplasm, most
other forms of glycosylation take place in either the endoplasmic reticulum or the
Golgi. The two forms of glycosylation that we make use of in ProtFun are both
this type of “permanent” glycosylation and mainly target secreted and membrane
associated proteins. From a function prediction point of view they can thus be
thought of as complementing the subcellular localization predictions described
above. For a longer discussion of the relations between glycosylation and protein
function, refer to Paper III.
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Since the first bacterial genomes were completely sequenced, the surge in genome
sequence data has overwhelmed the scientific community’s efforts of elucidating
protein function. Computational methods have made it possible to work with
sequences from complete genomes and proteomes, and inference of protein func-
tion by exploiting direct sequence similarity indeed goes a long way in describing
a proteome’s functional capacity. However, at least 40% of the gene products in
newly sequenced genomes typically remain uncharacterized. Proteins without an
annotated function are also known as orphan proteins since they do not belong
to a functionally characterized protein family. Many sequences must therefore be
compared using their features rather than by direct comparison in the conven-
tional sequence space. Here we focus on one such feature—glycosylation—which
is common in eukaryotic proteomes.

Conventional assignment of protein function

Proteins can be characterized in different ways such as their cellular role (the bi-
ological process they are involved in, e.g. transcription), their molecular function
(e.g. ion transporter) or the cell cycle phase they are involved in. Protein func-
tion can thus be interpreted in various ways, but the “cellular role” descriptor
has traditionally been popular in a number of genome sequencing projects.

Since the majority of housekeeping proteins are similar amongst different or-
ganisms, it is convenient to use accumulated experimental knowledge to accelerate
the identification of new protein sequences. Structural and functional annotations
can be transferred from a sequence sufficiently similar to the query sequence. This
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process, also known as “transfer by homology”, has assigned function to most gene
products in newly sequenced genomes so far (Bork et al., 1998; Attwood, 2000; Il-
iopoulos et al., 2000; Eisenberg et al., 2000). Sequence similarity across complete
genomes has also been used to construct protein families (Tatusov et al., 1997).
The traditional paradigm that sequence determines structure which in turn de-
termines function, is still the most widespread technique for assigning function.
However:

• Proteins similar in sequence are not always analogous in function (Devos
and Valencia, 2000). Indeed, similar sequence need not even imply similar
protein structure.

• Transferring function from structural homologues is hampered by the slow
growth in the amount of new folds in structural protein databases. As of
early 2001, while the SWISS-PROT sequence database contains over 92,000
sequences, the highly redundant structural database PDB contains a little
over 14,000 structures in all. SWISS-PROT itself contains only a fifth of
the estimated proteins coded by the human genome using the widespread
estimate of around 40,000 genes.

• It still leaves a large fraction of unidentified proteins in a genome (Iliopou-
los et al., 2000; Rubin et al., 2000). More than 40-50% of proteins in
the eukaryotic genomes sequenced so far (Arabidopsis thaliana, Drosophila
melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae) bear no
direct sequence similarity to proteins in any other proteome (Rubin et al.,
2000; Initiative, 2000). Using GeneQuiz (Casari et al., 1996) to derive au-
tomated functional annotation by homology, in a study over 31 complete
genome sequences, functions could be predicted for 62% of the proteins on
average (Iliopoulos et al., 2000).

Non-homology based methods

Attempts have been made recently, to minimize the use of sequence similarity in
deducing function (Marcotte, 2000). Phylogenetic profiles may be used to assign
protein function by comparative genome analysis (Pellegrini et al., 1999). Another
method, the domain fusion method (Marcotte et al., 1999a; Enright et al., 1999),
also locates functionally related proteins, by analyzing patterns of domain fusion.
The fused protein may then reveal functional aspects of its components. A similar
method is one in which related proteins can be identified by being neighbors on a
chromosome (Tamames et al., 1997; Dandekar et al., 1998; Overbeek et al., 1999).
This is analogous to operon models in prokaryotic systems in which neighboring
genes are involved in collective metabolic regulation.

Yet another way of linking functionally related proteins across genomes, is to
associate a collection of genes to a phenotype (Huynen et al., 1998). The collection
is enriched from organisms that share the same phenotype, and filtered for genes
which occur in organisms which do not exhibit the phenotype. This selective
enrichment, or differential genome analysis, can also be used for attributing genes
to a functional cluster.
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All these methods are however, not strictly non-homologous or of the ab initio
type, since they rely to some degree on the presence of similar sequences, or on a
protein having a functional partner with known attributes. Performance of these
methods will increase with availability of more characterized protein sequences
or, as is the case for phylogenetic profiles, with more complete proteomes.

One promising approach is the use of gene expression data obtained from DNA
chip (or microarray) technology. Many coregulated genes have been found to be
functionally related (Eisen et al., 1998), which forms an important assumption to
a lot of microarray research. However, the degree and type of functional relation
is still an open question. As remarked in a recent article (Heyer et al., 1999),
functionally related genes need not be coexpressed, such as DNA repair genes
responding to different types of damage. Conversely, coregulated genes need not
be functionally related either since coregulation could just happen by chance if,
e.g. gene products are needed at the same phase of the cell cycle. This also leads
to the question of functional classification and clustering different gene products
into a single biologically meaningful category.

A recent application of support vector machines to cluster gene expression
data (Brown et al., 2000) could classify five functional classes with reasonable
success. There was pre-evidence that the gene products clustered into these
classes (Eisen et al., 1998). However, considering that only five classes could be
predicted from over 200 functional classes (the MIPS categorization1 was used),
the problem of protein classification and predicting classes from microarray data
remains a challenge.

Sequence-based identification in feature space

Our attempt at protein function prediction has been to use features inherent
to the protein sequence. The general idea is to predict the cellular role using
calculated global features such as molecular weight, sequence length, isoelectric
point, etc. as well as more indirect features such as the predicted presence of
potential glycosylation sites and of phosphorylation sites. This approach relies
on the fact that the sequence of a protein contains many signals and properties
relevant to processing by the subcellular machinery. Since all proteins in a cell
are subject to the same subcellular environment, proteins with similar properties
are likely to be processed and modified in a similar fashion (Jensen et al., 2002).

Apart from using these features ourselves, our main focus has been on se-
quence signals governing post-translational modifications of proteins. Proteins,
once synthesized in a cell, are subject to many types of post-translational modifi-
cations which influence protein function. Among several modifications (e.g. phos-
phorylation, glycosylation, methylation, acetylation), some may be more complex
than others and attribute a range of functional and structural properties to the
protein’s role in the cell.

Most post-translational modifications occur on well-defined residues in a pro-
tein, but usually without a consensus sequence. Such sequence signals (around
the acceptor sites) can be predicted with reasonable accuracy using methods such

1http://www.mips.biochem.mpg.de/proj/yeast/catalogues/funcat/index.html
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as artificial neural networks (Nielsen et al., 1997b; Hansen et al., 1998; Blom et al.,
1999; Gupta et al., 1999b) and hidden Markov models (Sonnhammer et al., 1998;
Nielsen and Krogh, 1998).

In our work on the ProtFun method (Jensen et al., 2002), the use of post-
translational modifications (PTMs) appeared essential for the prediction of sev-
eral functional classes. For instance, in the prediction of proteins with “regulatory
function”, the most important features were phosphorylation as well as glycosy-
lation. Reversible phosphorylation is a well known and widely used regulatory
mechanism (Cohen, 2000) and there is growing evidence that the O-β-GlcNAc
glycosylation plays a reciprocal role with reversible phosphorylation (Comer and
Hart, 2000). Other features useful in predicting regulatory proteins were pre-
dicted subcellular location and PEST regions (rich in proline, glutamic acid,
serine, and threonine residues), where the latter is known to target proteins for
degradation (Rechsteiner and Rogers, 1996).

PTMs are also very important for correct assignment of proteins related to
the cell envelope, replication and transcription. The fact that (predicted) PTMs
correlate strongly with the functional categories fits well with biological knowl-
edge. For example, predicted N-glycosylation sites turn out to be important for
prediction of cell envelope proteins. It has been shown experimentally that re-
moval of carbohydrates linked to asparagines, from a protein normally targeted
for the cell envelope, retains it in the endoplasmic reticulum (Chen and Colley,
2000).

Contribution of glycosylation to protein function

Prediction of glycosylation sites

The addition of a carbohydrate moiety to the side-chain of a residue in a pro-
tein chain influences the physicochemical properties of the protein. Glycosylation
is known to affect proteolytic resistance, intracellular targeting, cell-cell interac-
tions, protein regulation, solubility, stability, local structure, lifetime in circu-
lation and immunogenicity (Lis and Sharon, 1993; Varki, 1993; Hounsell et al.,
1996; van den Steen et al., 1998; Comer and Hart, 1999).

Of the various forms of protein glycosylation found in eukaryotic systems,
the most important types are N-linked, O-linked GalNAc (mucin-type) and O-
β-linked GlcNAc (intracellular/nuclear) glycosylation. N-linked glycosylation is
a co-translational process involving the transfer of the precursor oligosaccharide,
GlcNAc2Man9Glc3, to asparagine residues in the protein chain. The asparagine
usually occurs in a sequon Asn-Xaa-Ser/Thr, where Xaa is not Proline. This
is however, not a specific consensus since not all such sequons are modified in
the cell. O-linked glycosylation involves the post-translational transfer of an
oligosaccharide to a serine or threonine residue. In this case, there is no well-
defined motif for the acceptor site other than the near vicinity of proline and
valine residues.

The biological roles of oligosaccharides on proteins are rather diverse (Varki,
1993; Kukuruzinska and Lennon, 1998; van den Steen et al., 1998). N-linked and
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O-linked GalNAc glycosylation occur in the endoplasmic reticulum and Golgi
apparatus, and thus modify proteins that go through the secretory pathway (se-
creted and membrane proteins). Glycosylation in these cases, lends structural
stability and contributes to binding and immunogenic properties. In contrast,
O-β-GlcNAc is a dynamic modification that occurs on cytoplasmic and nuclear
proteins, and is known to play a regulatory or signaling role (Comer and Hart,
1999, 2000; Hanover, 2001).

Experimental determination of glycosylation sites is difficult to achieve as
large amounts of purified protein are needed for the analysis of glycosylation
sites. In addition, glycosylation can be an organism- and tissue specific event.
Therefore only a few glycoproteins have been characterized so far as reflected
in the low percentage of glycoprotein entries in SWISS-PROT (approx. 10% of
human proteins, see also (Apweiler et al., 1999)). This motivates the need for
developing theoretical means of predicting the glycosylation potential of sequons.

Methods for predicting glycosylation sites for the above three types have been
developed2 using artificial neural networks that examine correlations in the local
sequence context and surface accessibility. These predictions were used as features
for protein function prediction in the ProtFun method outlined above. In the
following section, predicted glycosylation site information on human proteins is
used to illustrate the contribution of glycosylation to protein function and assess
how widespread this modification is across the human proteome.

N-Glycosylation

N-linked glycosylation modifies membrane and secreted proteins. This co-
translational process occurs in the endoplasmic reticulum and is known to in-
fluence protein folding. The modification attributes various functional properties
to a protein. To examine if certain categories of proteins were more prone to gly-
cosylation than others, we studied the spread of known glycosylation sites across
different categories.

In our data set of approximately 5,500 human proteins, only 189 proteins
(at 453 confirmed sites) were annotated in SWISS-PROT as N-glycosylated (not
considering proteins with only potential or probable sites). Figure 5.1 il-
lustrates the spread of human glycosylation sites along the protein chain and
across predicted subcellular locations and keyword based assignment of cellular
role categories (Jensen et al., 2002). Relative positions of sites on proteins were
calculated with respect to normalized sequence lengths. To construct this plot,
sequence lengths were normalized, and relative position expressed on a percent
(0-100) scale. Glycosylation sites were binned (10 bins across each sequence), and
their frequency plotted across different categories.

N-glycosylated proteins appeared to almost exclusively belong to the func-
tional category, “Transport and binding”. This may not be too surprising con-
sidering that this category consists largely of membrane and secreted proteins.
The few proteins not belonging here were mostly involved in central intermedi-
ary metabolism. Subcellularly, extracellular proteins were the most favored and

2Glycosylation site prediction methods are available online—http://www.cbs.dtu.dk/
services/



84 Chapter 5: A look into the black box

 N−Glyc site positions across subcellular compartments

 Relative position across protein chain −−>

 F
ea

tu
re

Nte
rm

−1
0%

10
−2

0%

20
−3

0%

30
−4

0%

40
−5

0%

50
−6

0%

60
−7

0%

70
−8

0%

80
−9

0%

90
%

−C
te

rm

Cytoplasmic

Endoplasmic Reticular/Golgi

Extracellular/Secreted

Lysosomal and Others

Membrane

Mitochondrial

Nuclear

0

27

 N−Glyc site positions across cellular role categories

 Relative position across protein chain −−>

Nte
rm

−1
0%

10
−2

0%

20
−3

0%

30
−4

0%

40
−5

0%

50
−6

0%

60
−7

0%

70
−8

0%

80
−9

0%

90
%

−C
te

rm

Amino acid biosynthesis

Biosyn. of cofactors, ...

Cell envelope

Cellular processes

Central intermediary metabolism

Energy metabolism

Fatty acid and phospholipid metabolism

Other categories

Purines, pyrimidines, ... 

Regulatory functions

Replication

Transcription

Translation

Transport and binding proteins

0

56

Figure 5.1: Categorical distribution of known N-glycosylation sites across the protein
chain. Grey-scale indicates frequency of sites (light to dark in increasing order). Protein
chains, normalized in length, are represented across the x-axis from N-terminal to C-terminal
(divided into tenths). Subcellular locations (top) were predicted using PSORT, and cellular
role classification (bottom) by lexical analysis of SWISS-PROT keywords (Jensen et al. 2001).
Most N-glycosylation sites were clustered in the first half of all protein chains, and mainly
occurred in extracellular transport and binding proteins.
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others occurred in membrane proteins and in the endoplasmic reticulum or Golgi.

A clear positional preference for glycosylation sites on protein chains was ap-
parent. The terminal ends of proteins seemed unfavorable and most sites seemed
to occur N-terminal to the center of the protein chain (20 to 40% along the
length from the N-terminal start). The frequency of sites smoothly tapered off
on both ends from this peak with a longer C-terminal tail. This statistical obser-
vation agrees with experimental indications of glycosylation sites being at least
12-14 residues distant from the N-terminal end and 60 residues away from the
C-terminal end of a protein chain (Nilsson and von Heijne, 1993, 2000). One
peculiar observation from Figure 5.1 was the appearance of glycosylated sites in
the C-terminal region of nuclear proteins. On examination, these turned out to
be in around 10 proteins which were indeed annotated to be N-glycosylated in the
C-terminal. The sub-cellular location, however, appeared to be mis-annotated by
PSORT. For instance, some secreted proteins among these were the Vasopressin-
Neurophysin 2-Copeptin precursor, Von Willebrand Factor Precursor and Im-
munoglobulin Delta Chain C.

O-linked GalNAc Glycosylation

The addition of GalNAc linked to serine or threonine residues of secreted and cell
surface proteins, and further addition of Gal/GalNAc/GlcNAc residues (Houn-
sell et al., 1996), is also known as mucin type glycosylation and is catalyzed by
a family of GalNAc-transferases (UDP-N-acetylgalactosamine: polypeptide N-
acetylgalactosaminyltransferases). The modification, a post-folding event, takes
place in the cis-Golgi compartment (Roth et al., 1994) after N-glycosylation and
folding of the protein, and affects secreted and membrane bound proteins.

There is no acceptor motif defined for O-linked glycosylation. The only com-
mon characteristic among most O-glycosylation sites is that they occur on serine
and threonine residues in close vicinity to proline residues, and that the acceptor
site is usually in a beta-conformation. A prediction method (Hansen et al., 1995,
1998) for this type of glycosylation on mammalian proteins has been built earlier
and made available as a web server3. A database of O-glycosylated sequences is
also available4 and was used in constructing the O-glycosylation site prediction
methods (Gupta et al., 1999a).

Figure 5.2 shows the spread of predicted glycosylation sites (O-GalNAc,
mucin-type) across different categories and across the protein chain (a similar
binning was used as in the N-glycosylation case). Sites tend to cluster towards
the C- and N-termini of proteins for some categories. This figure also shows that
O-glycosylation acceptor sites occur in a wide range of proteins, though glycosy-
lation patterns (frequency, positions across chain) may differ for different types
of proteins.

3http://www.cbs.dtu.dk/services/NetOGlyc/
4http://www.cbs.dtu.dk/databases/OGLYCBASE/
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Figure 5.2: Positional O-GalNAc glycosylation. O-GalNAc (mucin type) glycosylation
displays preference for position across a protein chain which could be significant across different
categories. The Position axis reflects normalized protein chain length from N-terminal (0 on the
axis) to C-terminal (100). The height of the bars indicates the number of predicted O-GalNAc
sites (in ∼5,500 human proteins) for a particular category in a particular position bin.

O-β-linked GlcNAc Glycosylation

Glycosylation of cytosolic and nuclear proteins by single N -acetylglucosamine
(GlcNAc) monosaccharides is known to be highly dynamic and occurs on pro-
teins with wide-ranging functions and cellular roles (Hart et al., 1995; Snow and
Hart, 1998). N -acetylglucosamine, donated by the nucleotide precursor UDP-N -
acetylglucosamine, is attached in a beta-anomeric linkage to the hydroxyl group of
serine or threonine residues. The attachment is, in short, known as O-β-GlcNAc5

and the modification process as O-β-GlcNAcylation.
So far, all proteins with O-β-GlcNAc linked residues, are also known to be

5as opposed to the O-α-GlcNAc modification that has been found on certain membrane and
secreted proteins of e.g. Dictyostelium discoideum
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phosphorylated. Evidence suggests that at least in some cases, these two post-
translational modification events may share a reciprocal relationship (Hart et al.,
1995; Comer and Hart, 2000). This peculiar behavior strongly suggests a regula-
tory role for this modification. Sites which can be both glycosylated and alter-
natively phosphorylated are also known as “yin-yang” sites (Hart et al., 1995).

The acceptor site for O-β-GlcNAc glycosylation does not display a definite
consensus sequence, nor are there many annotated sites in public databases.
However, the fuzzy motif is marked by the close proximity of proline and va-
line residues, a downstream tract of Serines and an absence of Leucine and Glu-
tamine residues in the near vicinity (data not shown). Out of approximately
5,500 human sequences from SWISS-PROT (rel. 38), over 4,600 had at least one
predicted O-β-GlcNAc site. 1,535 of these proteins had at least one high scoring
O-β-GlcNAc site prediction (with 3,154 high scoring Ser/Thr sites). A number
of these were DNA-binding proteins and involved in transcriptional regulation.
When ranked according to scores, a large fraction at the top of this list were
found to be nuclear proteins (as annotated in SWISS-PROT). The O-β-GlcNAc
transferase itself (P100 subunit) was found to have predicted O-β-GlcNAc sites.

While the O-β-GlcNAc modification seems to potentially affect almost all
types of proteins, most O-β-GlcNAcylated proteins were either regulatory pro-
teins or “transport and binding” proteins. A large fraction of unclassified proteins
(“unknown” in role categories) were also predicted to contain this modification.
Over half of all nuclear proteins contained a high ranking O-β-GlcNAc modified
site.

The number of potential O-β-GlcNAc sites in proteins was studied with re-
spect to function and cellular location. Figure 5.3 illustrates the number of pre-
dicted (high-scoring) sites per 100 Ser/Thr residues (per protein). Proteins with
1-2 predicted GlcNAc sites (per 100 Ser/Thr) were predominantly nuclear, cy-
toplasmic or membrane proteins. Nuclear and cytoplasmic proteins carried the
highest densities of sites, a few cytoplasmic proteins having as many as 50 high-
scoring O-β-GlcNAc sites among 100 Ser/Thr residues. With respect to cellular
roles, proteins belonging to the category “Purines, pyrimidines, nucleosides and
nucleotides” contained well spaced out sites (only a few sites among 100 Ser/Thr
residues). Proteins with a wider distribution of sites included regulatory, tran-
scription, replication, transport and binding, cell envelope and the “unknown”
category proteins. The highest density of sites (30-40 per 100 Ser/Thr) was found
in transcription and regulatory proteins, though some “unknown” proteins had
over 40 sites (per 100 Ser/Thr). In general, the intracellular O-β-GlcNAc modifi-
cation does not seem to cluster among close residues or display any characteristic
spacing as was observed in another study of O-α-GlcNAc modifications affect-
ing surface and membrane proteins of Dictyostelium discoideum (Gupta et al.,
1999b).

Human proteome-wide scans revealed that the O-β-GlcNAc acceptor pattern
occurs across a wide range of functional categories and subcellular compart-
ments. For humans, the most populated functional categories were regulatory
proteins and transport and binding proteins. Nuclear and cytoplasmic proteins
were prominent, though membrane and secreted proteins were surprisingly also
in high numbers. It is interesting to observe that acceptor patterns exist on
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Figure 5.3: Number of predicted O-β-GlcNAc sites per 100 Ser/Thr, in different
categories of human proteins. (A) shows proteins in different subcellular locations and
(B) indicates cellular role categories. The z-scale (0-500 in A or 0-350 in B) is a frequency
count for a particular bin; e.g. 0-2 O-β-GlcNAcs (per 100 Ser/Thr) occur most frequently for
nuclear proteins in (A). These modifications usually do not occur in clusters. Although potential
acceptor sites are largely found in nuclear/cytoplasmic proteins (usually regulatory), they also
surprisingly occur in membrane proteins (mostly transport and binding proteins).



Paper III: Orphan protein function and its relation to glycosylation 89

these proteins too, but the cellular machinery defines protein targeting and con-
sequently influences their modifications. The prediction server guards against this
possibility by generating a warning when a potential signal peptide is detected
by SignalP6.

PEST regions, rich in the amino acids Proline (P), Glutamic acid (E), Serine
(S) and Threonine (T), are hypothesized to be degradative signals for constitutive
of conditional protein degradation (Rechsteiner and Rogers, 1996). Phosphoryla-
tion, a common mechanism to activate the PEST-mediated degradation pathway,
may be signaled by deglycosylation in the same region. Our scans revealed that
a small fraction of O-β-GlcNAc sites appeared in PEST regions. Such sites were
mostly found in proteins involved in regulatory functions.

Perspective

Glycosylation is clearly a modification affecting a wide range of proteins, and
is now known to affect both intracellular and secreted proteins. Different types
of glycosylation have varying site preferences on proteins, and occur in different
patterns across the protein chain. Information for determining protein function
lies not only in the presence or absence of glycosylation, but also in the glyco-
sylation type and occurrence across the protein chain. This type of feature has
a high degree of discriminatory value and combinations of other features cannot
replace this class of modifications.

Predicting protein function remains a challenging task in bioinformatics. The
approach outlined here uses a collection of sequence derivable features to predict
the cellular role of a protein. The information rich features used in this work
included a limited set of predicted post-translational modifications. Performance
is likely to improve with the use of other correlated features. Some immediate
features which can be tried out include GPI-anchor prediction (Eisenhaber et al.,
1999) and motifs for other post-translational modifications such as the W-X-X-
W C-Mannosylation motif (Krieg et al., 1998). Another feature worth considering
is the “N-end rule” which relates the metabolic stability of a protein to the
identity of its N-terminal residue (Varshavsky, 1996). In other words, the N-
terminal residue of a protein can determine the in vivo half-life of a protein.
Other possible features include dipeptide composition, nucleotide composition
(of the genes coding for the proteins concerned), codon bias, and globularity of
the protein.

The action of a protein in an organism can be described at different levels.
A limitation in working with human proteins has been the absence of a well
characterized functional classification scheme. The functional classification used
in the approach explained above was reflective of the cellular role of the protein.
This was a 14-category classification adopted from earlier work on E. coli proteins
(Riley, 1993). Because of the diverse properties of a protein, matching multiple
protein features to a functional classification is not trivial. However, with the
availability of the human genome sequence and the development of comparative
genomics, a biological vocabulary for protein function is called for.

6http://www.cbs.dtu.dk/services/SignalP/
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One controlled vocabulary being developed is to be found in the gene ontology
project (Ashburner et al., 2000) which defines a protein in context of the biological
process it is involved in, the molecular function it carries out and what cellular
component it constitutes. The attributes in the vocabulary are represented as
directed acyclic graphs (DAGs) or networks. This is similar to a hierarchy with
multiple sublevels for a higher level parent, except that a DAG allows a child to
have more than one parent. Such ontologies seem promising for further work and
narrowing down the specific roles of a protein.

Most traditional approaches for in silico characterization of proteins rely on
protein function being determined by its structure or homology to already func-
tionally annotated proteins. As shown here, protein sequences, on their own,
contain a wealth of information concerning protein properties and can give vital
clues to their molecular function and cellular role. This helps predicting the func-
tion of even those proteins for which no sequence homologues are to be found in
databases.

It is worthwhile at this juncture to understand the importance of post-
translational modifications and develop tools for predicting modified sites. This is
essential information for deciphering protein function and characterizing complete
proteomes.
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5.3 Evolutionary conservation of protein prop-

erties

If the protein features that we use for function prediction determine protein func-
tion, they should be subject to evolutionary pressure. One would thus expect that
mutations changing these features would be selected against in proteins where the
function is to be retained. As function is more often conserved among orthologous
proteins than paralogous proteins, the features should be expected to be most
conserved for orthologs.

5.3.1 Finding orthologs and paralogs between H. sapiens
and D. melanogaster

Given only two homologous sequences from two different organisms, it is impos-
sible to tell if they are orthologs or paralogs. If, however, one has access to the
complete genomes of two organisms, it is possible to discern pairs of orthologous
proteins from pairs of paralogous proteins. If only one copy of the gene exists in
each genome, it is usually safe to assume that the two are orthologs (although
theoretically they could be paralogs). In the case where more copies exist, it is
possible to make a good guess at the phylogenetic relationships between the genes
by analyzing the pairwise similarities, both within and between the genomes.

13,562 pairs of orthologous proteins between a set of 23,740 human protein
sequences from Ensembl (Hubbard et al., 2002) and a set of 14,334 Drosophila
melanogaster protein sequences from FlyBase (The FlyBase Consortium, 2002)
were identified using the INPARANOID tool (Remm et al., 2001). It utilizes
BLAST (Altschul et al., 1997) to find homologous pairs of sequences, further
requirering that sequences match over more than half of their length to avoid
matches to individual domains. Based on all such matches, the INPARANOID
method identifies which pairs of proteins are most likely to be orthologs, and the
remainder were assumed to be paralogs

5.3.2 Distances in feature space

Sequence derived features used by ProtFun were calculated for all sequences in
the data set. The features were encoded and normalized as described in section
4.7, and the Euclidian distance between the members of each orthologous or
paralogous pair was calculated for each feature.

The Euclidian distances were plotted as functions of the sequence identity
within the pairs, as feature similarity can be expected to correlate with sequence
similarity. Figure 5.4 reveals that most of the features used by ProtFun are
more conserved (i.e. give smaller Euclidian distances) within pairs of orthologs
compared to pairs of paralogs. As this is the case independent of the sequence
identity, it indicates an evolutionary pressure for conserving the features.
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Figure 5.4: Distances in feature space between orthologs and paralogs. The Euclidian
distance between normalized features is plotted as a function of sequence identity for pairs of
orthologous (black) and paralogous (red) proteins. It is noteworthy that most features are more
conserved over the entire range of sequence identity for homologs compared to paralogs.
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5.3.3 Predicted functional similarity

Because the mapping between sequence derived and the ProtFun predictions is
quite complex, the implications of the feature conservation on predicted function
are not clear. The analysis of Euclidian distances suggest, that homologs are
more likely to be predicted by ProtFun to have the same function than paralogs
are.

To examine this, the function of all the H. sapiens and D. melanogaster was
predicted with ProtFun. Based on the probabilistic assignment of cellular role
categories, the probability that two proteins belong to the same cellular role
can be estimated as the scalar product of the probability vectors. This way it
was possible to plot as a function of sequence identity, the probability that two
orthologous/paralogous proteins belong to the same cellular role category (see
Figure 5.5 on page 99). It clearly shows that ProtFun predicts orthologs to be
more likely to have the same function than paralogs, which is in perfect agreement
with current belief (Remm et al., 2001).

5.4 Ability to generalize to other organisms

The ProtFun method was developed using human sequences only. However, all
the biological support mentioned above holds for eukaryotes in general, indicating
that ProtFun can be expected to work for other species than humans. The big
questions are: how well do the individual predictors generalize to other species,
and does it make biological sense when predictors do not work.

5.4.1 Creating data sets for cross-species comparison

The main obstacle standing in the way of making such a cross-species analysis is
the lack of a common standard for function annotation (Lewis et al., 2000). In the
annotation of several genomes, no classification system or controlled vocabulary
was employed, rendering the current annotation next to useless for any automated
purposes. The genome projects which have used well defined function descriptors
have not all used the same—and the ones that have used the same function
descriptors often used different criteria for assigning them to individual sequences.
All in all, this makes functional comparison across genomes difficult at best.
The way I have chosen to deal with this problem may seem a bit drastic: first
all functional annotations present in the genomes are discarded and then new
annotations are made using the same fully automated system to reannotate all
the genomes.

To make the analysis as comprehensive and unbiased as possible, the largest
possible set of predicted protein sequences was downloaded for a number of whole
genome sequencing projects. These were selected to give a very broad coverage of
eukaryotes: an insect (D. melanogaster), a round worm (C. elegans) a monocot
plant (A. thaliana) and two yeasts (S. cerevisiae and S. pombe). In addition to
these, sets consisting of all proteins annotated in 14 archaeal and 29 bacterial
genomes were included in the analysis. A set of all predicted protein sequences
in the human genome was also included as a reference.
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Using the EUCLID method (Tamames et al., 1998; Andrade et al., 1999a),
a score was calculated for each cellular role category from common keywords
occurring in the SWISS-PROT entries found by a BLAST search. A labeling of
the sequences was made, based on these scores by applying the same rules that
were used for creating the ProtFun training set, i.e. a score above 3 signifies a
positive example whereas a score below zero means a negative example.

Each protein sequence in all the data sets was also assigned to enzyme cat-
egories, based on the SWISS-PROT entries identified by the BLAST search. It
was assigned as an enzyme only if at least two thirds of the database matches
had an EC number in their description line. Equivalent to this, a protein was
assigned as a non-enzyme if EC numbers were absent in more than two thirds
of the database matches. Similarly, assignment of a major enzyme class to an
enzyme required two thirds majority for the enzyme class (among the matches
having EC numbers in their description line).

While the quality of this annotation will in many cases be worse than the
original annotation, the automatically generated annotation has one crucial ad-
vantage: function has been assigned to proteins from all organisms using the same
functional classification system and based on the same criteria. This allows for
comparison across species.

5.4.2 Choosing the right performance measure

It is always difficult to boil the performance of a prediction method down to a
single number. In the heart of this problem lies the tradeoff between sensitivity
and specificity—which of two predictors is the better may very well depend on
the application. There is thus no right way to do it.

So far in this thesis the Pearson correlation coefficient has been used when
performance was to be reduced to a single number. It has several virtues, the
most important being that no matter the data set, random performance will give
a correlation coefficient of zero. However, there is one issue that makes it unsuit-
able for the problem at hand—correlation coefficients are not comparable across
data sets which have different ratios of positive examples to negative examples
(Baldi et al., 2000). This means that correlation coefficients cannot be compared
across genomes because the protein coding genes have a different distribution
over functional categories.

Instead the ROC area measure is used, which is defined as the area under
the receiver output characteristic (ROC) curve—a graph showing the negative
category sensitivity as function of positive category sensitivity. While not as con-
venient to calculate as the correlation coefficient, this measure has the advantage
of being completely independent of the balancing data set. Random performance
gives a ROC area of 0.5 while perfect performance corresponds to a ROC area of
1. A ROC area below 0.5 is equivalent to a negative correlation coefficient, i.e. a
performance which is worse than random.
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5.4.3 Cross-species evaluation of category and feature
performance

Armed with comparably labeled data sets for a wide range of organisms, it is
easy to calculate the ROC area performance measure of ProtFun for each func-
tional category and each organism. A visualization of the resulting performance
estimated is shown in Figure 5.6 on page 101, with the exception of genomes that
encode too few proteins to give a good estimate of the performance (M. genetal-
ium, M. pneumoniae, and U. urealyticum). The results verify that ProtFun does
indeed appear to work for all eukaryotes, and surprisingly for some categories
also on prokaryotes (although with poorer performance).

To understand why predictors of certain categories work on prokaryotes while
others do not, the cellular role performance estimates were mapped onto features.
For each feature and organism, a performance contribution was calculated as a
weighted average of the ROC areas for cellular roles. Each cellular role enters a
weight corresponding to the number of neural networks using the feature in ques-
tion (see Figure 4.4 on page 62). The resulting feature performance contributions
can also be seen in Figure 5.6, which reveal that it is mainly trends in physi-
cal/chemical properties and structural features that carry over from eukaryotes
to prokaryotes.
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A large number of protein features useful for prediction of protein
function can be predicted from sequence, including post-translational
modifications, subcellular localization, and physical/chemical proper-
ties. We show here that such protein features are more conserved
among orthologs than paralogs, indicating they are crucial for protein
function and thus subject to selective pressure. This means that a
function prediction method based on sequence derived features may
be able to discriminate between proteins with different function even
when they have highly similar structure. Also, such a method is likely
to perform well on other organisms than the one it was trained on. We
evaluate the performance of such a method, ProtFun, which relies on
such features as its sole input, and show that the method gives simi-
lar performance for most eukaryotes and performs much better than
anticipated on archaea and bacteria. From this analysis we conclude
that for the post-translational modifications studied, both the cellular
use and the sequence motifs are conserved within Eukarya.

Introduction

Biological systems modeling at the molecular level normally requires knowledge
about the functionality of the interacting components. The determination of
protein function is an essential basis for many type of systems biology. It is a
fundamental axiom that the structure of a protein determines its function. How-
ever, whether this is true or not depends very strongly on at what level one defines
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“function”. A close relationship between structure and function is observed if the
detailed biochemical function is studied, such as which reaction is catalyzed by
an enzyme. This type of functionality is often termed the “molecular function”
and it is highly conserved within superfamilies, members of which according to
the SCOP definitions are required to be related in both sequence, structure and
function (Todd et al., 2001).

When studying the much broader “cellular role” categories, the relationship
between structure and function becomes much less clear. For example, predicted
protein secondary structure is much more useful for predicting enzyme class mem-
bership than cellular roles (Jensen et al., 2002). Several examples exist where pro-
teins have different cellular roles although they belong to the same superfamily.
The reverse is also true: proteins from many different superfamilies are involved
in each of the particular cellular role categories.

Even for the chemically related EC classification the relationship to structure
is unclear, for example the α/β-hydrolase superfamily contains—contrary to what
the name indicates—not only hydrolases but also oxidoreductases, transferases
and lyases (Todd et al., 2001). Another example is the zinc peptidase superfamily
which includes a non-enzymatic receptor. Still, conservation of the enzyme class
is seen for the majority of the enzyme superfamilies.

Typically, in any genome the function of only half the proteins can be assigned
by sequence similarity search methods, while the rest remain unassigned. Some
of these sequences of unknown function do not resemble any other known protein
sequence; others have homologs but the function of these are also unknown. In
any case, it is very difficult to suggest a function for these proteins.

For a long time, the paradigm behind solving this daunting task has been
based on protein structure determination and prediction. The rationale has been
that the structure of a protein is what determines its function, for which reason the
function could be predicted via the structure, for example by homology building.

To be able to do this, several structural genomics initiatives have been started.
These initiatives will be very useful for gaining new insight into the detailed
chemical function of proteins that are today poorly understood. But given the
relatively weak correlation between protein structure and cellular role combined
with the vast number of unrelated proteins of unknown function, we believe that
a different approach to predicting the cellular role of these proteins should be
taken.

Instead, we have attempted to predict protein function based on predicted
properties of proteins, such as physico-chemical properties, predicted post-
translational modifications and subcellular localization signals (Jensen et al.,
2002; Gupta et al., 2002). Although predicted from sequence, they are more
conserved among orthologs than paralogs, given the same degree of sequence con-
servation. This is in contrast to three-dimensional structure, which is conserved
for paralogs as well as orthologs.

We furthermore demonstrate that the sequence derived protein properties,
characterize proteins of different cellular roles in ways that are conserved not only
within Eukarya, but in several cases within all three domains of life: Eukarya,
Archaea and Bacteria. These discoveries have been made through a cross-species
analysis of the performance of the ProtFun prediction method (Jensen et al.,
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2002) for a wide variety of organisms covering mammals, invertebrates, plants
and fungi as well as Crenarchaeota, Euryarchaeota and Eubacteria.

Results and discussion

Features are more conserved among orthologs than par-
alogs

It is known and often utilized in function assignment that orthologs more often
have identical function than paralogs (Jensen, 2001). If the sequence derived
protein features we use are indeed indicative of protein function, they should then
be expected to be more conserved within pairs of orthologous proteins than within
pairs of paralogous proteins. As a consequence of this, the ProtFun method should
more often predict the same function for orthologous proteins than paralogous
proteins.

We have verified this on a data set consisting of all orthologs and paralogs
between the complete genomes of H. sapiens and D. melanogaster. Because or-
thologs typically are more similar than paralogs at the sequence level, we have
examined the feature similarities as function of the sequence identity (see Fig-
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Figure 5.5: Estimated probability for same cellular role as function of similarity for
orthologs and paralogs. These probabilities were estimated as the overlap integral of the
ProtFun predictions for H. sapiens and D. melanogaster proteins involved in each pair. The
probabilities could not be reliably estimated outside the range 30–80% identity as orthology
vs. paralogy cannot be reliably predicted for distant homologs and because very closely related
paralogs are likely predicted to be orthologs.
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ure 5.5). It is clear that the functional similarity as predicted from sequence de-
rived features is most conserved for orthologs over then entire range of sequence
similarity studied.

The ProtFun predictions rely exclusively on sequence derived features as in-
put. The ability of the method to discern between orthologs and paralogs there-
fore have the implication that the protein features are selectively conserved for
orthologs.

Cross-species comparison

The ProtFun function prediction method has been trained on human protein
sequences of known function only (Jensen et al., 2002), but given that it relies
on protein features that occur in all eukaryotes it should be expected to be able
to generalize to other organisms as well. Considering the results above, it would
appear that the method is able to generalize at least to metazoans.

To investigate this further, we evaluated the performance of ProtFun on the
complete genomes of 48 organisms. When doing this kind of comparative analysis
of genomes/proteomes from many different species there are several potential
sources of artefacts. Because the genes have been annotated using different gene
finding methods or different similarity cutoffs, there can be vast differences in the
quality of the annotations (Skovgaard et al., 2001). Also, because genomes have
been annotated by different groups inconsistencies in the functional annotations
are likely to occur. In order to compare protein function across multiple genomes,
one has to make sure that the annotation is consistent.

We address these problems by reannotating the function of all proteins based
on sequence similarity using the EUCLID method (Tamames et al., 1998; An-
drade et al., 1999a) restricting ourselves to use proteins where a function could
be assigned reliably. Since questionable ORFs that might have been annotated
as genes are very unlikely to display significant sequence similarity to proteins
in SWISS-PROT, these will automatically be rejected. The fully automated as-
signments into functional classes ensure comparability across organisms, but are
likely to be less accurate than the original annotations. The fact that not only our
own predictions will contain errors, but also the labeling to which we compare,
means that we will obtain a conservative estimate of the ProtFun performance.

Good performance on all eukaryotes

To our surprise the ProtFun method performs almost equally well on all other
eukaryotes tested including yeasts (see Figure 5.6). This ability to generalize
across very different phyla shows that the trends found by the artificial neural
networks do not only hold for human proteins but have in fact been conserved
throughout the eukaryotic domain of life.

Sequence derived input features

Our approach to function prediction relies on sequence derived input features.
These represent physical/chemical and functional biological properties of the pro-
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Figure 5.6: ProtFun performance for functional classes and performance contribu-
tions from input features. For 44 organisms the area under the receiver output characteristic
(ROC) curve has been plotted for all cellular role categories and enzyme classes (left panel).
These performances were mapped onto input features based on the feature usage matrix (see
Figure 1 in (Jensen et al., 2002)).
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tein which can be either calculated or predicted from the amino acid sequence
alone. These features include predicted protein secondary structure, transmem-
brane helices, subcellular localization and post-translational modifications.

While all of these features make biological sense for eukaryotes in general,
many of the feature predictors had been trained on mammalian or vertebrate
data sets. Their performance on other eukaryotes was therefore unknown.

In the case of prokaryotes some of the features make no sense at all. For
instance the lack of compartmentation in prokaryotes means that prediction of
most subcellular localization makes little sense. How well other features like post-
translational modifications (PTMs) will work for prokaryotes is even less clear:
the functional role of a modification may be a different from that in eukaryotes,
the motif may be different or the modification may not take place at all.

We have analyzed this in a systematic and quantitative fashion. The perfor-
mances obtained for cellular roles were mapped according to feature importance.
The resulting values represent the performance contributed by each sequence de-
rived feature. Figure 5.6 shows these values visualized in the same way as the
functional category performances. The general trends are as follows: Features
representing structural properties like predicted secondary structure and mem-
brane spanning helices as well as more general physico-chemical properties of the
proteins generalize well to prokaryotes. On the other hand, most of the features
representing predicted PTMs and protein sorting signals are of limited value in
archaeal and bacterial genomes.

There are certain organisms that deviate from the patterns described above.
One example is Buchnera aphidicola which belongs to the γ subdivision of pro-
teobacteria. In contrast to most other organisms, even the correlations between
simple physical/chemical properties (extinction coefficient, hydrophobicity and
number of negative/positive residues) appear to break down (see Figure 5.6). All
of these features reflect different aspects of the amino acid composition. The lack
of correlation is thus likely to result from the unusual amino acid composition
of B. aphidicola proteins, which is reflected in the predicted isoelectric points of
B. aphidicola proteins (Shigenobu et al., 2000, 2001).

Many features fail on prokaryotes

It was anticipated, due to the very different organization of the eukaryotic and
prokaryotic cells, that the predicted protein subcellular localization (according
to PSORT) would be of little use in prokaryotes. Still, one could have expected
N-terminal signal peptide prediction to work, as the signal peptides not only exist
in prokaryotes but can be accurately predicted by the SignalP method which we
use in ProtFun (Nielsen et al., 1997a).

The problem is that signal peptides do not play the exact same role in eukary-
otes and in prokaryotes. Also, eukaryotes have several types of similar N-terminal
targeting sequences, which can all be detected from the SignalP scores. For ex-
ample, eukaryotic proteins targeted for the mitochondria will have mitochondrial
targeting peptides, while their prokaryotic counterparts would be expected to be
cytoplasmic and thus not have signal peptides. This difference in the meaning
of similar biological motifs in prokaryotes and eukaryotes, explains the very poor
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performance of the energy metabolism predictor for prokaryotes.

Two types of predicted glycosylation sites, both targeting secreted and mem-
brane associated proteins, are being used by ProtFun. One is N-linked β-GlcNAc
glycosylation of asparagines, which takes place in the endoplasmic reticulum. The
other is O-linked α-GalNAc glycosylation of serines and threonines, which takes
place in the Golgi. Possibly because glycosylation has not been studied nearly
as much in prokaryotes as in eukaryotes, only one of the two types (N-linked β-
GlcNAc glycosylation) has been observed in prokaryotes (Spiro, 2002). As with
signal peptides, the consensus sequence for this modification appears to be the
same in prokaryotes and eukaryotes. It is thus reasonable to expect the NetNG-
lyc predictor to work on prokaryotes even though it was trained on eukaryotic
sequences.

Glycosylation also seems to play much the same role in prokaryotes and eu-
karyotes, but much fewer proteins appear to be glycosylated in prokaryotes (Spiro,
2002). The small number of glycoproteins may explain why glycosylation predic-
tions appear to be of limited value for predicting functional classes in prokaryotes,
despite both the consensus sequence and function being conserved.

Similar to glycosylation, phosphorylation is known to play an important role
in prokaryotes, where it is involved in regulation like in eukaryotes. This makes
phosphorylation sites a biologically relevant feature, which could be used for
function prediction in prokaryotes. However, it was questionable if predicted
phosphorylation sites could be used since the NetPhos predictor was trained solely
on eukaryotic data. This depends entirely on whether the specificities of some of
the prokaryotic kinases are sufficiently close to those of eukaryotic kinases. In our
cross-species analysis we find that predicted phosphorylation sites contribute little
to the performance on prokaryotic proteins, which indicates that the specificities
of prokaryotic kinases are quite different from those of eukaryotic kinases.

Considering that so many of the input features used by ProtFun make little
or no sense for prokaryotic, it is somewhat surprising that the method works at
all for them. Figure 5.6 shows that the features mainly responsible for this are
the physical/chemical properties, in particular the size and charge of the protein
represented by the number of negative/positive residues. The only other features
that contribute significantly are those related to structure, i.e. secondary structure
and transmembrane helix prediction.

Universal feature usage and consensus in Eukarya

An interesting implication of the ability to generalize across species is that the
different post-translational modifications apparently serve the same purposes for
most if not all eukaryotes. Not only do eukaryotes have the gene repertoire for
making the same modifications, they also employ them in a consistent manner.

The fact that all feature–function correlations hold within Eukarya has one
further implication. It indirectly indicates that most (if not all) of the predictors
that are used by ProtFun can be expected to work with reasonable accuracy for
all eukaryotes. As mentioned above, this could not be taken for granted as some
of them have been trained on data sets consisting exclusively of human proteins.
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Same structure—different functions

In the introduction several examples of SCOP superfamilies containing enzymes
from entirely different enzyme classes and superfamilies containing both enzymes
and non-enzymes. These cases show, that conservation of structure at the super-
family level is not sufficient to guarantee that function is also conserved.

With respect to enzyme classification the Cupredoxin superfamily is one of
the most diverse, containing an almost equal proportion of enzymes and non-
enzymes. Table 5.1 shows the enzyme probabilities predicted by ProtFun along
with the experimental assignment (Todd et al., 2001). Although all the proteins
have the same conserved three-dimensional structure, our approach is able to
correctly discriminate between the enzymatic and non-enzymatic members of the
Cupredoxin superfamily. It should be pointed out though, that all the enzymatic
members of the superfamily belong to the same protein family, even though some
of them are less than 30% identical at the amino acid level.

Evolution of members within the same superfamily of proteins both with and
without enzymatic activity is likely to have happened through gene duplication
events and subsequent adaption of one of the copies for a new function. An
enzymatic and a non-enzymatic member of the same superfamily are thus likely
to be paralogs. It is therefore plausible that the stronger conservation of protein

Table 5.1: Predictions for members of the Cupredoxin superfamily. For each member of
the superfamily the enzyme probability score from ProtFun is listed along with the experimental
enzyme/non-enzyme assignment (Todd et al., 2001). The non-enzymes marked with an asterisk
are part of enzymatic complexes, but do not contain active sites.

PDB Enzyme Experimental
identifier Chain prob. assignment

1NWP A 0.257 Non-enzyme
1NWP B 0.257 Non-enzyme
2CBP 0.289 Non-enzyme
1AAC 0.301 Non-enzyme
1PLC 0.310 Non-enzyme
1RCY 0.325 Non-enzyme
2CUA B 0.354 Non-enzyme *
2CUA A 0.368 Non-enzyme *
1JER 0.404 Non-enzyme
1PAZ 0.416 Non-enzyme
1CYW 0.483 Non-enzyme *

1A65 A 0.652 Enzyme
1NIF 0.688 Enzyme
1AOZ A 0.773 Enzyme
1AOZ B 0.773 Enzyme
1KCW 0.792 Enzyme
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features observed for orthologs compared to paralogs is related to the ability to
discriminate between structurally similar but functionally dissimilar proteins.

Conclusions

For a long time, there has been a very strong focus on the importance of protein
structure for understanding protein function. However, based on our analysis we
conjecture that many other protein properties, e.g. post-translational modifica-
tions, may in fact be more, or at least, equally important for determining and
maintaining the function of a protein. These properties appear to be conserved
among proteins of similar function, both in cases where the evolutionary relation-
ship can be detected by sequence similarity and in more distantly related proteins
of similar structure.

Materials and methods

Generation of the data set

A set of 23,740 protein sequences corresponding to predicted human genes was
downloaded from the Ensembl database (Hubbard et al., 2002). Similarly a
set of 14,334 Drosophila melanogaster protein sequences was obtained from Fly-
Base (The FlyBase Consortium, 2002), 20,263 Caenorhabditis elegans sequences
from the protein database WormBase and 25,617 Arabidopsis thaliana protein se-
quences from The Arabidopsis Information Resource (TAIR) (Huala et al., 2001).

In addition to these eukaryotic data sets, the complete genome sequences of
the two yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe were
downloaded from GenBank and all translations of annotated protein coding re-
gions were extracted (Benson et al., 2002). Protein data sets for 14 archaea and 28
bacteria were extracted in the same manner from the complete genome sequences
(see Table 5.2).

To ensure comparable function annotation among these many genomes, all
existing (if any) information on protein function was discarded and the proteins
were automatically reassigned to cellular role categories by using the EUCLID
method (Tamames et al., 1998; Andrade et al., 1999a) and to enzyme categories
based on the following criteria.

Based on BLAST matches to known proteins in SWISS-PROT, EUCLID col-
lect keywords which are used in an additive scoring system to calculate a Z-score
for each cellular role category. We annotated each category separately based on
the EUCLID Z-scores using the same rules used to label the training examples
used for development of the ProtFun method (Jensen et al., 2002). Sequences
were labeled as positive examples if their Z-score was above 3 while sequences
with a Z-score less than 0 were labeled as negative examples. Any sequences
having a Z-score from 0 to 3 were left out of the analysis for the category in
question.

Sequences were assigned to enzyme classes based on the same BLAST matches
used for selecting keywords above. As SWISS-PROT provides enzyme class infor-
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Table 5.2: Data sets used for cross-species evaluation. The column “protein sequences”
lists the number of protein coding regions annotated in the genomes, with the exception of
the organisms H. sapiens, D. melanogaster, C. elegans, and A. thaliana (see text for details on
these data sets). The protein sequences that could be assigned to a cellular role by the EUCLID
method (last column), shows the amount of data available for validation of the ProtFun method
for each organism.

Organism Protein Assigned
sequences by EUCLID

H. sapiens 23,740 13,419
D. melanogaster 14,334 7,235
C. elegans 20,263 7,840
A. thaliana 25,617 11,771
S. pombe 4,952 2,786
S. cerevisiae 6,329 3,302

A. pernix 2,694 684
P. aerophilum 2,605 867
S. solfataricus 2,977 1,186
S. tokodaii 2,826 1,045
A. fulgidus 2,407 1,074
M. thermoautotrophicum 1,869 867
M. jannaschii 1,715 781
M. mazei 3,371 1,420
M. kandleri 1,691 653
M. acetivorans 4,540 1,850
P. abyssi 1,765 855
P. horikoshii 2,064 786
T. acidophilum 1,031 783
T. volcanium 1,499 792

Anabaena sp. 5,366 2,444
A. aeolicus 1,522 926
B. burgdorferi 850 461
B. halodurans 4,066 2,223
B. subtilis 4,100 2,240
Buchnera sp. 564 469
C. jejuni 1,654 975
C. pneumoniae 1,052 530
C. trachomatis 894 498
D. radiodurans 2,937 1,332
E. coli 4,289 2,883
F. nucleatum 2,068 1,083
H. influenzae 1,709 1,183
H. pylori 1,566 815
L. lactis 2,266 1,229
M. genitalium 480 332
M. pneumoniae 677 441
M. tuberculosis 3,918 1,973
N. meningitidis ser. A 2,121 1,132
N. meningitidis ser. B 2,025 1,088
R. prowazekii 834 548
S. coelicolor 7,848 3,625
Synechocystis sp. 3,169 1,598
T. maritima 1,846 1,064
T. pallidum 1,031 507
V. cholerae 3,828 2,054
X. fastidiosa 2,766 1,184
Y. pestis 4,008 2,566
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mation for most enzymes in the description field, this information was extracted
for all BLAST matches identified by running EUCLID. Labeling of enzyme vs.
non-enzyme as well as the major enzyme class was decided by voting among the
matches. At least two thirds majority for either “yes” or “no” was required for a
sequence to be labeled.

Performance evaluation

One of the best commonly used performance evaluation criteria is the correlation
coefficient, which we have used as the main criteria during development of the
ProtFun method. However, the correlation coefficient cannot be used for the
problem at hand because of its dependence upon the relative frequency of positive
and negative examples in the data set (Baldi et al., 2000). Correlation coefficients
can thus not be used for comparing the performance of our prediction method
across genomes with different break down on functional categories.

Instead we opt for using the area under the receiver output characteristic
(ROC) curve, a plot of true negative rate vs. true positive rate. The area under
this curve will be 1 for a perfect predictor and 0.5 for a predictor performing no
better than random. Like the correlation coefficient, this performance measure
is balanced, taking into account the tradeoff between high sensitivity and low
rate of false positives. In addition to this, it is also independent of the data set
composition in terms of positive and negative examples.

Feature mapping

The ROC area performances functional classes were mapped onto the sequence
derived features. These sequence derived feature were the prediction methods
NetNGlyc (manuscript in preparation), NetOGlyc (Hansen et al., 1998), NetPhos
(Blom et al., 1999), PEST regions (Rechsteiner and Rogers, 1996), PSIPRED
(Jones, 1999), PSORT (Nakai and Horton, 1999), SEG filter (Wootton, 1994a),
SignalP (Nielsen et al., 1999) and TMHMM (Krogh et al., 2001) as well as the
number of calculated features: extinction coefficient, grand average hydrophobic-
ity, and the numbers of positively and negatively charged residues.

For each organism, the performance of each of these 14 input features was
calculated as a weighted average of the ROC areas of the 12 cellular role cate-
gories. Each cellular role category entered with a weight corresponding to the
number of neural networks in its ensemble of predictors that make use of the
feature in question (see Figure 1 in (Jensen et al., 2002)). We decided to not
include the enzyme classifiers in this mapping procedure because all of the neural
network ensembles make use of a large number of sequence derived features. This
makes it very difficult to correctly attribute the predictive performance to the
right features for these classifiers.

Obtaining sets of orthologs and paralogs

Assignment of orthologs vs. paralogs is far from being a trivial problem. To obtain
a large data set of orthologs/in-paralogs and out-paralogs, we have made use of
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the INPARANOID tool to classify the pairs of homologous proteins between the
H. sapiens and D. melanogaster described above (Remm et al., 2001). Paralogs
were assigned based on BLAST matches covering at least 50% of the sequence
length, which were not listed as orthologs by INPARANOID. By this approach
we predicted 13,562 pairs orthologous proteins and 151,923 pairs of paralogous
proteins. In order ensure comparability of the two data sets only pairs of paralogs
consisting of one H. sapiens and one D. melanogaster protein were included.
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5.6 Case stories for non-human proteins

5.6.1 Essential proteins of unknown function in M. gene-

talium

A minimal set of approximately 300 essential genes have been identified in the
tiny genome of Mycoplasma genetalium by systematic single gene knockout. Sur-
prisingly, the function of 112 of was still unknown in 1999 (Hutchison III et al.,
1999).

In an attempt to predict the function of these, human homologs of them
were looked for using gapped BLAST. Homologs were identified for only 15 of
112 genes, none of which resulted in strong predictions by ProtFun. After hav-
ing realized ProtFuns ability to generalize to prokaryotes for certain functional
categories, it was attempted to use the M. genetalium sequences directly.

To strengthen the predictions by ProtFun, its predictions were combined with
predicted functional links. Based on the criteria by Marcotte and coworkers,
high confidence links could be identified for only eight of the 112 essential genes of
unknown function. These genes were: MG120, MG121, MG134, MG200, MG259,
MG349, MG387 and MG448. Both of the proteins MG120p and MG121p have
high confidence links to MG040p which belongs to the very common protein
family “Basic membrane lipoprotein” (IPR003760)—a class of prokaryotic lipid
binding proteins.

MG120p as well as MG121p are predicted by ProtFun to belong to the class
transport and binding with high probability scores (0.816 and 0.773 respectively).
These predictions are in agreement with the functional links since MG040p EU-
CLID gives MG040p a score of 4.19 for the category transport and binding,
i.e. above the threshold used for identifying positive examples when creating
the training set for ProtFun. There are thus several reasons for believing that
MG120p and MG121p are indeed transport and binding proteins.

5.6.2 Circular proteins

It seems that whenever bioinformaticians believe to have addressed a biological
issue, nature turns out to be more inventive. An example of this is trans-splicing,
which breaks every rule built into eukaryotic gene finders.

In the ProtFun method very few assumptions are made about proteins—one
is that protein sequences are linear. Given that, the existence of circular proteins
hardly comes as a surprise.

All circular proteins known are very small (less than 100 aa) and have pre-
sumably evolved from ancestral linear proteins (Trabi and Craik, 2002). Little
is known about the biosynthesis of circular proteins, but they all appear to be
made from longer linear precursors through cleavage and cyclization.

In order to test the performance of ProtFun on circular proteins, one must
first find a way to represent them as input vectors. It is not clear what is the best
representation—in this test the mature circular protein sequence was simply cut
at the site where cyclization took place, this way getting a short linear sequence
corresponding to the mature circular protein.
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Table 5.3: ProtFun predictions for cyclic proteins. The ProtFun prediction method was
run on a number of cyclic proteins. To turn the sequences into linear sequences that can be
used as input, all the cyclic proteins were cut at the site of cyclization.

varv wAgaIV
A B C D A B BC

Amino acid biosynthesis 0.500 0.500 0.500 0.500 0.500 0.500 0.818
Biosynthesis of cofactors 0.472 1.431 0.472 0.653 0.417 0.458 0.889
Cell envelope 5.262 3.393 5.000 1.787 5.082 4.689 1.180
Cellular processes 0.548 0.740 0.562 0.507 0.658 0.370 0.534
Central intermediary metabolism 0.651 0.651 0.651 0.651 0.651 0.651 0.857
Energy metabolism 1.878 0.900 2.000 1.811 1.089 0.478 1.722
Fatty acid metabolism 4.846 5.308 4.538 5.000 2.154 1.308 1.308
Purines and pyrimidines 0.193 0.206 0.193 0.222 0.193 0.193 0.214
Regulatory functions 0.329 0.596 0.323 0.236 0.925 0.882 0.081
Replication and transcription 0.373 0.873 0.366 0.325 1.142 1.056 0.075
Translation 2.614 4.205 2.545 2.432 6.750 4.250 1.023
Transport and binding 0.463 0.134 0.485 0.451 0.041 0.068 1.498

Enzyme 1.187 1.470 1.187 1.655 0.744 0.733 0.747
Nonenzyme 0.925 0.811 0.925 0.737 1.103 1.107 1.102

Oxidoreductase 0.255 0.144 0.255 0.216 0.139 0.139 0.596
Transferase 0.096 0.241 0.096 0.130 0.099 0.090 0.104
Hydrolase 0.180 0.180 0.180 0.205 0.192 0.196 0.180
Lyase 0.426 0.426 0.426 0.426 0.426 0.426 0.447
Isomerase 0.313 0.313 0.313 0.313 0.313 0.313 0.313
Ligase 0.334 0.334 0.334 0.334 0.334 0.334 0.334

CMT- CPI cyclo- Kalata Tx31 Tx32 viola-
III psycho BI peptid

Amino acid biosynthesis 0.500 0.500 0.773 0.500 1.273 0.727 0.545
Biosynthesis of cofactors 0.417 0.417 0.417 0.472 0.639 1.139 0.458
Cell envelope 0.525 1.377 3.016 5.262 0.525 1.066 4.574
Cellular processes 0.397 0.438 0.370 0.630 1.014 0.370 0.466
Central intermediary metabolism 0.683 0.651 0.651 0.651 0.730 0.714 0.651
Energy metabolism 0.456 0.811 2.778 1.833 1.878 0.344 0.733
Fatty acid metabolism 4.385 1.385 2.923 4.615 1.846 1.308 4.231
Purines and pyrimidines 0.193 0.193 0.321 0.193 0.313 0.222 0.193
Regulatory functions 0.752 0.534 0.398 0.404 0.093 0.286 0.398
Replication and transcription 1.075 1.060 0.623 0.358 0.075 0.097 0.347
Translation 6.841 5.864 2.432 2.500 0.750 0.682 2.568
Transport and binding 0.073 0.161 0.098 0.715 1.283 1.512 0.661

Enzyme 0.754 0.747 1.655 1.187 0.827 0.894 0.621
Nonenzyme 1.099 1.102 0.737 0.925 1.069 1.043 1.152

Oxidoreductase 0.130 0.120 0.144 0.269 0.298 0.125 0.115
Transferase 0.136 0.093 0.342 0.096 0.180 0.116 0.093
Hydrolase 0.186 0.180 0.180 0.180 0.180 0.180 0.180
Lyase 0.426 0.426 0.426 0.426 0.958 0.426 0.426
Isomerase 0.313 0.313 0.313 0.313 0.313 0.313 0.313
Ligase 0.334 0.334 0.334 0.334 0.334 0.334 0.334
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The results obtained for the circular protein sequences known (Trabi and
Craik, 2002) are not impressive. In fact the majority of the proteins give high odds
scores for both of the categories cell envelope and translation (see for examples
Table 5.3). This is easily explained comparing the small size of all the cyclic
proteins with the length distributions shown in Figure 4.2 on page 46. It is
possible that better results could be obtained by using the full precursor sequences
as input instead of the mature sequences, but this was not tested.

5.6.3 ATP binding proteins from a random library

As most of the neural networks in ProtFun rely on a combination of protein
properties that are required for the chemical function and properties that are
important only in a cellular context, it is hard to know if ProtFun will produce
meaningful output for protein sequences constructed through in vitro selection
methods.

By employing an ingenious in vitro selection procedure in which proteins and
their corresponding cDNA sequences were covalently cross-linked, four families
of ATP binding proteins have been developed starting from a pool of random
sequences (Keefe and Szostak, 2001). Table 5.4 shows the ProtFun predictions

Table 5.4: ProtFun predictions for ATP binding proteins developed by in vitro se-
lection. As the ProtFun method depends on the cellular context to predict function, it would
be surprising if it worked for these artificially created proteins. As expected it does not seem
to work.

Family A Family B Family C Family D

Amino acid biosynthesis 0.818 0.500 0.727 0.682
Biosynthesis of cofactors 1.167 0.708 1.472 0.458
Cell envelope 0.475 0.492 0.508 0.541
Cellular processes 1.027 0.863 0.507 0.411
Central intermediary metabolism 0.714 0.667 1.429 0.651
Energy metabolism 2.722 2.911 3.278 0.511
Fatty acid metabolism 1.308 1.308 1.462 1.308
Purines and pyrimidines 0.193 0.593 0.214 0.193
Regulatory functions 0.348 0.106 0.205 0.534
Replication and transcription 0.713 0.437 0.530 1.216
Translation 3.523 5.227 6.705 5.045
Transport and binding 0.059 0.051 0.080 0.107

Enzyme 0.859 0.852 1.215 0.744
Nonenzyme 1.057 1.059 0.914 1.103

Oxidoreductase 0.586 0.793 0.668 0.216
Transferase 0.180 0.119 0.145 0.099
Hydrolase 0.183 0.180 0.375 0.192
Lyase 0.426 0.426 0.426 0.426
Isomerase 0.313 0.313 0.313 0.313
Ligase 0.334 0.334 0.334 0.334
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for a representative of each family.
The predictions all give high odds scores to the categories translation like the

circular proteins just discussed. This is again explained by the fairly small size
of the proteins (the longest of which is 109 aa). Quite high scores are also seen
for energy metabolism, which could perhaps be argued to make sense for ATP
binding proteins. However, this is not very convincing since, given the number
of processes in which ATP is involved, similar arguments could be made for any
of the other categories.

5.7 A lighter shade of dark

To begin with, the ProtFun method may appear as black magic—how can neural
networks predict the function of protein they have never seen before from its
sequence alone? I hope that the analysis presented in this chapter has shed some
light on (or into) the black box.

Several lines of evidence suggest that the ProtFun method works by recog-
nizing the same protein features that a eukaryotic cell does: proteins are sorted
into different parts of the cell where they perform their function and are modified
in various ways to make them better suited for their purpose. Furthermore, the
chemical properties of the proteins have become adapted to the environment in
which they perform their function.

It thus makes sense that the ProtFun method works almost equally well for
proteins from all eukaryotes whereas the performance on prokaryotic proteins is
much poorer. Also the method should not be expected to work well for proteins
designed or selected for having a particular function in vitro.
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Comparison of ProtFun with
other existing methods

The first kind of large volume data sets to be analyzed by bioinformaticians was
sequence data. Since then, protein–protein interaction data and several other
types of data have been analyzed, most if not all of which can be used to assist
in resolving the function of proteins. A general trend is that these methods help
predict function by linking together proteins of similar function. Perhaps mainly
due to the difficulties of defining what is meant by “similar function”, very few
quantitative statements have been made about the prediction quality of such
links.

Because these methods provide links between proteins rather than assignment
of proteins to classes, it is difficult to compare the methods. The way chosen
here to address this problem is by only evaluating the quality of links between
proteins that can both be reliably assigned cellular roles by EUCLID. For any
given category, a true positive can then be defined as a link between positive
examples and a true negative as a link between two negative examples. Links
between a positive and a negative example are counted as 1/2 false positive and
1/2 false negative. From these numbers the Matthews correlation coefficient for
functions of linked proteins can be calculated.

The rationale behind this scheme is, that using a true link to assign function
of one protein based on the other will result in a true assignment regardless of the
direction in which the link is used. Using a false link on the other hand will result
in either a false positive or a false negative assignment depending on the direction
in which the link is used. The false links should thus be evenly distributed over
the two possibilities.

It should be noted that this method for evaluating the predictions of functional
links actually favors the link methods over ProtFun. This is because such methods
do not link all proteins of unknown function to a protein of known function—the
coverage is thus not 100%. ProtFun on the other hand is forced to assign every
single protein to a class. If allowed to discard the most uncertain predictions,
higher correlation coefficients could no doubt be reached.

Most of these alternative methods for function assignment have mainly been
used for assigning function to S. cerevisiae proteins, for which the best data
sets are thus available. This restricts the comparison of the performance of the
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different methods (including ProtFun) to yeast. While it has already been shown
that ProtFun works on yeast, one should bear in mind that it was developed
for human proteins and that the performance on yeast is the poorest we have
observed so far for a eukaryote. This further puts ProtFun in an unfavorable
position for the coming comparison.

6.1 Clustering of expression profiles

The emergence of DNA array technologies marked the beginning of a new era of
bioinformatics. Using either Stanford type cDNA arrays or Affymetrix GeneChips
with short oligo probes, it is possible to simultaneously monitor the expression
levels of all genes in an organism. This technology was first used on S. cerevisiae
and today this is still the organism for which most array data is publicly available.
Expression data is probably the only source of biological information growing
faster in volume than the DNA sequence databases.

From the very beginning this type of data has been used to predict protein
function. By clustering proteins showing similar expression profiles it was dis-
covered that proteins involved in the same cellular processes clustered together,
an observation that was instantly exploited to infer function (Eisen et al., 1998;
Spellman et al., 1998).

In addition to such unsupervised machine learning approaches, SVMs have
also been employed to predict from gene expression profiles a set of five functional
classes (Brown et al., 2000). While this prediction method achieves high accuracy,
it should be noted that the classes were selected based on the knowledge that genes
from these particular classes clustered together. In fact there are only five more
classes out of the approximately 200 classes in the MIPS classification system that
can be learned from the expression profiles used (Gustavo Stolovitsky, personal
communication). Also it is worth mentioning, that although the authors claim the
superiority of SVMs over other machine learning approaches, their performance
was not compared to that of neural networks, with which very similar results are
obtained (Gustavo Stolovitsky, personal communication).

In order to investigate the correlation between protein function and expression
profile clustering in a way that allows for comparison with ProtFun, the Rosetta
compendium by Hughes et al. (2000a) was downloaded. It consists of whole
genome expression data measured for S. cerevisiae under 300 different conditions,
including both environmental changes and knockout mutants. It is the most
comprehensive gene expression data set to date, likely making it the best suited
for prediction of cellular roles.

The Rosetta compendium covers 6230 yeast transcripts each measured for 300
conditions. All pairwise Pearson correlation coefficients were calculated, with the
exception of pairs where more than 50 dimensions were lacking due to missing
values in the data set. For each gene the most correlated profile with a Pearson
correlation of at least 0.6 was identified. Based on these links the function corre-
lation coefficient was calculated as described above (see Table 6.1 on page 117). It
is thus a very optimistic measure of the performance of array clustering methods,
namely the performance that can be expected if function is only inferred when
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the function of the closest neighbor is known. As a gene is almost guaranteed
to cluster together with its closest neighbor, any clustering method is unlikely to
perform better.

The differences in performance of the different functional classes are very much
as should be expected (see Table 6.1). The expression profile approach excels in
the translation category, a category known to contain sets of highly coregulated
genes, e.g. ribosomal proteins. Similarly it works well on several of the metabolism
categories. As a consequence of this and the distribution of enzymes over cellular
roles (see Table 4.1), it also gives a decent performance on predicting enzymes
vs. non-enzymes, although enzymes as such should not be expected to cluster
together. Conversely, the method gives a quite poor performance for regulatory
functions—again as should be anticipated. The only slight surprise is the equally
poor performance on the purines and pyrimidines category.

6.2 Protein–protein interaction screening

Another source of information on the function of proteins is the interactions
between different proteins. This information could come either from experimental
determination by yeast two-hybrid methods or other methods, or it may be from
predicted interactions. When working with low resolution function prediction, it
would be expected that interacting proteins usually belong to the same category.
This can obviously be used if the function of one or more of the interaction
partners is known, but even when this is not the case it could be used as a
constraint on the prediction method by tying the function prediction of interacting
proteins.

Protein–protein interactions often imply that two or more proteins together
form a larger functional component. It is thus likely that interacting proteins
share a common function and this has been used by several groups to infer func-
tion of proteins which share no sequence similarity to sequences of known function.
However, not much has been done to quantify the strength of this relationship.
The reasons for this are likely the same that are listed above for expression profile
clustering.

Several methods exist for identifying protein–protein interactions: co-immuno
precipitation, mass spectrometry (Ho et al., 2002) and the yeast two-hybrid
screening approach. The latter has attracted a lot of attention as it allows for
fast systematic screening of protein–protein interactions in whole genomes (Ito
et al., 2001; Uetz et al., 2000).

Two research groups have performed systematic screens of the S. cerevisiae
genome using the yeast two-hybrid approach (Ito et al., 2001; Uetz et al., 2000).
Several databases of protein–protein interaction data currently exist, the most
complete of which appears to be Database of Interacting Proteins (DIP) (Xe-
narios et al., 2002), which covers all organisms. In the case of yeast interaction
data, it should be noted though that the MIPS database contains additional such
data. Schwikowski et al. (2000) have published a combined data set consisting of
interactions from several of these sources . This data set forms the basis for the
present evaluation of the correlation between functions of physically interacting
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proteins.
The correlation between function of linked proteins, calculated as described

above, can be seen in Table 6.1. In light of interactions between translation
related proteins being underrepresented in yeast two-hybrid screens compared to
other methods (von Mering et al., 2002), it may seem strange that translation
turns out to be the cellular role on which protein interactions predict best. There
are however two different properties that influence how well the predictor will
work. The first is how well the interactions are detected by the assay used, in
this case yeast two-hybrid. But it is equally important how much the members
of the cellular role category in reality interact with each other. Given the huge
ribosome complex, the category translation is probably the most favorable in this
respect.

6.3 In silico methods for obtaining functional

links

A number of methods for predicting protein–protein interactions or functional
interactions have already been presented earlier in this thesis (Eisenberg et al.,
2000; Marcotte et al., 1999b,a; Pellegrini et al., 1999). Since these methods can
be thought of as the main protein function prediction methods competing with
ProtFun, it is interesting to compare the performance of them.

To perform the analysis, the Predictome database was downloaded and all pre-
dicted functional links in S. cerevisiae were extracted and divided among classes
(Mellor et al., 2002). In order to not mix up methods of varying performance, an
individual set of predicted interactions was made for each computational method.
As was anticipated from the original articles, it turned out that the vast majority
of predicted interactions were predicted by either the phylogenetic profile method
or the Rosetta stone approach. The analysis was thus focused on these two meth-
ods.

Proteins fused together are likely to attain an increased mutual affinity. It
has even been speculated that fusion proteins might be an evolutionary path to
interacting proteins (Marcotte et al., 1999a). Thus it is likely that the Rosetta
stone methods for function prediction should more correctly be called a methods
for protein–protein interaction prediction—which in turn implies a functional
relationship between the proteins.

Although the predictions made by these in silico methods are far from per-
fect, an evaluation on a set of experimentally verified protein–protein interaction
revealed their accuracy to be comparable to that of yeast two–hybrid screens but
with better coverage (von Mering et al., 2002).

The degree of functional relationship between proteins linked by these meth-
ods was of course already investigated by the authors of the original papers. The
method they used was in fact very much similar to the analysis presented here.
However, rather than assigning proteins to categories and calculating the corre-
lation coefficient within each, the authors have chosen to look at the overlap of
SWISS-PROT keywords between interaction partners. Since we assign function
using the EUCLID method (which in turn look at SWISS-PROT keywords), the
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Table 6.1: Comparison of the performance of several function prediction methods.
The performance of ProtFun was compared to that of several other function prediction methods.
The performance attainable by clustering of microarray expression data was evaluated on the
data by Hughes et al. (2000a). The data set by Schwikowski et al. (2000) was used for evaluating
the use of yeast two-hybrid interactions.

Functional category Array Y2H Fusion Phyl. ProtFun

Amino acid biosynthesis 0.473 0.239 0.531 0.910 0.344
Biosynthesis of cofactors 0.242 -0.012 0.820 0.657 0.308
Cell envelope 0.293 0.394 0.017 -0.027 0.271
Cellular processes 0.427 0.502 0.118 0.950 0.324
Central intermediary metabolism 0.253 0.529 0.210 -0.020 0.341
Energy metabolism 0.449 0.351 0.697 0.922 0.385
Fatty acid metabolism 0.412 0.095 0.009 1.000 0.188
Purines and pyrimidines 0.160 0.315 -0.198 0.390 0.448
Regulatory functions 0.175 0.553 -0.039 -0.001 0.481
Replication and transcription 0.311 0.541 0.339 0.688 0.659
Translation 0.758 0.598 0.198 0.531 0.362
Transport and binding 0.353 0.343 -0.126 -0.001 0.686

Enzyme/non-enzyme 0.303 0.259 -0.079 0.559 0.579

Oxidoreductase 0.352 0.440 0.594 -0.162 0.386
Transferase 0.199 0.346 0.014 0.147 0.489
Hydrolase 0.451 0.327 -0.141 0.673 0.519
Lyase 0.245 -0.016 -0.007 -0.027 0.236
Isomerase 0.179 0.175 -0.016 -0.031 0.202
Ligase 0.148 0.588 0.115 0.337 0.286

two approaches are quite similar. The primary reason for redoing the analysis
is that the keyword assay simply cannot be used to evaluate the performance of
the ProtFun, which does not link proteins. Also, their approach did not reveal
for which type of proteins the methods work and for which it fails. This is quite
valuable information to have when using the methods to predict function.

Marcotte and coworkers have also compared the performance of their method
to both clustering of array data and protein–protein interaction data. They
arrive at somewhat different results than us, as protein–protein interactions and
phylogenetic profiles were found to be roughly equally good, while clustering of
array data was clearly worst. The comparable ability of in silico predictions and
yeast two–hybrid to predict function is consistent with their similar accuracy at
identifying protein–protein interactions (von Mering et al., 2002).

The much worse performance of expression clustering observed in that study
compared to the one presented here, is most likely explained by the choice of
data sets. Where the present comparison uses the very comprehensive Rosetta
compendium (which was not available in 1999), they had to resort to data sets for
the diauxic shift, mitotic cell cycle and sporulation (DeRisi et al., 1997; Spellman
et al., 1998; Chu et al., 1998). The conditions under which expression has been
measured is obviously crucial to how well clustering proteins will have related
functions.
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6.4 Comparison of the methods

Based on the results presented in Table 6.1, it can be concluded that ProtFun
compares favorably to all of the other methods tested. If looking at the average
performance (ROC area) over the 12 cellular role categories, ProtFun is the second
best method, only surpassed by phylogenetic profiles. However, the coverage
obtained with phylogenetic profiles is less than 10% (data not shown), more than
an order of magnitude lower than ProtFun which makes a prediction for every
sequence. If focusing on enzyme categories rather than cellular roles, ProtFun
has by far the highest average performance of all methods—and of course still
gives full coverage in contrast to the other methods.

Compared to high-throughput expression or interaction data analysis, the
predictions made by ProtFun give better quality and coverage without the need
for doing the experiments. Needless to say, these high throughput methods have
other virtues than being usable for predicting function.

It is also interesting to note, that the performance obtained for various func-
tional categories varies much less for ProtFun than for the two types of in silico
functional links (see Table 6.1). The ProtFun thus seems to be the most gener-
ally applicable of the methods, while the others are more likely to excel on some
classes of proteins and fail completely on others.

6.5 Comparison with a method for E. coli

Although our predictor has been trained on human sequences and is not very well
suited for predicting on bacterial protein sequences (see Paper IV), nonetheless
an attempt will be made to compare the performance of ProtFun to that of King
et al. (2001). At the cellular role level they obtained an specificity (called accuracy
in the paper) of 69% and a coverage of 20% when not making use of sequence
similarity. This is the performance that should be compared to that of ProtFun.

It is not obvious how this should be done as ProtFun does not assign each
protein to one cellular role, but instead assigns a probability for each category.
To make matters worse, these probabilities cannot be interpreted as true prob-
abilities when working with organisms where the breakdown on cellular roles is
very different from that of H. sapiens.

To address these problems, the specificity was plotted as a function of sensi-
tivity for each cellular role category using the labeled E. coli data set described
in Paper IV. From visual inspection of these plots, a “probability” threshold was
selected for each categories for which ProtFun works acceptably on E. coli pro-
teins. For categories where the performance was not acceptable, a threshold of 1
was used, i.e. no proteins were predicted to belong to those categories.

Using the selected thresholds, the overall specificity and coverage for the
E. coli genome was estimated to be 44% and 38% respectively. Compared to
the predictor by King et al., ProtFun makes predictions of the function of almost
twice as many proteins, but with a much lower specificity. It is worth noting that
the specificity of 44% percent is still far better than the 11% obtained by simply
guessing on the most common category (transport and binding).



Chapter 7

Applying the scheme to other
functional classifications

Having convinced ourselves that the ProtFun approach to function prediction is
indeed a competitive and a generally applicable one, it is time to collect the fruits
by applying the method to other classification schemes and data sets.

7.1 A baseline for protein–protein interaction

prediction

The first application of the ProtFun approach which will be briefly mentioned is
a quite unusual one, as the method is not applied to classification of individual
proteins but pairs of proteins.

In Chapter 6, it was shown that interacting proteins often have similar func-
tion and that this can be utilized to predict protein function. As correlations
always go both ways, the reverse is of course also true: proteins with similar
function are more likely to interact than randomly selected proteins. We can
thus expect to predict pairs of interacting proteins from sequence derived fea-
tures with a performance which is better than a random guess.

Still, the method will mainly rely on the trivial fact that proteins have to
be the same place in the cell in order to interact. It does not take into account
the three-dimensional structure of the proteins that interact nor the energetics
of their interaction. Hence the performance of this method should be regarded
as a baseline performance for protein–protein interaction prediction. A method
relying on structure should at least perform better than this baseline in order to
be interesting.

7.1.1 Creating positive and negative sets for protein
interactions

From the Database of Interacting Proteins (DIP) (Xenarios et al., 2001), 2,669
pairwise interactions between S. cerevisiae proteins were extracted. The majority
of these were identified from high throughput yeast two–hybrid screens. Duplicate
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interactions were removed so that interactions were only counted in one direction.
This resulted in a set of 1,867 protein pairs which make up the positive set.

As is so often the case in the field of bioinformatics, it is much more difficult
to obtain a good quality set of negative examples. Databases of protein–protein
interactions simply do not report if two proteins have been shown not to interact.
A negative set was constructed by a 32-fold downsampling of the pairs of proteins
involved in the interactions making up the positive set. Discarding interactions
included in the positive set, this resulted in a negative set of 13,879 protein pairs.

7.1.2 Training on pairs of proteins

The protein–protein interaction predictor was trained very much as original Prot-
Fun method, except for two adaptations made to encompass pairs of proteins.
Each protein pair was simply represented in feature space by concatenating the
feature vectors for the two proteins. In order to ensure symmetry when training
the method, all examples were duplicated with the two proteins swapped.

The best feature combination was searched for, using the previously described
heuristic (see Paper II), with the modification that the performance of each fea-
ture combination was evaluated by five-fold cross validation rather than a single
test set.

7.1.3 Performance mainly due to subcellular localization

features

Table 7.1 shows the performance of the top five feature combinations as well as
the best performing individual features. The correlation coefficient of 0.188 is not
good enough for this method to be used in practice for interaction prediction, but
that was never the intention either. The purpose is to define a lower limit for the
performance of structure based protein–protein interaction predictors.

Table 7.1: Baseline performance for protein–protein interaction prediction. Using a
ProtFun-inspired approach, protein–protein interaction predictors were trained on yeast two–
hybrid data to establish a baseline for other prediction methods.

Feature(s) Correlation

AI, Natom, Nneg, PSORT 0.188
GRAVY, Natom, Nneg, PSORT 0.183
AI, GRAVY, Nneg, TargetP 0.183
Natom, Nneg, Npos, PSORT 0.182
AI, GRAVY, SignalP 0.178

TargetP 0.146
PSORT 0.143
SignalP 0.136
GRAVY 0.123
SEG 0.116
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That the method does indeed represent the baseline described above, can
be seen from analyzing the feature usage that underlies the performance. By
comparing the performances of the best feature combination and the best single
feature (PSORT) it is evident that most of the performance can be attributed
to predicted subcellular localization. It is not only the PSORT feature that can
provide this information, it can largely be replaced by predictions by either the
SignalP or the TargetP method (see Table 7.1).

The baseline performance presented here is likely to be a conservative esti-
mate of the actual correlation between subcellular localization of protein–protein
interactions. One reason for this is that the subcellular localization predictors are
not perfect. Another more important reason is, that as the positive set is mainly
based on yeast two–hybrid experiments it can be expected to contain in the order
of 50% false positives (Ito et al., 2001; Mrowka et al., 2001; von Mering et al.,
2002). The error rate of the negative set is more difficult to estimate, but could
easily be equally large. These large error rates are likely to lower the correlation
coefficients obtained.

7.1.4 Too good to be true

Other researches have also tried training methods for predicting protein–protein
interactions from sequence alone. Bock and Gough have trained a Support Vector
Machine (SVM) using DIP as their positive set in a similar manner to the method
described above (Bock and Gough, 2001). In their sequence representation all
sequences are normalized to the same length, and each amino acid residue is
converted into residue properties such as charge and hydrophobicity. This is
similar to our binning schemes but is more fine grained and retains more of the
original sequence information, thus possibly allowing their method to recognize
conserved domains.

Using this approach, they manage to predict 80% correct on a balanced data
set. Given that a specificity in the order of only 50% has been estimated for
the type of interaction data they used to create the test and training sets, the
reported accuracy is literally too good to be true. The method would have to not
only correctly predict which proteins interact, but also which ones are erroneously
listed as interaction partners in DIP.

I strongly suspect that the problem lies in the choice of the negative set: lack-
ing a database of non-interacting protein pairs, the authors chose to use shuffled
sequences instead. This can give rise to serious problems as the machine learning
method may simply learn to discriminate between real and shuffled sequences.
Being aware of this problem, the shuffling was performed conserving mono-, di-,
as well as tri-residue frequencies. Although the performances archived on these
three sets were very similar, it is still possible that the shuffling procedure causes
the problem and the the SVMs are merely capable of discriminating real pro-
tein sequences from shuffled ones. The proper way to test this is to check if
the method predicts the majority of randomly sampled pairs of proteins to be
interaction partners.
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7.2 The yeast mitotic cell cycle

As S. cerevisiae is the best experimentally characterized eukaryote, the second ap-
plication of ProtFun will also be on yeast proteins. In Chapter 6 it was discussed
how well cellular role categories can be predicted from microarray expression
studies.

Gene expression patterns are much better correlated to certain other func-
tional classes of proteins. The example that will be discussed here is cell cycle
related proteins, many of which will display periodic expression profiles through
the mitotic cell cycle.

7.2.1 The need for a sequence based predictor

While many of the genes exhibit periodic expression, this is not sufficient for
finding all proteins involved in the mitotic cell cycle. The concentration of ma-
ture proteins can also be regulated at the protein level by controlled conversion
of precursors into mature proteins as well as by controlled degradation. Also,
the activity of the proteins present can be regulated—for instance by reversible
phosphorylation. This means that the active concentration of a protein can vary
during the cell cycle even if the transcript concentration is constant.

A more technical problem has to do with the detection limit and background
noise level of microarray data. Genes expressed at very low copy numbers in the
cell cannot be measured reliably using current microarray technologies. Because
there is a certain level of background noise on the measurements, the signal-to-
noise ratio becomes worse for genes expressed at low levels. A periodicity in the
signal can therefore be lost in the noise, making it difficult to identify the cell
cycle related proteins that are expressed in low copy numbers. To make matters
worse, the primary regulators of the cell cycle are among those proteins.

Making a sequence based predictor of cell cycle proteins is one way to cir-
cumvent these problems. Using the periodically expressed genes identified from
microarray experiments for training, a ProtFun-like predictor of cell cycle pro-
teins has been developed and subsequently applied to a data set of all S. cerevisiae
protein sequences.
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Summary

DNA microarrays have been extensively used to identify cell cycle reg-
ulated genes in yeast, but there is surprisingly little overlap in the genes
identified. We present a characterization of cell cycle proteins and
show that certain protein features can be used to distinguish cell cycle
regulated genes from other genes (features include protein phosphory-
lation, glycosylation, subcellular location and instability/degradation).
We demonstrate that co-expressed genes encode proteins which share
combinations of features, and provide a first in-silico view of the pro-
teome dynamics during the cycle. An entirely sequence-based machine-
learning method was trained to identify cell cycle proteins in the yeast
proteome. The method identified many novel putative cell cycle pro-
teins, most of which presently have unknown function.

Introduction

The eukaryotic cell cycle is a large and complex system regulated at many levels
by diverse mechanisms (Mendenhall and Hodge, 1998; Breeden, 2000; Tyers and
Jorgensen, 2000). One goal of cell cycle research is to uncover the size and
complexity of the underlying molecular system, by identifying all cell cycle genes
and proteins (Nurse, 2000). Two DNA microarray studies have recently been
performed in S. cerevisiae in which the expression level of each gene in the yeast
genome was measured during the cell cycle (Cho et al., 1998; Spellman et al.,
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1998). These data have been analyzed by visual inspection (Cho et al., 1998),
Fourier analysis and correlation to profiles of known cell cycle genes (Spellman
et al., 1998), as well as by a single-pulse statistical model (Zhao et al., 2001).
Each study proposed a list of periodicly expressed genes based on their analysis
of the data. However, pronounced discrepancies exist between these lists of cell
cycle regulated genes, as shown in Figure 7.1.

In these studies, 940 genes were proposed to be periodic, yet less than half of
them (397) were identified in at least two studies and only 144 genes were found
in all three studies. Zhao et al. (2001) analyzed the three cell cycle experiments
(synchronized with α-factor, Cdc28 and Cdc15) individually and concluded that
1,088 genes showed significant periodicity in one of the experiments, 260 were
periodic in at least two of three and only 71 genes were significant in all three
experiments (Zhao et al., 2001). A recent analysis of the data (Shedden and
Cooper, 2002) also concludes that reproducibility is poor. Together, these obser-
vations demonstrate discrepancies both between conclusions drawn by different
research groups (Figure 7.1), and between the three different synchronization ex-
periments analyzed with the same method. Furthermore, our analysis indicates
that weakly expressed genes are underrepresented among the proposed periodic
genes, probably due to the low signal-to-noise ratio for such genes in DNA mi-
croarray experiments.

Our results demonstrate that many cell cycle proteins display correlations be-
tween features, which are different from the average yeast protein. These features
include phosphorylation, glycosylation, stability and/or disposition for targeted
degradation and localization in the cell. Further analysis reveals systematic tem-
poral variations in protein feature space during the cell cycle, demonstrating that
many co-expressed cell cycle genes encode proteins that share the same features.
Each of the four cell cycle phases, G1, S, G2 and M, displays different charac-
teristics that can be related to events specific to these phases. Based on the
discriminative features as input, neural networks were trained to identify cell cy-
cle proteins in the yeast proteome. A similar feature based classification approach
has previously been employed for orphan function prediction of human proteins
(Jensen et al., 2002). Our method identifies a large number of new putative cell

Figure 7.1: Extent of Agreement between the Published Lists of Periodicly Expressed
Transcripts. Data shown for (Cho et al., 1998) (green, 421 genes), (Spellman et al., 1998)
(red, 800 genes) and (Zhao et al., 2001) (blue, 260 genes).
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cycle proteins undetected in DNA microarray studies.

Results and discussion

Based on a periodicity analysis of the publicly available microarray data (Spell-
man et al., 1998), a training set was selected consisting of 97 proteins displaying
very significant periodicity in expression during the cell cycle, along with 556
proteins encoded by non-periodic genes. Although S. cerevisiae was the first eu-
karyotic organism to be sequenced (Goffeau et al., 1997), annotations of protein
features such as post-translational modifications, subcellular localization, trans-
membrane helices, etc. are only available for a subset of the proteins encoded in
the genome. Our method is therefore based on protein features calculated or pre-
dicted from the amino acid sequence by a set of well-documented bioinformatics
tools and predictors (Jensen et al., 2002), see Figure 7.2.

Neural networks were then trained to distinguish the cell cycle proteins from
the non-cell cycle proteins solely based on their features. Hundreds of protein
feature combinations were tested in an iterative fashion, selecting for those com-
binations that led to the best classification performance (see Experimental Pro-
cedures). This heuristic approach resulted in an ensemble of five neural networks
integrating different protein features, as depicted in Figure 7.2. The output from
individual networks was combined into one final probability score, with high val-
ues corresponding to cell cycle proteins. The ensemble obtained a Matthews
correlation coefficient in the range of 0.4–0.5, with a very low false positive rate
of less than 1% and a sensitivity of 20–30%. This means that high scores are to
be taken as strong supporting evidence for a cell cycle role, whereas low scores
are less conclusive. In other words, the method will not identify all cell cycle pro-
teins, rather it is suited for finding new putative candidates that may be missed
by other techniques. The neural networks detect complex correlations in protein
feature space characterizing diverse cell cycle proteins that do not necessarily dis-
play any similarity in amino acid sequence, three-dimensional structure or gene
expression.

Characteristic features of cell cycle proteins

The discriminative features selected by the neural networks (Figure 7.2) provide
an interesting characterization of cell cycle proteins as a class. Serine/threonine
protein phosphorylation proved very useful for the classification. Our findings in-
dicate that high potential for serine/threonine protein phosphorylation are over-
represented in cell cycle proteins—which is well known and consistent with the
involvement of multiple serine/threonine kinases, e.g. the yeast Cdk, Cdc28p, in
cell cycle regulation (Mendenhall and Hodge, 1998). The predicted subcellular
localization also proved very valuable for the discrimination. Cell cycle proteins
appear to be overrepresented in the nuclear and cell wall categories, most likely ex-
plained by their involvement in processes such as transcription, DNA replication,
repair, chromatin functions, budding and cell wall formation. Other correlations
picked up by the neural networks indicate that many cell cycle proteins are unsta-
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Figure 7.2: Schematic Illustration of the Neural Network Approach. Protein features
were derived from the amino acid sequence and integrated in different combinations by neural
networks. The features selected for best discriminative performance were: Instability index
(Guruprasad et al., 1990), O-GalNAc glycosylation (Hansen et al., 1998), subcellular localiza-
tion (Nakai and Horton, 1999), aliphatic index, serine/threonine phosphorylation (Blom et al.,
1999), isoelectric point, extinction coefficient, number of positively charged residues, PEST
regions (Rechsteiner and Rogers, 1996), N-linked glycosylation (Ramneek Gupta, unpublished
results) and sequence length. The edges in the figure illustrate which features were integrated
in each of the five networks that make up the ensemble. The following features were tested
and discarded in the process due to their relatively poor discriminative value in input combi-
nations: Tyrosine phosphorylation (Blom et al., 1999), signal peptides (Nielsen et al., 1997a),
O-GlcNAc glycosylation (Ramneek Gupta, unpublished results), transmembrane helices (Krogh
et al., 2001), hydrophaticity (GRAVY) (Kyte and Doolittle, 1982), amino acid composition and
number of negatively charged residues.

ble (have a high instability index) and/or contain so-called PEST regions in their
amino acid sequence—regions known to be recognized by ubiquitin ligating com-
plexes as such the Anaphase Promoting Complex/cyclosome (APC/C) and the
Skp1p-Cdc53p/Cullin-F-Box protein complexes (SCF) that target numerous cell
cycle proteins for degradation by the proteasome (Tyers and Jorgensen, 2000).
Many cell cycle regulated proteins appear to have high potentials for N-linked
glycosylation—a post-translational modification found almost exclusively in se-
creted or extracellular proteins—suggesting that many of these proteins could
be related to budding and cell wall formation. Although of less discriminative
value, cell cycle proteins seem to contain, on average, more positively charged
residues. All in all, these findings are consistent with existing knowledge that
phosphorylation, localization and degradation are key regulatory mechanisms of
the cell cycle, see e.g. Mendenhall and Hodge (1998); Tyers and Jorgensen (2000);
Breeden (2000).
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Proteome-wide prediction of cell cycle proteins

The trained neural network prediction method was applied to the entire S. cere-
visiae proteome, to identify new putative cell cycle regulated proteins. Among
the highest scoring 250 proteins (not used when training the method) were 75
previously suggested to be periodic in at least one of the three DNA microarray
studies (Cho et al., 1998; Spellman et al., 1998; Zhao et al., 2001), along with
175 new putative cell cycle proteins. There is large diversity in both annotated
function and subcellular localization of these proteins, which include nuclear, cell
wall, membrane, cytoplasmic and cytoskeletal proteins. However, most of these
potential cell cycle proteins have no known function, role or subcellular location,
suggesting a high potential for new biological discoveries. A list of the top scoring
500 proteins is available from the website: http://www.cbs.dtu.dk/cellcycle.

The highest scoring of all proteins in the S. cerevisiae proteome is encoded
by the gene YIL169C. It has no known function and was only identified as pe-
riodic in one of three microarray studies (Cho et al., 1998). The protein was
earlier reported to interact with the two known cell cycle proteins, Mob1p and
Fus3p (Ito et al., 2001). Mob1p is required for cytokinesis and mitotic exit (Luca
et al., 2001), whereas the FUS3 gene encodes a MAP Serine/Threonine kinase.
Recent genome-wide location data suggest the promoter region of YIL169C to
be associated with at least one known cell cycle transcriptional activator, Fkh2p,
possibly also Ndd1p and Fkh1p (Simon et al., 2001). Taken together, these data
support a cell cycle role for YIL169C, as suggested by the neural network ensem-
ble. Prediction of phosphorylation sites (Blom et al., 1999) indicates Yil169p to
be heavily phosphorylated on serine and threonine residues, making it a puta-
tive substrate of Fus3p. Also, the sequence is predicted (Rechsteiner and Rogers,
1996) to contain several PEST regions, indicative of a high potential for targeted
degradation. The neural network ensemble suggests many other candidates for
which we have been able to find supporting evidence, demonstrating the strength
of the sequence-based approach in identifying new potential cell cycle proteins.

Some of the high scoring proteins are encoded by genes with low intensities
in the microarray studies, indicating poor hybridization or weak expression. Fig-
ure 7.3 shows an underrepresentation of weakly expressed genes in all three sets
of microarray identified periodic genes. Among the weakest 15% of the genes
(with respect to signal intensity on the microarray chips) there also appears to
be a correlation between the number of periodic genes proposed and the fraction
of weakly expressed genes, e.g. among the 260 genes found significantly periodic
by Zhao et al. (2001) only 7.4% fall within the 15% intensity fractile. In compar-
ison, 18.2% of the genes identified by our method fall within the lowest 15% of
the intensity distribution. Our method may therefore identify cell cycle proteins
previously undetected on microarrays, due to the poor signal-to-noise ratio. The
majority of these genes have no known function or cellular role.

Table 7.2 shows a selection of new putative cell cycle proteins suggested by the
neural network ensemble, all of which are unidentified as periodic in microarray
studies and encoded by weakly expressed genes (among the 15% signal intensity
fractile). The last column in Table 7.2 lists additional supporting evidence, ei-
ther interaction with other proteins or binding of known cell cycle transcription
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Figure 7.3: Average Intensity Distributions of Selected Gene Sets. The figure shows
smoothed distributions of average intensity for the entire S. cerevisiae genome, the cell cycle
genes proposed by Spellman et al. (1998), by Cho et al. (1998), by Zhao et al. (2001) and the
500 top-scoring genes from the neural network approach. The average fluorescence intensity
was computed for each gene in each of the three cell cycle time series experiments (Cho et al.,
1998; Spellman et al., 1998)). Within each experiment, the average intensities were converted
into fractiles. The median fractile over all three experiments was then used as measure of the
average intensity of each gene. For more details, see our website.

factors to the promoter region of the gene. For example, the protein encoded
by YPL070W, which has no known function, but reported interactions with the
cyclin-dependent kinase, Cdc28p, and with two proteins Nip29p (Spc29p) and
Tem1p of the yeast spindle pole body (SPB). The gene product is predicted to
be heavily phosphorylated, especially on serine residues. Ypl070p may thus be a
potential substrate of Cdc28p and may play a role in the cell cycle in relation to
the SPB.

Temporal variation of the cell cycle proteome subset

To assess temporal variations in protein feature space during the cell cycle, we
mapped the 500 highest scoring proteins from the prediction to time points in
the cell cycle, based on the time of maximal expression of their encoding genes
in the three microarray experiments (Spellman et al., 1998). Of these genes, 309
could be confidently assigned a time of maximal expression. A circular plot was
constructed (Figure 7.4) where each circle corresponds to a particular feature,
with one color for time points where the proteins expressed have higher values
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Table 7.2: Weakly Expressed Putative Cell Cycle Proteins. S. cerevisiae proteins sug-
gested by the neural network ensemble, all of which appear non-periodic and weakly expressed
(among the 15% intensity fractile, see Figure 7.3) in DNA microarray experiments (Cho et al.,
1998; Spellman et al., 1998; Zhao et al., 2001). Data for promoter association with known cell
cycle transcriptional activators were taken from the publicly available data by Simon et al.
(2001). Protein–protein interaction data refers to 1) Uetz et al. (2000), 2) Ito et al. (2001),
3) Tong et al. (2002), 4) Bertram et al. (2002), 5) Bender et al. (1996), 6) Ho et al. (2002) and
7) Deane et al. (2002). Interactions with proteins previously identified as periodicly expressed
are marked in bold.

Protein Function Selected physical interactions

Tri1p Unknown Rad51p1, Top1p1,2 , Pet11p1

Yfr022p Unknown Yor264p2

Ylr312p Unknown Mpd2p1, Nup116p2

Ypl070p Unknown Cdc28p1 , Tem1p2, Nip29p2

Yjl215p Unknown Yor264p2, Gcn3p2

Yil092p Unknown Cpr8p2

Gln3p Transcription factor Sho1p3, Gts1p1 , Tor1/2p4

Npr2p Nitrogen permease regulator Bbp1p2, Yor138p1

Mus81p DNA repair Clb2p1, Rad53p6 .
Boi1p Bem1p-binding protein Bem1p5, Hof1p3, Zds2p1,3

Protein Function Promoter associated with

Ygl007p Unknown Fkh2p, Ndd1p, Mcm1p, Ace2p, Swi4p
Ynl269p Unknown Swi5p, Ace2p, Swi6p
Ydr287p Unknown Mcm1p
Ypr115p Unknown Ace2p, Mbp1p
Ydl187p Unknown Swi4p
Yjl160p Unknown Swi5p, Mcm1p, Ace2p
Tos3p Ser/Thr protein kinase Swi4p, Swi6p
Pcl10p Cyclin Swi6p

of this feature than the cell cycle average, and another color (usually dark) for
values lower than the cell cycle average. The strength of a particular feature
(e.g. isoelectric point) was computed at all time points during the cell cycle by
averaging over proteins whose encoding genes peak in the neighborhood of the
particular time point. This yielded a division of the cell cycle into a circular
“clock”, with each time point corresponding to one percent of the cell cycle.
Zero time was set to be the presumed position of G1 phase entry, right after cell
division.

Figure 7.4 thus offers a novel in-silico view of the cell cycle proteome dynam-
ics and reveals intriguing temporal variations in characteristic features of these
proteins during the cell cycle. The time resolution of this “clock” is much higher
than the conventional division of the cycle into four phases (G1, S, G2 and M) de-
picted inside the feature circles of Figure 7.4. Our results demonstrate that genes
maximally expressed at the same stage in the cell cycle appear to share features at
the proteome level. The patterns observed in Figure 7.4 were largely conserved
in similar plots representing the sets of periodic cell cycle proteins previously
identified in the microarray studies (Cho et al., 1998; Spellman et al., 1998; Zhao
et al., 2001) (data not shown), suggesting that the feature patterns of Figure 7.4
may be considered representative of the entire yeast cell cycle proteome. Also
depicted in Figure 7.4 are known cell cycle transcriptional activators (marked in
blue) positioned at the time where they are reported to function (Simon et al.,
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Figure 7.4: In-silico Proteome Dynamics during the Cell Cycle. Shows the temporal
variation in 9 selected protein features during the cell cycle, with zero time (at the top of the
plot) corresponding to the presumed time of cell devision (M/G1 transition). The color scales
correspond to ± two standard deviations from the cell cycle average. From inner to outer the
circles correspond to: isoelectric point, nuclear and extracellular localization predictions (Nakai
and Horton, 1999), PEST regions (Rechsteiner and Rogers, 1996), instability index (Guruprasad
et al., 1990), N-linked glycosylation potential, O-GalNAc glycosylation potential (Hansen et al.,
1998), serine/threonine- and tyrosine phosphorylation potential (Blom et al., 1999). Inside the
circles are marked the presumed positions of the four cell cycle phases: G1, S, G2 and M. Also
depicted are known cell cycle transcriptional activators (marked in blue), positioned at the time
where they are reported to function (Simon et al., 2001), along with nine cyclins (marked in
orange), placed at the time where their genes are maximally expressed. Most of the cyclins are
believed to activate Cdc28 kinase activity when expressed, but it should be noted that Clb5p
and Clb6p are kept inactive in G1 phase by the inhibitor protein Sic1p (Mendenhall and Hodge,
1998; Breeden, 2000).

2001), along with nine cyclins (marked in orange) placed at the time where their
genes are maximally expressed.

Figure 7.4 displays a complex pattern of up and down regulated features
right at the top of the plot, at the suspected time of late M phase, cytokinesis
and cell devision, where the cell completes the cycle. This pattern is followed
by a large uniformly colored area in G1, indicating that no features are over-
or under-represented among the proteins expressed here. This is taken over by
a very distinct feature pattern late in G1, where proteins have a large number
of features in common, particularly post-translational modifications and PEST
regions. Most of these features display the opposite pattern upon entry into what
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we believe to be the S phase, indicating the S phase proteins to be preferentially
nuclear, characteristic of high isoelectric points, fewer PEST regions and lower
potentials for glycosylation. Only few features stand out in the presumed G2
phase, where proteins appear to have high instability index, indicating short life
time. Almost as a burst, we observed the potential for serine and threonine
phosphorylation to be significantly higher in a small window in G2, where the
tyrosine phosphorylation potential is at the same time very low. This pattern
coincides with the reported activity of several transcriptional activators and the
maximal expression the two cyclins genes CLB1 and CLB2. The last differential
feature pattern is seen towards the end of the cell cycle in M phase and at the
transition to the next cycle.

Protein phosphorylation during the cell cycle

The changing patterns of phosphorylation are particularly interesting. Although
only serine/threonine phosphorylation was found of discriminative value for iden-
tifying cell cycle proteins, we observe significant temporal variations in both ty-
rosine and serine/threonine phosphorylation at three stages in the cell cycle—all
with a different correlation between the two types (Figure 7.4). Proteins mapped
to time points 20–30% into the cell cycle have high potentials for both kinds
of phosphorylation with the tyrosine potential rising first. The next differential
phosphorylation pattern is seen 60–70% into the cell cycle, where proteins have
high potentials for serine/threonine phosphorylation, but very low potentials for
tyrosine phosphorylation. Towards the end of the cell cycle, before cell division,
tyrosine phosphorylation stand out again, whereas the serine/threonine phospho-
rylation reaches its lowest level. These observations are at least in part consistent
with previous biological observations that the activity of the cyclin dependent ki-
nases rises during the cell cycle from the G1/S transition (START) until the end
of Mitosis, where it drops due to activity of inhibitors and targeted degradation
of the cyclins, see e.g. Mendenhall and Hodge (1998); Lew et al. (1997). How-
ever, our results surprisingly suggest tyrosine phosphorylation to be significantly
more abundant among proteins expressed both at the suspected G1/S transition
and towards the end of the cell cycle in mitosis. It may be that serine/threonine
phosphorylation serves as the primary “engine” of the cell cycle, and that tyrosine
phosphorylation is only involved in the initial and terminal stages of the cycle.

The G1/S transition (START)

The rise in tyrosine phosphorylation potential 17% into the cell cycle, that reaches
a local maximum at 20–30% together with the serine/threonine phosphorylation,
correlates well with the maximal expression of several cyclins (CLN1, CLN2,
CLB5, CLB6 ), with the expression of genes involved in budding (BUD9, BNI4,
GIN4, CSI2, CRH1, AXL2, SVS1, QRI1, MCD4, RSR1, MSB2, MNN1 ) and
DNA replication/repair (PRI2, DPB2, POL12, POL30, DBP2, CDC9, CDC21,
RAD53, MSH6, RFA1, RAD27, RNR1, SLD2, CTF18, TOF1, RFA2, OGG1,
CDC45, HYS2, MSH2, POL2 ). Together, these data suggest the feature space
pattern 20–30% into the cell cycle to be a fingerprint of the G1/S transition
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Table 7.3: Neural Network Identified G1/S Proteins. Protein identified by the neural
network ensemble which are maximally expressed 20–30% into the cell cycle, at the presumed
G1/S transition. See Table 7.2 for references on protein–protein interactions and promoter
association with known cell cycle transcriptional activators. MBF (a complex of Mbp1p and
Swi6p) is believed to predominantly activate genes involved in DNA replication and repair,
whereas SBF (a complex of Swi4p and Swi6p) activate genes related to budding and cell wall
formation (Simon et al., 2001).

Protein Selected physical interactions Promoter Function

Csi2p Chitin synthesis
Msb2p Bni4p7, Cla4p1 SBF Bud site selection
Rsr1p Bem1/4p1 , Cdc24p1 , Sec15p1 Bud site selection
Axl2p Bud site selection
Crh1p Arr4p2, Lys14p2, Ynl092p2 SBF, Swi5p Cell wall protein
Tos6p Nup116p2 SBF Cell wall protein, probable
Slg1p Rom2p7 Cell wall integrity
Mpd1p Ypr085p2 Disulfide isomerase
Scw10p Sua7p2 SBF Putative Glucanase
Yps1p Aspartyl Protease
Spa2p Bni1p7, Ste7/11p7 , Msb3/4p7 Cell polarity, budding
Svs1p SBF Ser/Thr rich protein
Rad53p Asf1p7, Rad9p7 , Dbf4p7 Cell cycle checkpoint kinase
Asf1p Rad53p7 , Hht1p7 Component of RCAF
Mcd1p Cdc5p7, Irr1p7, Scc2p7 , Smc1/3p7 MBF Cohesin
Sld2p Dpb11p7 DNA replication
Zds2p Bni1p7, Sir1/2/4p7, Cdc11p7 , Rho1p7 Transcriptional silencing
Opy2p Swi6p Probably cell cycle regulation
Yer028p Ybr061p2 Contains zinc finger domains
Gpi16p Arf1/2p6, Pho89p2 , Yjr015p1 GPI-anchor transamidase
Pry2p SBF Function unknown
Tos2p Cdc24p7 , Pkc1p7 SBF Function unknown
Tos4p Ylr037p2 Function unknown
Prm5p Bud2p1, Msn1p2, Atp14p2 Function unknown
Erp3p Mbp1p Function unknown
Srl3p Mec3p2, Stb1p2 Function unknown
Ybr089p Rpb9p2 Function unknown
Ydl211p Ara1p2 Function unknown
Yil025p Rpc10p2 , Soh1p2 Function unknown
Yil141p Rrn10p2, Mcm21p2, Srb4p2 Function unknown
Yjl028p Function unknown

(termed START in yeast) evident at the proteome level. Figure 7.4 also indicates
that this group of G1/S proteins contains many members with PEST regions, low
isoelectric point, high potential for phosphorylation and glycosylation, and the
group is also predicted to be rich in extracellular proteins or proteins related to
the cell wall. The latter correlate well with proteins involved in budding and
cell wall formation. Table 7.3 shows the neural network identified G1/S proteins,
their interactions, activators and annotated function.

The G2 phase

Another interesting phosphorylation pattern is the burst in serine/threonine phos-
phorylation seen 60–70% into the cell cycle (Figure 7.4). It coincides with the
maximal expression of the two cyclins Clb1p and Clb2p, and with the reported
function of the transcriptional activators Mcm1p, Fkh1p, Fkh2p and Ndd1p that
activate the transcription of G2/M genes (Breeden, 2000; Simon et al., 2001).
Interestingly, our neural network method identifies a number of serine/threonine
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kinases whose genes are maximally expressed before this burst in phosphoryla-
tion potential, namely Ymr291p, Elm1p, Mps1p, Kin4p and Skm1p. Of these,
only Elm1p is identified as a periodic cell cycle gene in microarray studies (Cho
et al., 1998; Spellman et al., 1998; Zhao et al., 2001). Also expressed right before
are the two cyclins Clb3p and Clb4p that activate Cdc28p, along with two other
cyclins, Pcl7p and Pcl10p, that associate with another yeast Cdk, Pho85p. The
proteins with increased phosphorylation potential 60–70% into the cycle may thus
be potential substrates of these kinases and Cdks.

The two forkhead transcription factor genes FKH1 and FKH2 are maximally
expressed around 50% into the cell cycle, in late S or early G2 phase. They
are known to promote transcription of a large number of cell cycle genes in
G2/M (Simon et al., 2001; Breeden, 2000). Both contain a protein domain,
the Forkhead-association domain (FHA), demonstrated to specifically recognize
and bind phosphothreonine epitopes on proteins (Durocher and Jackson, 2002).
Such domains are also present in the DNA damage checkpoint protein Rad53p
and in the protein Tos4p, both of which are recognized by the neural network
ensemble and found to peak at the presumed G1/S transition (see Table 7.3).
Interestingly, the neural network ensemble also identifies a protein, encoded by
the gene YDR200C, which in one of the cell cycle experiments (the Cdc28 arrest)
displays a cyclic pattern of expression similar to that of FKH1/2, and which is
also reported to contain an FHA domain (Letunic et al., 2002; Durocher and
Jackson, 2002). It has no known function, but has reported interactions with
another FHA containing protein of unknown function, YLR238W, with Far3p,
which plays a role in pheromone-mediated cell cycle arrest and with a protein
of unknown function, YNL127W, that shows weak similarity to Fus2p—a pro-
tein involved in cell fusion during mating. YDR200C only appears periodic in
the synchronization experiment performed by Cho et al. (1998) and was conse-
quently not included in any of the published lists of periodicly expressed genes
(see Figure 7.1 and (Cho et al., 1998; Spellman et al., 1998; Zhao et al., 2001)).
However, taken together, the data reviewed above may indicate a cell cycle role
for the protein, as suggested by our neural network ensemble.

The S phase

As seen in Figure 7.4, the late G1 pattern changes completely 35–45% into the
cycle caused by the expression of a new group of proteins characteristic of being
mostly nuclear, having very high isoelectric points, being very stable (low instabil-
ity index and few PEST regions) and displaying lower potential for glycosylation
and phosphorylation than the average yeast cell cycle protein. Among the pro-
teins expressed here are eight histones (Hht1p, Htb1p, Htb2p, Hhf1p, Hhf2p,
Hht2p, Hta1p and Hho1p) supporting the notion that this pattern in feature
space corresponds to the S-phase of the cell cycle. Histones are stable, nuclear
proteins with high isoelectric point and no potential for glycosylation. It might
be suspected that these histones dominate the picture seen in the S phase part
of Figure 7.4, masking a greater diversity in features among the other proteins
expressed here. Since the neural network identification of cell cycle proteins is
completely independent of the DNA microarray data used to map the proteins,
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it would not be expected by chance that genes peaking at a specific phase encode
proteins being similar in feature space. It turns out, however, that the majority of
the non-histone proteins expressed 35–45% into the cell cycle share the same fea-
tures that stand out in Figure 7.4, e.g. genes such as IRS4, SHE1, TOF2, ENT4,
YPL150W and YNR014W all encode proteins with high isoelectric point (all
above 8.0) and predicted to be nuclear. Most of these are previously unidentified
as cell cycle proteins.

Our work has identified a set of protein features characteristic of cell cycle
proteins and provides a first in-silico view into the temporal dynamics of these
key features of the cell cycle proteome. Also, our neural network based method
identifies a large number of new potential cell cycle proteins. Our results are
largely supported by existing knowledge of the cell cycle and by other sources of
experimental data. We hope that our research may inspire future experimental
work to establish the validity of the hypothesizes that arise from our analysis.

Experimental procedures

Training set

A periodicity analysis was performed on the three publicly available synchroniza-
tion experiments (α-factor, Cdc28 and Cdc15) compiled by Spellman et al. (1998),
to identify periodicly as well as non-periodicly expressed genes in S. cerevisiae. A
Fourier like analysis was applied to the data, such that each gene i was assigned
a score Di based on its temporal expression profile during the experiment, with
cell cycle frequency ω = 2π

T
:

Di =
√

(
∑

t
sin(ωt)xi(t))2 + (

∑

t
cos(ωt)xi(t))2

The cell cycle periods, T , estimated by Zhao et al. (2001) were used (58 min for α
experiment, 115 min for cdc15 experiment and 85 min for the cdc28 experiment),
and a combined Fourier score, Fi, was computed as:

Fi =
(Di,α + 0.8 ·Di,cdc15 +Di,cdc28)

3

The contribution from the cdc15 experiment was scaled in the combined score, be-
cause this experiment covers 2.5 cell cycles, whereas the α and cdc28 experiments
cover only two (using the Zhao et al. (2001) estimates). The lowest scoring 556
genes (thresholding at 0.75) were used as examples of “non cell cycle proteins”,
which display no periodic regulation during the cell cycle. By an estimation
method described in detail at our website (http://www.cbs.dtu.dk/cellcycle),
we established a conservative threshold at 6.0 to include 115 genes in a set of very
significantly periodic genes. To ensure consistent behavior over multiple cycle, we
required the Pearson correlation between the expression profiles of the first and
the second cycle to be above 0.4, thereby excluding 18 genes. The procedures
outlined above resulted in a training set consisting of 97 “cell cycle proteins” and
556 “non cell cycle proteins”. This set was used to train neural networks and is
available at our website.
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Neural network training

Three-fold cross validation was used (division of the data set in three different
ways), each with 430 protein sequences for training and 215 for independent
evaluation of the classification performance, which was measured as the Matthews
test correlation coefficient over all three test sets. As input to neural networks we
used protein features derived directly from the amino acid sequence of the proteins
to give a feature space representation of each protein. An iterative heuristic was
applied to select for the most discriminative features and the best performing
combinations of these. Features that proved most discriminative in combinations
of two were used to construct new combinations of three features, from which
the best was selected to form combinations of four, etc. Figure 7.2 shows the
five best input combinations, which were combined into an ensemble of neural
networks. To bring the individual network output into comparable format, the
distribution of test set scores was ranked and used as conversion table for output
from that network, making it possible to simply average all 15 neural network
output scores into one final score (between 0 and 1). Information on the detailed
classification performance of the neural network ensemble can be found at our
website. A prediction was obtained from the ensemble for the entire S. cerevisiae
proteome (set of all translated ORFs from SGD, http://genome-www.stanford.
edu/Saccharomyces/).

In-silico feature proteomics

The three publicly available cell cycle experiments (α-factor, cdc28 and cdc15)
were used to determine the time of maximal expression of the identified cell cycle
genes. The time series data was normalized within each experiment with the
cycling times estimated by Zhao et al. (2001) to bring the data on a compa-
rable time scale. Within each experiment, the time of maximal expression was
compared between two consecutive cycles, averaging the two time points if they
deviate less than 20% of the cell cycle. Experiments that met this self-consistency
criteria were compared and subjected to the same criteria. This way, an average
peak time was computed for the self-consistent genes (based on one, two or three
experiments). The three experiments were aligned by comparing the distribution
of peak times for genes known to peak in the G1-phase (Spellman et al., 1998),
and furthermore shifted to set zero time to the suspected time of cell devision
(early G1). The average peak time thus indicates how many percent into the cell
cycle a given cell cycle protein is maximally expressed. Out of the neural network
ensembles 500 top-scoring proteins, 309 met the self-consistency criteria and were
assigned an average peak time.

The cell cycle was divided into 100 time points and the average value of a
given feature was calculated in each of time point by averaging over the proteins
expressed in a window of ± 5 time points. The average feature values were
visualized with respect to their deviation from the average value of all 309 cell
cycle proteins, using one color for values higher than the average and another
color for lower values. The extremes of the color scale was set at ± two standard
deviations. The nine most interesting features were combined into the in-silico
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proteome “clock” shown in Figure 7.4.
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7.3.1 DNA binding proteins

The histones discussed in Paper V are a good example of how the ProtFun ap-
proach works. One of the characteristics of the histone proteins are their high
isoelectric points, which cause the histones to be positively charged in the cell.
This is indeed a key property for proteins that bind constitutively to DNA, as it
is negatively charged. This property can thus be expected to hold for bacterial
proteins involved in DNA compaction as well, although they are not believed to
be evolutionarily related to histones. This is at least true for the FIS protein
from E. coli.

7.3.2 Predicting human cell cycle proteins

One of the most intriguing aspects of this predictor is, that it might be able to
predict cell cycle related proteins in the human genome. Although it has not
been verified yet, it is not unreasonable to expect the method to generalize to all
eukaryotes given the cross-species comparison of ProtFun presented in Paper IV.
Considering the close biological relation between cancer and regulation of the cell
cycle, this would be a very interesting application of the method described in
Paper V.

7.4 An archaeal enzyme predictor

From the cross species testing of ProtFun (see Paper IV), it is clear that although
ProtFun works surprisingly well on prokaryotes, the performance is worse than
for eukaryotes. A very important factor for the breakdown of protein subcellular
localization prediction, which obviously makes no sense in a prokaryotic cell. In
addition to these features there might be others, which do not have the same
functional implications in prokaryotes as in eukaryotes. There is thus reason
to believe, that better predictors for prokaryotic proteins can be obtained by
retraining the method.

Because of the more limited selection of meaningful predicted protein fea-
tures when working with prokaryotes, it can be expected to be difficult to predict
cellular roles, as these predictors tend to rely heavily of PTMs and localization
information. Enzyme/non-enzyme and enzyme classes predictors on the other
hand tend to rely on a much broader set of features, hereunder protein struc-
ture features. As these have been shown to generalize well to prokaryotes (see
Paper IV), making new predictors for these classes seems more feasible.

We have developed such a predictor for archaea (see Paper VI). The motiva-
tion for this has been the past few years intense research in using enzymes from
hyperthermophilic archaea for industrial purposes. As many industrial processes
run at fairly high temperatures, there has been a constant quest for finding or
developing more thermostable enzymes. Looking for usable enzymes in hyper-
thermophilic archaea has been one of the most successful approaches—it has
however been hampered by a lack of knowledge of archaea, which have not been
studied nearly as much as bacteria and eukaryotes.
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7.4.1 More proteins of unknown function in Archaea

Compared to bacteria very little experimental work has been done on archaea
relative to the number of genomes that have been sequenced. For this reason
much less is known about archaea and the quality of annotation of their genomes
is correspondingly lower.

The fraction of genes of unknown function in the genomes reflect this fact,
although one should be very careful not simply looking at the fraction of anno-
tated genes that have been assigned a function in the GenBank entry. Again
the problem is inconsistent annotation. In Paper I, it was shown that archeal
genomes in general tend to be more overannotated than their bacterial coun-
terparts. Since random ORFs cannot be assigned to a functional category this
will automatically lead to the higher fraction of unknown proteins claimed in the
whole genome papers of archaea (Kawarabayasi et al., 1999; Fitz-Gibbon et al.,
2002; She et al., 2001; Kawarabayasi et al., 2001; Klenk et al., 1997; Smith et al.,
1997; Bult et al., 1996; Deppenmeier et al., 2002; Slesarev et al., 2002; Galagan
et al., 2002; Kawarabayasi et al., 1998; Ruepp et al., 2000; Kawashima et al.,
2000).

An estimate for the fraction of genes in each genome that are of known function
can be seen in Table 7.4. Here the number of annotated protein coding sequences
that can be assigned to a cellular role by the EUCLID method (see Paper IV) is
compared to the total number of protein coding genes estimated for the genome by
the SWISS-PROT method (see Paper I). While there are several possible sources
of error on both these numbers, resulting in a possibly inaccurate estimate that
could be biased in either direction, these estimates are at least systematic and
can be compared across species.

Looking at Table 7.4 it is realized that for most archeal genomes, 55–60% of
the proteins estimated to be encoded can be assigned a cellular role by EUCLID.
This figure should be compared to 60–75% that can typically be assigned for
bacterial genomes. The reliability of these estimates is supported by the fact
that the experimentally best characterized classes of bacteria fall in the high end
of the interval, whereas the bacteria with the lowest fractions of known proteins
are D. radiodurans and M. tuberculosis.

Among archaea, M. kandleri stand out by having only 44% of its genes as-
signed to cellular roles. The genome turns out to contain two big regions, con-
stituting about a quarter of the genome, which contain essentially no genes of
known function.

7.4.2 Creating the data set

As very few Archaeal proteins have been experimentally verified and character-
ized, it was clear that we could not obtain a sufficiently large data set of sequence
to be able to train a ProtFun-style predictor. Instead we opted for a very large
automatically generated data set, accepting that we would pay the price of hav-
ing a higher error rate. In connection with Paper IV such data sets had already
been generated for all available archaeal genomes where proteins were assigned
as enzymes/non-enzymes and the enzymes were labeled with the major enzyme
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Table 7.4: Comparing the number of estimated protein coding genes to the number
of genes that can be assigned to a cellular role. The actual number of genes in each
genome was estimated using the SWISS-PROT method described in Paper I. Proteins were
automatically assigned to functional classes by the method described in Paper IV. As should
be expected, there are more proteins of unknown function in extremophiles than in well studied
bacteria.

Organism No. genes Cellular roles Enzyme/non-enzyme
estimated No. genes % of No. genes % of

assigned estimate assigned estimate

A. pernix (Kawarabayasi et al., 1999) 1,376 684 50 688 50
P. aerophilum (Fitz-Gibbon et al., 2002) 1,706 867 51 863 51
S. solfataricus (She et al., 2001) 2,288 1,186 52 1,179 51
S. tokodaii (Kawarabayasi et al., 2001) 2,035 1,045 51 1,041 51

A. fulgidus (Klenk et al., 1997) 1,818 1,074 58 1,053 59
M. thermoautotrophicum (Smith et al., 1997) 1,466 867 60 878 59
M. jannaschii (Bult et al., 1996) 1,350 781 58 780 58
M. mazei (Deppenmeier et al., 2002) 2,686 1,420 53 1,440 54
M. kandleri (Slesarev et al., 2002) 1,477 653 44 658 45
M. acetivorans (Galagan et al., 2002) 3,456 1,850 54 1,827 53
P. abyssi (unpublished) 1,497 855 58 861 57
P. horikoshii (Kawarabayasi et al., 1998) 1,448 786 54 781 54
T. acidophilum (Ruepp et al., 2000) 1,250 783 63 791 63
T. volcanium (Kawashima et al., 2000) 1,243 792 64 778 62

Anabaena sp. (Kaneko et al., 2001) 4,020 2,444 61 2,425 60
A. aeolicus (Deckert et al., 1998) 1,337 926 73 983 69
B. burgdorferi (Fraser et al., 1997) 756 461 67 504 61
B. halodurans (Takami et al., 2000) 3,220 2,223 69 2,264 70
B. subtilis (Kunst et al., 1997) 3,263 2,240 72 2,351 69
Buchnera sp. (Shigenobu et al., 2000) 556 469 84 513 92
C. jejuni (Parkhill et al., 2000b) 1,420 975 71 1,015 69
C. pneumonicae (Kalman et al., 1999) 903 530 61 553 59
C. trachomatis (Stephens et al., 1998) 772 498 69 532 65
D. radiodurans (White et al., 1999) 2,323 1,332 59 1,375 57
E. coli (Blattner et al., 1997) 3,771 2,883 79 2,987 76
F. nucleatum (Kapatral et al., 2002) 1,660 1,083 65 1,115 67
H. influenzae (Fleischmann et al., 1995) 1,479 1,183 86 1,277 80
H. pylori (Tomb et al., 1997) 1,303 815 67 869 62
L. lactis (Bolotin et al., 2001) 1,737 1,229 71 1,266 70
M. genitalium (Fraser et al., 1995) 461 332 70 324 72
M. pneumoniae (Himmelreich et al., 1996) 610 441 62 379 72
M. tuberculosis (Cole et al., 1998) 3,410 1,973 55 1,868 58
N. meningitidis ser. A (Parkhill et al., 2000a) 1,539 1,132 78 1,205 74
N. meningitidis ser. B (Tettelin et al., 2000) 1,530 1,088 76 1,161 71
R. prowazekii (Andersson et al., 1998) 759 548 75 572 72
S. coelicolor (Bentley et al., 2002) 5,986 3,625 60 3,489 58
Synechocystis sp. (Kaneko et al., 1996) 2,559 1,598 63 1,633 62
T. maritima (Nelson et al., 1999) 1,576 1,064 72 1,127 68
T. pallidum (Fraser et al., 1998) 920 507 60 552 55
V. cholerae (Heidelberg et al., 2000) 2,991 2,054 74 2,202 69
X. fastidiosa (Simpson et al., 2000) 1,770 1,184 70 1,233 67
Y. pestis (Parkhill et al., 2001) 3,350 2,566 77 2,726 81

S. cerevisiae (Goffeau et al., 1997) 5,560 3,302 67 3,726 59

class.

From the analysis presented in Paper IV, it was concluded that there does not
appear to be radical differences in the usage of protein features within Archaea.
Combining this with the fairly low number of proteins which could be assigned to
a functional category, we decided to pool all archaeal proteins rather than train
individual predictors for Crenarchaea and Euarchaea or for individual organisms.

Out of a total of 33,143 annotated protein coding genes in the 14 sequenced
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archaeal genomes, 13,816 could be assigned as either enzyme or non-enzyme.
The vast majority of the proteins that were classified as enzymes could also be
assigned to an enzyme class, resulting in a set of 8,872 enzymes with “known”
enzyme class.

Because these data sets consist of pooled proteins from 14 species, we can
expect a large number of homologous proteins within the sets. This was dealt
with by first partitioning each of the two sets in five cross validation sets, using
a heuristic that minimizes that similarity between sequences in different sets.
Subsequently all sequences with more than five connections to sequences in other
sets were removed, thereby eliminating essentially all similarity between the cross
validation sets.

The end results were two sets of archaeal proteins which were used for five
fold cross validation training: 6,905 enzymes/non-enzymes and 6,837 enzymes
assigned to enzyme classes.

7.4.3 Training the networks

Because of the high expected error rate in these fully automatically generated data
sets, quite few weights were used in neural networks compared to the number of
training examples. This gives us reason to believe that the networks have not
overfitted on incorrect examples, but instead simply failed to learn most of them.
Feature selection was done like described in Paper II, with the exception of the
use of cross validation rather than a single test set to evaluate the performances.
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The completely sequenced archaeal genomes potentially encode, among
their many functionally uncharacterized genes, novel enzymes of
biotechnological interest. We have developed a prediction method for
detection and classification of enzymes from sequence alone, which is
available at http://www.cbs.dtu.dk/services/ArchaeaFun. The method
does not make use of sequence similarity rather it relies on pre-
dicted protein features like co- and post-translational modifications,
secondary structure and simple physical/chemical properties.

Introduction

The conservation among enzymatic pathways is very low in Archaea, and even
lower between Bacteria and Archaea. Some of the main characterized pathway
operons are not found in all archaea, showing the complete loss of metabolic
pathways. This is seen in the case of the histidine pathway that is found in
P. furiosus but not in P. horikoshii and P. abyssi (Lecompte et al., 2001). For
most pathways one or two reactions are predicted to be catalyzed by Archaea
specific enzymes (Makarova et al., 1999). As the most studied archaea are all
extremophiles, their proteins are of interest to basic science and for commercial
exploitation.

In general, the gene repertoire of an archaeal organism is specifically related to
other archaea, but are not significantly different from that of bacteria (Bansal and
Meyer, 2002). The basic components of transcription, translation and replication
system is well conserved in Archaea, the same goes for genes involved in repair
and recombination.
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The archaeal domain of life has a prokaryotic cell organization, but is more
similar to Eukarya in relation to transcription, translation and replication. The
metabolic proteins in Archaea is often more similar to homologous genes in Bac-
teria than in Eukarya (Koonin et al., 1997). With the sequencing of the first
Crenarchaeota it was seen that the gene repertoire overlapped more with Eur-
yarchaeota than with Bacteria or Eukarya (Natale et al., 2000). These archaeal
features makes the archaeal domain of life an interesting area for research in
uncharacterized proteins.

The variations in metabolism and the extreme conditions lead to unique
archaeal enzymes that need to be characterized. Determination of three-
dimensional structure is the traditional approach to functional classification of
genes that cannot be assigned a role based on homology to known proteins. This
is a very time consuming process and need for a faster method of classification is
obvious. ProtFun is such a method for functional prediction based on sequence
derived features (Jensen et al., 2002), however it has been developed for eukary-
otes.

ProtFun was developed for predicting function of human proteins and makes
use of the fact the function of a protein is affected by its surroundings and com-
partment. Functional categories are predicted from correlations between func-
tional features which can be derived from sequence. Some of the features used
for human sequences are not biologically meaningful in the case of prokaryotes and
thus cannot be expected to correlate to function. However, in a cell without com-
partments, the function of the protein will still be affected by interacting proteins
and cellular components. Interactions between proteins and cellular components
can also be derived from the sequence in archaea. Therefore we have used the
ProtFun approach to make an archaeal enzyme prediction method.

Results and discussion

Predictability of enzymes and enzyme classes

From a practical point of view the most important aspect of a prediction method
is its ability to make correct predictions. As prediction methods are never per-
fect, one is always faced with the dilemma of choosing between making few false
positive predictions and having a high sensitivity, i.e. correctly identify as many
positive examples as possible. This tradeoff can be visualized as what is known as
the receiver output characteristic (ROC) curve, where the rate of false positives
is plotted as a function of the sensitivity by varying the score threshold used
for making positive prediction. Figure 7.5 shows the ROC curves for all seven
predictors included in our method.

The ROC curve for enzyme/non-enzyme prediction breaks at a sensitivity
around 75% and a false positive rate of 30%. Assuming that half of the proteins
encoded by archaeal genomes are enzymes—which corresponds to the composition
of our training set—this corresponds to a specificity just over 70%.

Out of proteins that are enzymes, hydrolases and in particular ligases can
be predicted with high certainty. For sensitivities below 20% the rate of false
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Figure 7.5: Sensitivity and rate of false positives for the different predictors. The plot
was constructed based on the results obtained on the cross validation test set for enzyme/non-
enzyme and each of the six major enzyme classes. Due to the careful partitioning of the
cross validation data set, the performances shown here are what can be expected for real
uncharacterized proteins. Random performance corresponds to a line along the diagonal.

positives is below 1% for both categories. In the case of hydrolases, which are
of particular interest in the detergent industry, a sensitivity of 55% can be at-
tained by sacrificing a bit on the specificity. By using the enzyme/non-enzyme
and hydrolase predictors in combination, it should thus be possible to predict
approximately 40% of all novel hydrolases in archaea.

Isomerases constitute the only class of enzymes where we have an unaccept-
ably poor performance. This is somewhat surprising as this enzyme class is indeed
predictable for human proteins (Jensen et al., 2002). However, the correlations
found for human proteins clearly do not carry over to archaea, as the neural
networks trained on human isomerases are not capable of predicting archaeal
isomerases either (work in progress). Up to a sensitivity of around 30%, the re-
maining enzyme classes are predictable with false positive rates comparable to
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those of the enzyme/non-enzyme prediction.

Biologically meaningful feature usage

While the performance is the most important aspect of the method from an
engineering point of view, it is from a scientific point of view at least as interesting
to understand how this performance is attained. We will now turn to analyzing
the biological meaning of the features used for assigning enzymatic function.

Predicted structural properties

The structure of a protein is an important determinant for the detailed molecular
function of proteins, and would consequently also be useful for prediction of en-
zymes and enzyme classes. As we only have the sequence available, the predicted
secondary structure is one of the sequence derived features that we make use of.
Although no clear trends are seen in the secondary structure of different types
of enzymes, this feature is one of the most important features for our predictor
overall (see Figure 7.6).

Based on the analysis of secondary structure derived from experimentally
determined protein structures, differences in the secondary structure content of
enzymes and non-enzymes have previously been shown to exist (Zhang and Zhang,
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Figure 7.6: Feature importance for the different classifiers. The performance of each
sequence derived feature for each category is visualized as a spot with area proportional to the
correlation coefficient.
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1999). This agrees well with our result that protein secondary structure can be
used for predicting enzymes.

Different secondary structure contents have also been observed for particular
classes of enzymes, e.g. proteases tend to have a lower helix content than other
enzymes (Stawiski et al., 2000). Secondary structure is by far the most important
feature for prediction of hydrolases, one of the two classes of enzymes that we
are best at predicting. By comparing the positional secondary structure content
for the six enzyme classes, we found that archaeal hydrolases have an unusually
low content of α-helix and high content of β-sheet in their N-terminal region
compared to other archaeal enzymes.

One other structural feature that can be predicted from sequence is trans-
membrane helices. This feature is in particular valuable for prediction of en-
zymes vs. non-enzymes as transmembrane proteins are underrepresented among
enzymes. This observation is in sharp contrast to what we have observed for hu-
man proteins, where transmembrane helix prediction was found to be useless for
enzyme prediction (Jensen et al., 2002). As prokaryotes do not have intracellular
membranes, their transmembrane proteins will tend to be distributed over fewer
functional categories.

Glycosylation of archaeal proteins

It may come as a surprise that predicted glycosylation sites can be used for
the prediction of archaeal enzymes, given that glycosylation is mostly associated
with eukaryotes. However, six different types of glycosylation have by now been
confirmed to take place in archaea (Spiro, 2002).

We make use of two types of predicted glycosylation sites for this predic-
tor: N-linked β-GlcNAc glycosylation sites are used for the enzyme/non-enzyme
prediction, while O-β-GlcNAc sites are used for predicting oxidoreductases and
hydrolases. The type of N-linked glycosylation is among the six types of glyco-
sylation known to occur in archaea and is believed to mainly target cell surface
proteins. This may explain why predicted N-glycosylation sites serve as an indi-
cator that a protein is non-enzymatic. The other type of glycosylation that we
make use of, O-β-GlcNAc, has not been observed for archaeal proteins so far.

It could be argued, that even if the two types of glycosylation sites used in
our method exist in archaea, the predictors cannot be expected to work as they
were trained exclusively on eukaryotic data. However, the proteins involved in
both types of glycosylation appear to have developed early in evolution as they
are highly conserved among all eukaryotes (Spiro, 2002).

In the case of N-linked β-GlcNAc glycosylation, homologs of the highly con-
served STT3 subunit of oligosaccharyltransferase have been found, and it has
been suggested that the Asn-Xaa-Ser/Thr consensus sequence known in eukary-
otes does also hold for archaea (Spiro, 2002). Based on this we find it plausible
that the glycosylation predictors, at least NetNglyc, do in fact work for archaea
too.
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Other important protein properties

In addition to the predicted structural features and glycosylation sites, all pre-
dictors make use of one or more of the simple protein properties that can be
estimated from the sequence by the ExPASy ProtParam server. This is consis-
tent with observations made in a cross species validation of the original ProtFun
method (work in progress). In particular it is worth noting that the number of
negatively charged residues is usable both for predicting enzymes/non-enzymes
and ligases. This is because enzymes in general and ligases in particular contain
a high number of negatively charged residues.

The most puzzling feature used in our prediction method is predicted Furin-
type propeptide cleavage sites. No such cleavage sites are known in prokaryotic
proteins, and the prediction method does not appear to correctly identify archaeal
propeptides. In spite of this, the propeptide predictions are correlated to enzyme
classes. As Furin-type cleavage sites are mainly characterized by being rich in
positively charged residues (arginines and lysines), it is possible that it captures
a different simple archaeal signal.

Combining enzyme predictions with phylogenetic patterns

The ProtFun prediction method can be used to obtain functional hints for some of
the many archaeal genes where no functional assignments exist. Additional evi-
dence can be obtained by using information of linked genes based on phylogenetic
patterns (Pellegrini et al., 1999). Genes that are linked through a phylogenetic
pattern are expected to be within the same cellular role category.

These cellular roles are related to enzyme classes as certain types of enzymes
are overrepresented within particular cellular roles. In particular, many proteins
involved in energy metabolism are oxidoreductases while central intermediary
metabolism is biased towards transferases and hydrolases. Novel proteins from
these two cellular role categories were predicted by extracting proteins of unknown
function, which in the Predictome database (Mellor et al., 2002) were linked to
proteins assigned to cellular roles by EUCLID (Tamames et al., 1998).

Five genes that had only a vague functional description if any, were found
to be linked to proteins involved in central intermediary metabolism and were
furthermore predicted by our method to be hydrolases. These proteins had a band
7 domain, that is also found in the major integral membrane protein stomatin
and in the bacterial plasma membrane proteins HflCK (Tavernarakis et al., 1999).
The function of the band 7 domain is unclear. The HflCK proteins have been
suggested to be either proteases themselves or modulators of a protease (Cheng
et al., 1988; Noble et al., 1993; Kihara et al., 1997). Our prediction agrees with
the proposed protease activity.

Many archaeal protein coding genes have the annotation “conserved hypo-
thetical protein”. One such protein from M. jannaschii, MJ1681p, was linked
by a phylogenetic pattern to a number of proteins that were classified as being
involved in energy metabolism. Our method predicts MJ1681p to be an oxi-
doreductase. This prediction is in agreement with Pfam (Bateman et al., 2002)
revealing a putative dicluster-type iron-sulphur center. The presence of an iron-
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sulphur center strongly suggests that this is a ferredoxin, a function that has also
been annotated for homologs of MJ1681p in more recently sequenced archaeal
genomes.

Materials and Methods

Creating labeled data sets

The complete genome sequences of 4 crenarchaea and 10 euryarchaea were down-
loaded downloaded from GenBank (Benson et al., 2002) and the conceptual
translations of all 33,143 annotated protein coding regions were extracted (see
Table 7.5).

These sequences were searched against the SWISS-PROT database using
BLAST (Altschul et al., 1997), recording all matches with an E-value better than
10−3. Using regular expressions, the description lines of all matches were searched
for EC numbers, which are annotated for most enzymes in SWISS-PROT. The
extracted EC numbers were then used in a majority voting scheme to assign
the archaeal query sequences to enzyme/non-enzyme and possibly major enzyme
class.

In order to avoid questionable labeling of the data sets, proteins were only
labeled as enzyme if at least two-thirds of their database matches had an EC
number in their description line. Equivalently, proteins annotated as non-enzyme
were required to have EC numbers for less than one third of the database matches.
If between one third and two-thirds of the matches had EC numbers or if no
matches were found, the classification of the protein was considered unclear and
it was removed from the enzyme/non-enzyme data set.

Despite these precautions, the data set will still contain some incorrectly la-
beled sequences. However, as the function of sufficiently many archaeal proteins

Table 7.5: The data set size and breakdown on organisms. Enzyme classes have been
assigned based on sequence similarity to SWISS-PROT entries.

Organism Annotated Assigned as Assigned to
protein enzyme/ enzyme class

sequences nonenzyme

Aeropyrum pernix 2,694 688 454
Pyrobaculum aerophilum 2,605 863 570
Sulfolobus solfataricus 2,977 1,179 782
Sulfolobus tokodaii 2,826 1,041 716

Archaeoglobus fulgidus 2,407 1,053 696
Methanobacterium thermoautotrophicum 1,869 878 584
Methanococcus jannaschii 1,715 780 516
Methanococcus mazei 3,371 1,440 908
Methanopyrus kandleri 1,691 658 455
Methanosarcina acetivorans 4,540 1,827 1,123
Pyrococcus abyssi 1,765 861 541
Pyrococcus horikoshii 2,064 781 489
Thermoplasma acidophilum 1,031 791 515
Thermoplasma volcanium 1,499 778 523

Total 33,143 13,816 8,872
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has not yet been determined experimentally, one has to rely on function assigned
based on sequence similarity.

From proteins annotated as enzyme, a second data set labeled with major
enzyme class was assigned based on a similar scheme: if at least two-thirds of the
database matches with EC numbers agree on the first digit of the EC number,
the query sequence is assigned to the corresponding major enzyme class. Like
above, sequences are removed if the two-thirds majority rule was not fulfilled.

These procedures resulted in two data sets for each genome: one data set
proteins assigned as either enzyme or non-enzyme and a smaller set of enzymes
annotated with major enzyme class. The sizes of these data sets are shown in
Table 7.5.

Construction of pooled cross validation sets

Based on an analysis to be presented elsewhere, it was decided to pool the data
sets for different organisms to make two large archaeal data sets. As these data
sets consist of proteins from different organisms many orthologous proteins should
be expected, making reduction of the similarity between training and test sets
particularly important.

The two data sets were each partitioned into five equally sized subsets for
cross validation. These sets were constructed with the objective to minimize the
total number of significant BLAST hits between sequences in different sets. Each
cluster of orthologous proteins will therefore reside in the same subset, allowing
for reliable estimation of the performance by cross validation.

Neural network training

Individual cross validation ensembles of neural networks were trained for predict-
ing the enzyme/non-enzyme classification as well as for predicting each of the six
enzyme classes. To avoid problems with over-training on erroneously labeled ex-
amples, networks with very few weights compared to the data set size were used
(Brunak et al., 1990). For each of these seven predictors, the optimal combination
was found by a boot-strap strategy very similar to used for the development of
the original ProtFun predictor (Jensen et al., 2002).

First a cross validation ensemble of neural networks were trained having only
a single sequence derived feature as input. This was done for all features and
all categories. The encoding used for each feature can be found at our web site
(http://www.cbs.dtu.dk/services/ProtFun/protfun\_add.html). Based on
the cross validated test set performance of these predictors, the worst performing
features were rejected for each enzyme category and neural networks were trained
for all pairs of the remaining features. From these the best features were again
selected, progressively building up combinations of many features. In the end the
feature combination with the best cross validation performance was selected for
each category.

Prediction on new sequences is done by first running the many prediction
methods to obtain the sequence derived features, which are subsequently used as
input for the ensembles of five neural networks for each of the seven categories.



Paper VI: Prediction of novel Archaeal enzymes 149

The neural network outputs were converted to probability scores as described in
the ProtFun publication (Jensen et al., 2002). The probability for each category
is estimated as the ensemble average of the probability scores from the individual
networks.
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7.5.1 Function prediction on bacterial proteins

Given the importance of secondary structure prediction for predicting enzymes
and enzyme classes in archaeal proteomes (Paper VI), it is not unlikely that
a similar predictor could be trained for bacterial proteins. This expectation is
further supported by the cross-species comparison (Paper IV), which revealed
that the enzyme predictors trained on human sequences gave similar results for
archaea and eubacteria.

7.6 Prediction of Gene Ontology classes

It has already been discussed in this thesis, that while the cellular role cate-
gorization system is quite well standardized, it is not ideal for classification of
eukaryotic proteins as it was designed with prokaryotes in mind.

Also one can ask if the cellular role categories are in fact a bit too broad.
While broad categories have the advantage of giving many evolutionarily unre-
lated training examples for each category, it also comes at a price. The categories
become very diverse and the proteins belonging to the same category might there-
fore not have much in common. Within more narrowly defined functional cate-
gories, the proteins can be expected to be more similar. However, one may not
have enough examples to be able to identify these similarities.

To address both of these issues, a new version of ProtFun was trained for
the Gene Ontology classification system. In contrast to the cellular role and
enzyme classification systems looked at so far, Gene Ontology has a hierarchy of
classes, which allows function prediction to be attempted at many different levels
of detail. Equally important, it appears that Gene Ontology is quickly becoming
the new standard for functional annotation, in particular for eukaryotic genomes.

As we were not yet certain of the cross-species capabilities of the ProtFun
method, the data set was reduced to include only SWISS-PROT and TrEMBL
entries containing human proteins. This also helps avoid some of the likely biases
in the databases. All proteins which did give matches to any InterPro families
were also removed, giving a set of 21,401 human protein sequences, each associ-
ated with one or more GO numbers.
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Motivation: The human genome project has led to the discovery of many human
protein coding genes which were previously unknown. As a large fraction of these
are functionally uncharacterized, it is of interest to develop methods for predicting
their molecular function from sequence.
Results: We have developed a method for prediction of protein function for
a subset of classes from the Gene Ontology classification scheme. This sub-
set includes several pharmaceutically interesting categories—transcription fac-
tors, receptors, ion channels, stress and immune response proteins, hormones and
growth factors can all be predicted. Although the method relies on protein se-
quences as the sole input, it does not rely on sequence similarity, but instead on
sequence derived protein features such as predicted post translational modifica-
tions (PTMs), protein sorting signals and physical/chemical properties calculated
from the amino acid composition. This allows for prediction of the function for
orphan proteins where no homologs can be found. Using this method we propose
two novel receptors in the human genome, and further demonstrate chromosomal
clustering of related proteins.
Availability: Sequences can be submitted to the prediction server via a web
interface at http://www.cbs.dtu.dk/services/ProtFun/

Introduction

For most of the whole genome sequencing projects, the function of a large fraction
of proteins remain unknown. Predicting the putative function of these so-called
orphan proteins is an important but difficult task for bioinformaticians. We have
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previously presented the ProtFun method for predicting the cellular role cate-
gories originally proposed by Riley (1993) as well as enzymatic function according
the EC classification system (Jensen et al., 2002).

Using a similar approach we have now expanded the ProtFun prediction
method to also cover a number of biologically as well as pharmaceutically inter-
esting categories in the Gene Ontology (GO) classifications system (Ashburner,
1998; Ashburner et al., 2000). Unlike the cellular role categories, the GO cate-
gories chosen do not give complete coverage in the sense that some proteins will
not belong to any of the categories. But for the ones that do, the GO predictor
will provide a more specific description of the function than the rather broad
cellular roles categories do.

System and methods

Generation of a labeled data set

The most crucial step in developing a good prediction method is always to obtain
a good data set. Unfortunately it was not possible to directly obtain a large
set of sequences annotated according to the Gene Ontology classification scheme
(Ashburner et al., 2000). This is mainly due to the large amount of manual work
involved in reannotating individual sequences.

Instead we made use of the InterPro database (Apweiler et al., 2000) in which
protein families have been assigned with Gene Ontology numbers. By linking
this with a list InterPro domain matches to SWISS-PROT and TrEMBL, a set of
21,401 human sequences with annotated Gene Ontology numbers was obtained.

An alternative source of Gene Ontology numbers would be the SWISS-PROT
keywords. However, to make use of these we would have to discard all TrEMBL
entries, leaving us with approximately 9,000 human protein sequences. For this
reason we decided against using this source of Gene Ontology annotations and
used only the InterPro derived set described above.

Typically, a homology reduction would be performed for this set to obtain
a smaller set of sequences, none of which display significant sequence similarity.
However, homology reducing this data set using Hobohm algorithm 2 to remove
matches with BLAST expectation values below 10−6, reduced the data set to less
than 3,000 sequences (Hobohm et al., 1992; Altschul et al., 1997).

Data set partitioning

To avoid throwing away the majority of the available data, we instead divided the
data set into five cross validation sets of equal size with minimal sequence simi-
larity overlap between the sets. As finding the optimal solution to this problem
is of combinatorial complexity, a heuristic was developed.

First all sequences in a set S were aligned against each other, finding the max-
imal scoring subsequence similarity using the BLAST program (Altschul et al.,
1997). Given two sequences a and b one minus their P-value were used as a
scoring weight W (a, b). The algorithm divides S into k equally sized partitions
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P1. . .Pk, minimizing the total inter-partition similarity. Let

Ei,j =
∑

a∈Pi

∑

b∈Pj

W (a, b)

define the weight of the sequence similarity between two sets, and let

Eext =
k
∑

i=1

k
∑

j=1

Ei,j, i 6= j

be the weight to be optimized. Let

Ij =
∑

a∈Pj

∑

b∈Pj

W (a, b)

be the internal weight among the sequences assigned a partition Pj. The algo-
rithm first leave P1..Pk empty, then chooses the sequence a from S and a set
Pj that leads to the least increase in Eext given a is assigned to Pj. In case of
ambiguity, the partition Pj is chosen that has maximal Ij. Assignment is only
considered among the sets that do not yet have the desired size.

Unfortunately it turned out to either be impossible to split the set of 21,401
proteins into five unrelated subsets or the heuristic at least failed to find a suf-
ficiently good solution. By looking closer into the similar sequences between
the subsets in the best solution, it was realized that almost all connections were
caused by a fraction of the data set. Each of the five subsets were thus reduced to
2,500 sequences by removing the nodes with the highest connectivity first. This
resulted in a five fold cross validation set of 12,500 sequences with no significant
similarity between sequences in the different subsets.

This ensures that when training cross validation ensembles of neural networks,
any two similar sequences will either both be used for training or both used
for testing. This allows us to use a set much larger than the one obtained by
homology reduction while still getting a correct measure of the performance on
an independent test set.

Choosing the classes to predict

We have based our work on the Gene Ontology as of June 10th 2001, which
defines a total of 7,949 different classes, of which 1,532 were represented in the
data set described above. However, it would be neither feasible nor necessary to
train neural networks for prediction of each of these categories.

Because we require sequence similarity to only occur within each of the five
subsets used for cross validation, sequences belonging to the same protein family
will be present in the same subset. This means that in order for a Gene Ontology
category to be represented in all sets, multiple InterPro families must belong to
the category. The requirement for multiple families is also necessary in order to
be able to generalize further than simple sequence similarity, i.e. make an ab initio
function prediction method.

To have sufficient diversity within each of the five cross validation data sets,
we decided to only train neural networks for Gene Ontology categories which were
annotated to at least 20 different InterPro families. This reduced the number of
categories further, leaving 347 categories for which neural networks were trained.
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Sequence derived protein features

In addition to the 14 features used for input in the original ProtFun prediction
method (Jensen et al., 2002), features representing two new servers were added
to the list. These were the newly developed method for prediction of propeptide
cleavage sites (Blom et al., unpublished results) and the subcellular compartment
predictor TargetP (Emanuelsson et al., 2000). Even though TargetP makes use
of SignalP to predict extracellular proteins, the original encoding of the SignalP
output was still retained as a separate feature, see Emanuelsson et al. (2000) for
details.

Neural network training and feature selection

For each Gene Ontology class, standard feed-forward neural networks with a single
layer of hidden neurons were used for predicting which examples belong to a given
class. Different learning rates were used for positive and negative examples to
avoid biased learning due to our data sets being heavily skewed towards negative
examples. For each feature combination (including single features) the input
vector for the neural networks consists of a concatenation of the respective feature
vectors while the target output is a single value which is 1 for positive examples
and 0 for negative examples for the Gene Ontology class in question. As neural
networks were trained with different combinations of sequence derived features
as input, the number of hidden units was varied to keep the size of the network
as close to 100 weights as possible.

First cross validation ensembles of five neural networks each were trained using
each protein feature as single input. For this, a neural network was trained using
each of the five sets for testing and other four sets for training. A robust estimate
of the performance of a feature for a particular functional class was calculated as
the median test set Pearson correlation coefficient of the five neural networks in
the ensemble.

The majority of the 347 selected Gene Ontology classes turned out to not
be strongly correlated to any of the predicted features. Judging this from the
cross validation performance of single feature neural networks, many categories
were discarded because they did not appear to be predictable with any reasonable
accuracy. Also, a number of trivial categories related to subcellular locations were
removed, e.g. cell (and its alternative extracellular) and membrane which should
be trivially predictable based on the signal peptide (SignalP) and transmembrane
helix (TMHMM) features, respectively. For the majority of the categories for
which acceptable performance was not attained, the training sets were quite small
(data not shown).

Only 26 Gene Ontology classes remained after this reduction. For each, the
optimal feature combination was searched for using a greedy search heuristic
also described in the original ProtFun publication (Jensen et al., 2002). For the
best performing single features, network ensembles were trained for all feature
pairs. Judging the performance of each feature from the performance of the best
pair in which it is involved, the worst features were once again removed. All
combinations of three were then tested for the remaining feature, and so on so
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forth. When the best feature combinations had been identified, the number of
weights were optimized for the three best feature combinations to find the best
performing combination of features and network architecture.

To avoid unnecessary redundancy in the prediction method, a number of cat-
egories were discarded because they were too closely related to better alternatives
(see Figure 7.7). For instance, the molecular function transcription factor was
discarded in favor of the cellular role category transcription regulation. Also,
defence response was removed as it was found to be too closely related to both
its superclass stress response and its subclass immune response. The final set of
predictors consists of cross validation ensembles of five neural networks for each
of 14 Gene Ontology categories.

Making predictions with the neural networks

To use the neural networks to predict the function of novel sequences, all sequence
derived features are first calculated and encoded the same way as the training
examples, then presented to each of the five neural networks corresponding to
each Gene Ontology class. For each class, the average output is calculated and
converted to a probability using a calibration curve. These calibration curves
were estimated from score distributions as described in the original ProtFun pub-
lication (Jensen et al., 2002).

Table 7.6: Overlap matrix for selected Gene Ontology categories. The degree of overlap
between functional classes (identified by their GO-number) is shown as the number of shared
positive examples. Along diagonal the number of positive examples for each class is shown.
The categories that were removed due to extensive overlap are shown in italics. The textual
descriptions for the GO-numbers are: transcription factor (3700), transcription (6350), tran-
scription regulation (6355), signal transducer (4871), receptor (4872), transmembrane receptor
(4888) stress response (6950), defence response (6952), immune response (6955) response to
biotic stimulus (9607) response to wounding (9611).

GO # 3700 6350 6355 4871 4872 4888 6950 6952 6955 9607 9611

3700 117 114 106
6350 193 153
6355 153
4871 462 324 264
4872 324 264
4888 264
6950 65 51 48 57 51
6952 51 48 51 51
6955 48 48 48
9607 57 51
9611 51
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Support Vector Machines

Support Vector Machines (SVMs) were also tested on the classes that were found
to be predictable by neural networks. We used the SVM-Torch software (Col-
lobert and Bengio, 2000) to train SVMs with radial basis function kernels with
varying standard deviation on the same data sets used for neural network train-
ing. The radial basis function kernel has been one of the best performing kernels
in previous bioinformatics applications of SVMs (Brown et al., 2000; Hua and
Sun, 2001). However, the performances we obtained with SVMs were not better
than those of neural networks, for which reason the use of SVMs was not pursued
further.

Discussion

While many categories turned out to not be predictable, fortunately many phar-
maceutically interesting categories are among the predictable classes. Transcrip-
tion factors, receptors, ion channels, stress and immune response proteins, hor-
mones and growth factors are all among the predictable categories.

There are several reasons for why so relatively few Gene Ontology classes can
be predicted using our method. One is lack of data: for 90% of the Gene Ontology
classes we cannot assign a single positive example among human SWISS-PROT
and TrEMBL entries—sufficient examples to even attempt training were only
found for 2.4% of all Gene Ontology classes. Also, many of the categories are
represented by the sequences which further reduces the set of categories to pre-
dict (Table 7.6). Predictors were successfully trained for the majority of the
classes where many training examples were available. This could be seen as an
indication that our approach is best suited for predicting broadly defined cate-
gories, but may simply reflect that insufficient data are available for more specific
categories. It is also worth noting that that our method appears to be better
at predicting biological process than molecular function which is consistent with
previous observations (Jensen et al., 2002).

The performance obtained for the different Gene Ontology categories is shown
in Figure 7.7. For all categories a sensitivity of at least 50% can be attained with a
rate of false positives below 10%. For the best categories, hormones and receptors,
a sensitivity of 70% can be obtained with a false positive rate of only 5%.

The method is well suited for gene discovery and assay selection purposes. For
instance, it should be possible to predict a set of approximately 1,000 sequences
containing 70% of all novel receptors or peptide hormones (assuming 40,000 genes
in the human genome). Our prediction method can also be useful for getting an
idea of a possible function for proteins known to be involved in a particular
disease but otherwise of unknown function, thereby helping to select appropriate
assays. However, even though the performance is much better than what could
be expected considering that only sequence is used, the performance is still not
good enough for annotation purposes.
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Interpreting the features

In addition to evaluating how well the prediction method works, it is also inter-
esting to interpret the method to understand how it works. Since the method
works, the features used as input for a given category must somehow characterize
the proteins belonging to that category.

Simply looking at which features are used can provide a first simple idea of
what the different predictors look for. In addition to this simple binary descrip-
tion, we have also used two different approaches for evaluating the importance of
the individual features.

The simplest of these is to look at the performance obtained by neural net-
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works using each of the features individually. No extra networks have to be
trained to do this, as these correlation coefficients were already found during the
feature selection procedure. Figure 7.8 shows these values visualized with blue
circles. The main problem of this approach is that correlations between features
are lost, meaning that a feature which is mainly useful in combination with one
or more other features will be judged as unimportant. This approach has also
been used for analyzing the NetDrug prediction method (Frimurer et al., 2000).

Because of this problem we also used a second measure for feature importance:
the loss in correlation coefficient by removing a particular feature. For a given
feature and Gene Ontology category, the correlation coefficient was obtained for
neural networks trained on the optimal feature combination with the feature in
question removed. This value was subtracted from the correlation coefficient of
optimal feature combination to find the loss in performance. These values are
shown in Figure 7.8 with yellow circles.

The two measures for the feature importance both have advantages and disad-
vantages. By measuring feature importance as the loss in correlation coefficient,
the problem with correlated features is solved, as a feature which adds a lot to
the performance of other features will be judged as being important. However,
this method has problems with redundant feature combinations where the same
information is encoded by different features. For such encodings the performance
is hardly affected by removing any one of the features, causing all features to
be judged as unimportant. Since the networks perform well, this can clearly not
be the case. We use both feature importance measures as they complement each
other well, while none of them are perfect. Because both of them can miss impor-
tant features but never give false positives, we consider a feature to be important
if any of the two measures give a high score.

Transmembrane helix prediction is the most valuable feature for predicting
the set of Gene Ontology categories that we work with (see Figure 7.8). It is very
important for prediction of signal transduction proteins (especially receptors),
transporters, and ion channels (in particular cation channels). It is interesting
that we are able to predict both receptors and ion channels with high accuracy,
considering that both of them are characterized by being transmembrane—in the
case of ion channels, transmembrane helix prediction is essentially the only feature
that matters. This can only be explained by the neural networks having learned a
particular transmembrane structure which is characteristic of ion channels, rather
than simply predicting all transmembrane proteins to be ion channels.

Figure 7.8 further reveals that secondary structure predictions are very useful
for predicting stress response and its subclass immune response. From studying
the feature distributions for these classes, it is clear that these proteins have a
strong bias for β-sheets over α-helices, especially in the C-terminal part of the
sequence. Stress response and immune response proteins are further characterized
by having signal peptides.

Proteins related to transcription and more specifically to transcription reg-
ulation are recognized from feature combinations where all features are of ap-
proximately equal importance. From examining the loss in correlation coefficient
(Figure 7.8, yellow circles) it is realized that this encoding is also highly robust
as any one of the features can be removed without affecting the performance
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much. This makes it is difficult to decode the characteristics of transcription
proteins from the neural networks, although it is clear that prediction of nuclear
compartment at least is involved.

Novel putative receptors

We have used our method to screen the human proteome for possible novel recep-
tors. For this purpose we used the Ensembl database as of November 12th 2001.
Even though the rate of false positives is very low, the relatively low abundance of
receptors results in a fairly high absolute number of false positives. While our set
is believed to be highly enriched in receptors, further support for the prediction is
needed—preferably in the form of experimental verification. We will now briefly
discuss protein sequences from Ensembl that we predict to be novel receptors.

The protein sequence ENSP00000257015 from Ensembl which is located on
chromosome X, is predicted to be a putative receptor with a probability score of
73%. A BLAST search gave no clue as to the function of this protein, but a search
against the Pfam database (Bateman et al., 2002) revealed a weak similarity to
the TGF-beta type III receptor domain family zona pellucida:

Alignments of top-scoring domains:

zona_pellucida: domain 1 of 1, from 29 to 111: score 4.6, E = 0.28

*->qCtedgmvvsvvkdlltkpglnlpsllllgpndsaCqpvpvdstqaf

+C+ d+++v+v+ l + +l lg +C+p v ++

19577 29 LCSIDWFMVTVHPFMLNNDVCVHFHELHLG---LGCPPNHV--QPHA 70

vifevplngCGtrlqv.tgdhlvYeNeLvaapsplvgpggsIt<-*

++f+ +++CG r + d ++Y++e++++ + + p+ +++

19577 71 YQFTYRVTECGIRAKAvSQDMVIYSTEIHYSSKGT--PSKFVI 111

Although the expectation value is 0.28 and the match is thus not evidence when
viewed alone, it does add evidence to our prediction.
ENSP00000252184 is another protein sequence which could not be assigned a

GO number based on matches to InterPro, nor did BLAST or Pfam searches give
any matches to proteins of known function. ProtFun predicts this protein to be a
receptor with 72% probability. In fact, others have previously suggested that this
is a G protein-coupled receptor based on a careful manual study of the predicted
transmembrane helix structure (see GenBank entry AF376725).

Chromosomal clustering of proteins with similar function

It has been observed by several research groups, that genes with related function
are often located close to each other on the chromosomes (Dandekar et al., 1998;
Frishman et al., 1998; Galperin and Koonin, 2000; Yanai et al., 2001). This effect
is strongest in prokaryotes due to the existence of operons, but clustering of re-
lated genes is also observed in eukaryotes (Wambutt et al., 2000). In prokaryotes,
“chromosomal proximity” has been used for function prediction by claiming two
genes to be functionally linked if their homologs are located close to each other
in multiple genomes (Dandekar et al., 1998).
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Figure 7.9: Autocorrelation functions for predictions of selected categories from dif-
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spect to the chromosomal localization. The gene distances are measured in “number of genes”,
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for stress response genes and genes encoding receptors.
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We have investigated how much the functionally related proteins cluster in
the human genome, by studying the autocorrelation function of the probabilistic
scores for each individual category in the cellular role, enzyme class, and Gene
Ontology classification schemes. Figure 7.9 shows a representative subset of these
autocorrelation functions for each classification scheme.

The autocorrelation functions reveal, that the extend to which genes with
similar function cluster depends strongly on how “function” is defined. If defined
in terms of the chemical function (e.g. enzyme classification), the clustering is very
weak. Cellular role categories cluster more strongly, but not nearly as strongly
as several of the Gene Ontology categories.

Even within the same classification scheme, there is a great deal of variance.
This is in particular true for the Gene Ontology system, where many different
types of functional categories occur. The two categories showing the strongest
autocorrelations are receptors and immune response proteins, for which the au-
tocorrelation functions also decay quite slowly. Strong correlations are of course
also observed for their superclasses, signal transduction and stress response. It
should be noted that although the autocorrelation functions for the receptor and
stress response categories are very similar, the overlap in our training set is small
between these two classes.

Conclusions

We have succeeded in making a sequence based function prediction method for a
subset of the Gene Ontology. The method is well suited for computational screen-
ing of the human genome (and possibly other eukaryotic genomes) for novel drug
targets. Based on complete genome predictions, we suggest two novel receptors
and furthermore find strong indications that functionally related proteins are clus-
tered in the human genome, although this varies between functional categories.
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7.7.1 An important addition to ProtFun

Although only a fairly small number of Gene Ontology classes could be predicted
well by the ProtFun approach, the 14 classes that can be predicted constitute
an important addition to ProtFun. They do so because these categories are
much more specific and represent pharmaceutically interesting classes. The Gene
Ontology part of the ProtFun output could therefore prove useful for identifying
new drug targets—something which is unlikely to be true for the cellular role
predictions.

7.8 Functional clustering at the global scale

In Paper VII, autocorrelation functions for the many different functional classes
were analyzed on the human genome. It was seen that genes both from some of the
cellular role categories and in particular from certain Gene Ontology classes tend
to occur as clusters in the chromosomes. However, the autocorrelation functions
say nothing about how the genes are clustered, except from giving an idea of the
size of the clusters.

7.8.1 Clustering at the chromosome level

The distribution of functionally related proteins over chromosomes was mentioned
briefly in Paper II. This can be considered the coarsest level at which clustering
of functionally related proteins can be studied, yet it can provide information not
available from autocorrelation functions.

Figure 7.10 shows the distribution of cellular role categories over the human
chromosomes. The cellular roles were taken from our labeled data set created
using EUCLID, and chromosome numbers were assigned to most of the proteins
by linking to the LocusLink database via the OMIM database.

The presence of unusually many proteins from the class other categories on
chromosome 20 has already been mentioned in Paper II. A few other noteworthy
observations can be made from Figure 7.10, one being that judged from the
number of proteins of unknown function, chromosomes 20 and 22 appear to be
the best characterized of the human chromosomes.

In general the larger the chromosomes display fewer deviations from the ex-
pectation. A simple explanation for this is that the large chromosomes encode so
many proteins that even a large cluster of functionally related proteins would not
skew the distribution much. The only possible exception to this rule is an over-
representation of amino acid biosynthesis genes on chromosome 2. Conversely,
the chromosomes encoding few proteins (in particular the Y-chromosome) tend
to deviate much more from the expectation. However, many of those deviations
may not be statistically significant.
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7.9 Whole genome visualization of protein func-

tion

The autocorrelation functions and the chromosome function distributions only
allow the clustering of protein functions to be observed at a global level. Even
though there might not be strong correlations at the global scale, there can still
be local regions in the genome that are strongly biased towards genes of particular
functional classes. To investigate such local properties, it is useful to visualize it.
A quite successful genome visualization method known as “genome atlases” has
previously been developed at CBS, and it has proven useful for visualizing a host
of different properties at the DNA level, in particular DNA structure and repeat
patterns (Jensen et al., 1999; Pedersen et al., 2000; Friis et al., 2000; Ussery et al.,
2001, 2002). By mapping the probability scores given by ProtFun for each protein
onto the corresponding region of the chromosomes, it is possible to visualize the
spacial distributions of protein functions across entire genomes.
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Introduction

The wealth of information contained in a microbial genome is not easy to com-
prehend at all scales. Even after the genome of an organism has been sequenced,
the problem of gaining an overview of the newly acquired data still remains. One
way to get an overview is to visualize positional features at the chromosome level;
we have developed a method, Atlases, for showing correlations between position
dependent information in sequenced chromosomes.

The DNA sequence is not only hard to comprehend because of its size but
also because the genomic sequence is not linked in a simple way to the biology
of the organism. For example, examining the AT content of genomes, a property
often reported in genome sequencing papers, considerable variation is observed.
Figure 7.11 shows the percent AT of 25 different proteobacterial genomes, rang-
ing from 33% to 74% AT. The AT content does not appear to correlate to the
proteobacterial subdivisions.

The percent AT of a chromosome reflects only an average property of the chro-
mosome. However, the AT content is not homogeneously distributed throughout
the DNA. Often there are clusters of AT-rich and AT-poor regions; for exam-
ple most promoter regions are more AT-rich than the average coding sequences
(Ozoline et al., 1999; Pedersen et al., 2000). In many cases the variations between
regions will tell more than the average value, as exemplified in Figure 7.12 where
an AT-rich region is found to contain genes involved in pathogenesis.

The AT content within a region of a chromosome is a very simple property
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Figure 7.11: Percent AT in 25 Proteobacter genomes. The genomes are grouped into
subdivisions, and the last bar is the average of all 25 genomes.

to calculate from the nucleotide sequence. More complex features like DNA
curvature or major groove compressibility, that reflect structural properties of
a given region, can be estimated directly from the sequence and give biological
insight. Additional information can be accessed by looking at the genes encoded
by the chromosome. Once the location of the genes is known, it is possible
to visualize both experimentally determined expression levels and RNA sequence
features. By translating the RNA sequence to protein sequence, it is also possible
to visualize properties of the proteome, such as protein function.

Construction of the visualization software

In order to be able to visualize such diverse data, a flexible software tool is
needed. We have developed a computer programme, GeneWiz, which enables
us to visualize a complete chromosome compactly. The programme creates an
either circular or linear graphical representation of the entire chromosome or of
a specified subsection. Sufficiently large regions that display significant variation
from the rest of the chromosome can be readily found—in order to be able to see
deviations of smaller regions a zoomed Atlas must be made.

Each feature, such as AT content or gene expression level, is represented as a
separate lane in the atlas. The value is at each position color coded according to
a user specified color scale. We generally use color scales where regions of extreme
values are highlighted (this can be one-ended or two-ended scales) whereas typical
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values are grey. If wanted the plot can be smoothed by a running average.

The properties to be visualized must be present in the form of one value per
basepair in the chromosome. For simple sequence features like the AT content
this is the natural format, whereas for data such as gene expression levels, the
value for each gene must be mapped onto the corresponding range of basepairs. In
addition to the data series, the annotations from a GenBank file can be displayed
using a series of icons with user-defined colors. This allows for the identification
of short or long annotated regions of interest.

GeneWiz is solely a visualization program, and is not capable of calculating
the data used in the different atlases. All data must be calculated and properly
formatted. While this obviously adds to the work of creating an atlas, it is gives
great flexibility as these data can come from any source. In this paper we use
simple measures generated from lookup tables, publicly available programs like
BLAST (Altschul et al., 1997), methods developed in-house like ProtFun (Jensen
et al., 2002) as well as experimentally determined expression data.

Use of Atlases to Visualize DNA Information

Genome Atlases

The GenomeAtlas is a general atlas made for all the fully sequenced microbial
chromosomes found in public databases (Pedersen et al., 2000; Jensen et al., 1999).
The GenomeAtlas is a combination of some generally informative parameters and
can be used as an offset for identifying unique regions or special features for the
given chromosome. The GenomeAtlas for all public available sequenced chromo-
somes can be found at http://www.cbs.dtu.dk/services/GenomeAtlas/.

Introducing the parameters

To generate GenomeAtlas plots, a number of parameters are calculated for the
DNA double helix based on the nucleotide sequence. These parameters belong to
three categories: repeats, structural parameters, and parameters directly related
to the base composition. These three categories are combined into a common
atlas where the parameters are visualized, giving the values of the parameters as
the intensity of the color (Jensen et al., 1999).

Structural parameters

A number of measures for the local structure of DNA have been devised, most of
which are based dinucleotide or trinucleotide models that have been obtained by
fitting either experimental results or theoretical estimates (Pedersen et al., 1998,
2000).

Intrinsic curvature is a property of DNA that is closely related to anomalous
gel mobility, as DNA fragments with high intrinsic curvature will migrate slower
on polyacrylamide gels than markers with the same length. In this work we have
used the CURVATURE programme (Shpigelman et al., 1993), which is based on
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a wedge model (Trifonov and Sussman, 1980; Ulanovsky et al., 1986), for predic-
tion of intrinsic curvature. From a set of dinucleotide values for the twist, wedge,
and direction angles the three-dimensional path of a 21 bp fragment is calculated.
Curvature profiles for longer sequences can thus be calculated using a 21 bp run-
ning window. Curves are often encountered upstream of highly expressed genes
(Bracco et al., 1989).

Stacking energy relates to the interaction energy between adjacent basepairs
in the DNA double helix. The total stacking energy of a DNA segment can be
estimated from the set of dinucleotide values determined by quantum mechanical
calculations on crystal structures (Ornstein et al., 1978). All stacking energies are
negative since base stacking is an energetically favorable interaction that serves
to stabilize the double helix. This means that regions with large stacking energies
are strongly stabilized and therefore less likely to destack or melt than regions
with less negative stacking energies.

The position preference is a measure of helix flexibility based on a set of 32
trinucleotide values giving the log-odds of the minor groove facing outwards when
wrapped around a histone octamer (Satchwell et al., 1986). On this scale a value
of zero represents no preference of the trinucleotide for specific positions in the
nucleosomes, while large absolute values means that the trinucleotide has strong
preference. Because large absolute values thereby implies that the sequence is
inflexible, a measure of flexibility is obtained by removing the sign from the
original trinucleotide values (Pedersen et al., 1998). On that scale low values
correspond to high bendability.

Base composition

The trivial way to parameterize the base composition is to simply use the G-, A-,
T-, and C-contents. A drawback of this representation is that the four parameters
are mutually correlated as they sum to 1. An alternative parameterization for the
base composition is A+T and G−C. In addition to being mutually independent
measures, they also have the advantage of being easier to interpret in a biological
context.

The A+T content is strongly correlated to the structural parameters described
above—especially the stacking energy. A+T rich regions usually destack more
readily, have a higher intrinsic curvature, and are less flexible. The parameter
G−C, known as the GC skew (McLean et al., 1998) reflects a general bias of
purines towards the leading strand of DNA replication (Tillier and Collins, 2000).
Since the GC skew has almost no correlation to the structural properties of DNA,
the A+T content contains nearly all the structural information arising from the
mononucleotide composition.

Repeat elements

Repeats are multiple copies of the same sequence at different locations on a piece
of DNA. The repeats can be found either by a very accurate method using a basic
algorithm which finds the highest degree of homology for an R bp long repeat
within a window of length W (Jensen et al., 1999), or by cutting the sequence up
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in fragments and using the heuristic alignment algorithm BLAST (Altschul et al.,
1997) to find the homologous regions with the length R. The basic algorithm is
more accurate than BLAST but it is also computationally demanding, therefore
BLAST is used on large sequences. There are two kinds of repeats, a direct repeat
is a sequence that is present in at least two copies on the same strand, whilst two
copies located on opposite strands will give rise to an inverted repeat.

GenomeAtlases of Pathogenicity Plasmids

A GenomeAtlas can give at quick overview of a given chromosome and thereby
be the reason for further analysis of a given organism or a more specific search
for a given feature can be made by looking through a collection of atlases. The
latter was the case when a study of pathogenicity islands in bacterial plasmids
was based on the knowledge of the correlation between pathogenicity islands and
variation in AT content, such as the toxin genes in plasmid pO157 from pathogenic
E. coli strains (Friis et al., 2000). Another example of the correlation between
pathogenicity islands and changes in AT content can also be found in the large
virulence plasmid of Shigella flexneri (GenBank accession number AF348706)
(Venkatesan et al., 2001).

The atlas of the Shigella flexneri 5a virulence plasmid pWR501 (Figure 7.12)
reveals an A+T rich area, which is strongly curved, will destack or melt more
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Figure 7.12: GenomeAtlas for Shigella flexneri 5a virulence plasmid pWR501. The
marked regions contain three loci which codes for a total of 34 virulence-related genes.
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Figure 7.13: GenomeAtlas for Bacillus thuringenisis pBtoxis. The insecticide activity
comes from the marked cry and cyt genes.

readily than the rest of the plasmid, and is more rigid. This region encodes a
locus of genes (ipa-mxi-spa) involved in the pathogenic invasion of mammalian
cells, and includes a type III secretion pathway (Schuch et al., 1999; Page et al.,
2001).

Variations in AT content are obviously not always correlated with the pres-
ence of toxic genes; another indication of potential pathogenic regions can be
the localization of multiple repeats (especially Insertion Sequence (IS) elements)
(Hacker et al., 1997; Hacker and Kaper, 2000). Large numbers of direct and in-
verted repeats can be seen in Figure 7.12. Typically, global direct repeats account
for around three percent or less of most bacterial chromosomes (data not shown,
but “GenomeAtlases” for all sequenced genomes can be found on our web page).
Many of the repeats (especially the global inverted repeats) are reflective of IS
elements. Note that the A+T rich ipa-mxi-spa region is the largest region free of
repeats in the plasmid.

Another example of a plasmid with many repeats is the plasmid pBtoxis1

from the spore-forming bacteria Bacillus thuringiensis subsp. israelensis. Like
pWR501, the repeats in pBtoxis are scattered all over the plasmid (Figure 7.13);
a search was made for genes from transposable elements like transposases and
integrases and by doing a simple BLAST search against SWISS-PROT these

1This sequence data were produced by the Microbial Genomes Sequencing Group at the
Sanger Institute and can be obtained from ftp://ftp.sanger.ac.uk/pub/pathogens/bti/
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genes were located and they were indeed found to be associated with the repeats.
In the case of this plasmid the presence of transposable elements was known long
before the plasmid was sequenced (Mahillon et al., 1994), but the GenomeAtlas
can be used as an easy method for localization of transposons and IS elements.
B. thuringiensis is used in agriculture as an alternative to synthetic chemical

pesticides. It produces parasporal crystals that have insecticidal activity, and the
genes that are believed to be responsible for this activity are marked in Figure 7.13
(Schnepf et al., 1998). The transposable elements in pBtoxis are at least partly
responsible for the high degree of genetic plasticity that makes B. thuringiensis
adaptable to a variety of environments. However, it should also lead to caution in
the use, since B. thuringiensis, based on genetic evidence, is from the same species
as Bacillus anthracis and Bacillus cereus, both human pathogens (Helgason et al.,
2000).

Some of the repeats that are not associated with genes from transposable
elements seem to be copies of cry, the gene for the pesticide crystal protein. The
three cyt genes produce cytolytic delta-endotoxins; the absence of repeats in this
area indicates that they are not similar to each other at the nucleotide level.

In the case of the two plasmids presented here the atlas was used as a method
to screen large plasmids for signs that indicated the presence of toxic genes; many
pathogenic regions within plasmids might not be found in this way, but the atlas
serves as a very strong method for initial examination of the sequences (Friis
et al., 2000).

A custom made DNA Atlas

The GenomeAtlas is our “standard” atlas, which can capture interesting features
of a chromosome. As an example, consider chromosome 1 from the protozoan
Leishmania major, an intracellular pathogen of the immune system. This chro-
mosome has an unusual organization of its genes, with the 79 protein coding
genes being in two large clusters. The first 29 genes are coded on one strand
whilst the last 50 genes are on the other strand (Myler et al., 1999). From the
GenomeAtlas2 a correlation between intergenic regions and global repeats can be
observed. In order to further investigate the possible relationship between other
structural parameters and intergenic regions, we constructed a custom atlas (see
Figure 7.14).

Several properties of the chromosome are revealed by the base composition
parameters (AT content and GC-skew). The telomeres and a region around
80 kbp have a much higher AT content than the rest of the chromosome. Also
a shift in the GC-skew is observed around 80 kbp, correlating with the unusual
gene organization. This is in agreement with the region being proposed as the
origin of replication (McDonagh et al., 2000).

More direct than inverted repeats are found in this chromosome. Some of
these arise from gene duplications—the most obvious example is the two genes
around position 240 kbp. Even though gene duplications are observed, the direct
repeats still exhibit a slight preference for non-coding regions. This preference is

2The atlas can seen at http://www.cbs.dtu.dk/services/GenomeAtlas/Eukaryotes/
Leishmania/major/
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Figure 7.14: Specialized Atlas for Leishmania major chromosome 1.

much stronger for inverted repeats, which occur exclusively in intergenic regions,
as shown in Table 7.7.

The exclusive localization of inverted repeats in intergenic regions prompted
an interest in whether other DNA structural elements might also be preferen-
tially positioned within non-coding regions. Runs of purines (or pyrimidines) as
well as alternating pyrimidine/purine stretches occur more often than would be
expected from the base-composition of Leishmania major (Ussery et al., 2002).
The location of these regions was visualized by plotting the location of all such
stretches of at least 10 bp. Many purine stretches can adopt an A-DNA conforma-
tion, whereas pyrimidine/purine stretches that are GC-rich can adopt a Z-DNA
conformation. There is a strong preference (about 10-fold, see (Y)10 column
in Figure 7.11) for purine stretches in the intergenic regions, while the pyr/pur
regions are less strongly correlated with the non-coding DNA.

Table 7.7: Characteristics of coding and non-coding sequences in Leishmania major
chromosome 1.

DNA Property Length (bp) % Direct % Inverted % (Y)10 % (YR)5 % AT

Coding 140,229 4.5 0.0 1.2 2.6 34.6
Non coding 128,755 6.0 4.6 11.2 6.9 39.4

Whole chromosome 268,984 5.2 2.2 6.0 4.7 36.9
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Atlases for Visualizing genome-wide RNA ex-

pression

It has often been said that even non-coding DNA is far from a random string
of bases. Since helix structure is a function of that same string of bases, this
statement must apply to structural features as well. These structural features
are suspected of affecting not just the termination of transcription as mentioned
earlier, but also the rate of transcription itself.

Almost unheard of five years ago, genome-wide mRNA expression analysis
has become mainstream in most major microbiological laboratories. With this
technology it is feasible to examine the transcription levels for an entire microbial
genome under a broad range of different circumstances, and to some degree reverse
engineer regulatory pathways (Spellman et al., 1998).

By visualizing measured levels of transcription in an atlas it becomes possible
to examine if correlations exist between the mRNA expression levels and DNA
structural properties or base composition. Such correlations could be expected
due to chromatin packing (Ussery et al., 2001). Also the relationship between
the level of transcription and chromosomal location may reveal interesting aspects
(Hughes et al., 2000b).

ExpressionAtlas

The strength of genome-wide RNA expression analysis lies in the ability to si-
multaneously measure the expression levels of an entire genome. When analyzing
several arrays with thousands of genes one is faced with much the same problem as
when analyzing whole genome sequences: the sheer amount of data makes it hard
to get an overview. The ExpressionAtlas is a way of visualizing expression ex-
periments taking into account chromosomal position and other factors suspected
of being involved in transcription, such as DNA structure and repeats.

In the example shown, the average intensities from cDNA arrays (Cho et al.,
1998) were used as an estimate of the constitutive expression levels of genes
in Saccharomyces cerevisiae. Alternatively log-fold changes could be plotted to
highlight regulated genes. We chose average intensities to ensure comparability
to the predicted expression levels also displayed on the atlas.

Neural networks trained on average expression values from E. coli microarray
experiments predicted the expression level of each gene. The predicted levels
of expression were normalized to a range from 0 to 1. As input to the neural
networks the trinucleotide frequencies of the coding regions were used. These 64
frequencies were calculated without taking the reading frame into account. This
representation was chosen because the majority of DNA structural properties can
be captured at the trinucleotide level. In this way we can capture possible cor-
relation between the structural properties of the coding DNA and the expression
levels.

Both the experimentally measured and the predicted expression levels are
displayed in the atlas in Figure 7.15, together with position preference, global
repeats and AT content. The AT content and the global repeats were included to
give a general view of the composition of the chromosome, whereas the position
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Figure 7.15: The ExpressionAtlas of S. cerevisiae chromosome sko02mim. Lane A
shows the average intensities from cDNA arrays, indicating the constitutively expressed genes,
whilst lane B is the predicted expression.

preference, being a measure of the flexibility of the double helix, is expected to be
correlated with the expression levels (Pedersen et al., 2000). The inverted repeats
clearly mark the telomeric regions.

Comparing the actual expression levels with the levels predicted by neural
networks reveals a strong correlation between the two. A similar, albeit weaker,
correlation is observed between expression levels and the position preference mea-
sure. The fact that neural networks trained on the prokaryote E. coli data can
predict highly expressed genes in a eukaryote implies the existence of universal
DNA properties that influence transcription. The correlation with the position
preference measure suggests that helix flexibility plays a part in this. Speculations
on such generic features of expressed genes have been proposed before (Sharp and
Li, 1987).

Atlases for Visualizing Global Prediction of Pro-

tein Function

By looking at the ExpressionAtlas it is possible to identify regions with genes that
are highly expressed (and possibly regulated) under one or more experimental
conditions. It is at this point obvious to ask what the function of these genes
might be.
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Unfortunately the function of a large fraction genes remains unknown in most
fully sequenced chromosomes. Of the 30,000 to 50,000 genes believed to be present
in the human genome no more than 40-60% can be assigned a functional role based
on homology to known proteins. Even though the situation is a bit more favor-
able when looking at simpler model organisms like S. cerevisiae and C. elegans,
the function of more than 30% of the predicted protein sequences still remains
unknown.

In newly sequenced chromosomes most of the functional annotation of genes
is based on homology inference. Using methods such as BLAST (Altschul et al.,
1997) homologous proteins are identified by sequence similarity and the function
is inferred from the knowledge about the homologs. However it is usually the
case that somewhere from 30–50% of the proteins give no matches to proteins of
known function. These are known as “orphan” proteins.

Traditionally, protein function has been viewed as something directly related
to the conformation of the polypeptide chain. However, as the three-dimensional
structure currently is quite hard to calculate from the sequence (Lesk et al.,
2001), a computational strategy for the elucidation of orphan protein function
may benefit also from the prediction of functional attributes which are more
directly related to the linear sequence of amino acids.

Our approach to function prediction is based on the fact that a protein is not
alone when performing its biological task. As it will have to operate using the
same cellular machinery for modification and sorting as all the other proteins do,
one can expect some conservation of essential types of post-translational modi-
fications (PTMs). Because reasonably precise methods for prediction of PTMs
from sequence exist today, our prediction method which integrates such relevant
features to assign orphan protein to functional class, can be applied to all proteins
where the sequence in known (Jensen et al., 2002; Gupta et al., 2002). This is in
contrast to methods that rely on clustering of co-expressed genes (Eisen et al.,
1998), prediction of gene fusions and/or phylogenetic profiles (Marcotte et al.,
1999a,b; Hughes et al., 2000a; Pellegrini et al., 1999).

For any function prediction method, the ability to correctly assign the rela-
tionship depends strongly on the function classification scheme used. We predict a
scheme of twelve cellular functions that is closely related to the fourteen class clas-
sification originally proposed by Riley for the E. coli genome (Riley, 1993). The
system consists of an ensemble of neural networks for each functional category,
each neural network having a different combination predicted protein features as
its input. The networks were trained exclusively on human protein sequences, but
perform well on a wide selection of eukaryotes (including S. cerevisiae). For each
protein sequence the outputs of these neural networks are subsequently combined
into a probability for each category.

We have applied this software to all predicted protein sequences from S. cere-
visiae chromosome sko02mim. Based on our performance estimates of the method
on S. cerevisiae sequences, we have selected a subset of eight categories out of
the original twelve category system. The probabilistic scores of each protein
sequence were mapped onto the position in the chromosome of the correspond-
ing gene. Figure 7.16 shows the resulting FunctionAtlas along with the actual
expression levels also shown in the ExpressionAtlas.
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Figure 7.16: The FunctionAtlas of S. cerevisiae chromosome sko02mim. Lane A:
Amino acid biosynthesis, Lane B: Biosynthesis of co-factors, Lane C: Central intermediary
metabolism, Lane D: Energy metabolism, Lane E: Purine and pyrimidine metabolism, Lane F:
Regulatory function, Lane G: Replication and transcription, Lane H: Transport and binding,
Lane J: Average intensity from cDNA experiments, (the same as in Figure 7.15).

One feature that is visible from a FunctionAtlas is clusters of genes with re-
lated functions. Examples of this include the regions 10 kbp–50 kbp and 250 kbp–
260 kbp that contain very large numbers of predicted transport and binding pro-
teins. The regions 50 kbp–60 kbp, 335 kbp–350 kbp and 410 kbp–420 kbp that are
predicted to contain a large number of genes involved in replication or tran-
scription, several of which are likely to serve a regulatory role according to our
predictions. Since genes of related function are known to often cluster (although
the extent varies from organism to organism) predicted functional clusters can
be trusted more than individual predictions. If the function of some of the genes
within a cluster is known and in agreement with the prediction—as is the case
for several of the mentioned clusters—this obviously adds to the evidence.

Another possibility is to correlate the predicted protein function to expression
data. Close inspection of Figure 7.16 reveals that many of the constitutively
highly expressed genes are predicted to be involved in energy metabolism although
this is overall a quite rare category. A hypergeometric test of the underlying data
verifies that this correlation is indeed significant at a 95% confidence level. A
large number of highly expressed transcripts for proteins involved in replication
and transcription can also be identified although no correlation between function
and expression level is found in this case.
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Concluding remarks

In summary, we have shown several different applications of Atlases for visual-
izing different type of information, within the context of the whole plasmid or
chromosome. Essentially, any type of information concerning the DNA, RNA or
protein can be plotted along the chromosome, allowing for rapid analysis of global
properties in a serendipitous manner. The atlas gives the researcher the option
to view the calculated or experimentally measured data in a position dependent
way and thereby see correlations between a feature and its position or variation
in a feature within the chromosome.

The atlas can be used to spot variation in different features within a region
but not all the information can be viewed at the same time. For a bacterial
chromosome of the same size as E. coli only features with approximately the
same size as a gene can be observed, this means that some of the features showed
for L. major with repeats in intergenic regions would not be visible in the E. coli
genome. If variation in a smaller scale is to be seen for a large chromosome a
shorter region should be visualized.
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7.10.1 Visualization enzyme and Gene Ontology cate-
gories

In addition to the atlas of cellular roles (see Figure 7.16 on page 180), two extra
types of atlases covering the enzyme classes and the Gene Ontology categories
have also been developed. These atlases are merely displaying different probabil-
ities from the ProtFun output.

From studying a large number of atlases (data not shown) it appears that
clusters of genes related in the enzyme classification are hardly ever seen. This
is consistent with the very weak autocorrelation observed for enzyme classes (see
Figure 7.9 on page 163). In contrast, clusters of receptors and stress response
genes would be expected at least in human chromosomes. Unfortunately, the
human genome—although “completely sequenced”—is still only available as a
large number of contigs and maps, which is not well suited for making atlases.

7.11 Many possible uses for the ProtFun ap-

proach

In this chapter, the wide range of possible applications for our method has been
illustrated. There is good reason to believe, that ProtFun-like predictors can
be developed for most broad protein classes in eukaryotes. We have also enjoyed
some success with predicting enzymatic function for archaeal proteins. Combined
with the cross-species evaluation presented in Chapter 5, this gives reason to
believe that the approach may also work for eubacteria. Furthermore, it has
been shown how the function prediction method can be used for visualizing the
chromosome wide distribution of gene functions.
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Chapter 8

Room for improvement

8.1 Making use of DNA data

The ProtFun method has been developed to only require the protein sequence
as input. This decision was based on two reasons. First of all, most of the
information about the function of a protein should be expected to be in the protein
sequence itself. Secondly, it allows the method to be applied to all proteins of
unknown function.

There might be more information available in the DNA sequence than what is
reflected in the protein sequence. This could possibly be utilized to improve the
ProtFun prediction method in cases where this additional information is indeed
available—which is the case for the many proteins of unknown function identified
in complete genome sequencing projects.

8.1.1 Codon usage

It is well known that the genetic code is degenerate in the sense that several
codons exist that encode the same amino acid. The so-called synonymous codons
are not all used at the same frequencies as some codons are preferred over others.
These codon preferences vary from organism to organism.

Not surprisingly the preferences in codon usage turn out to be correlated to the
tRNA pool of the organism so that the commonly used codons correspond to the
largest tRNA concentrations. As a result of this, the most highly expressed genes
will tend to use only the preferred codons in order to allow for rapid translation
of the messenger RNA into protein. Based on resulting differences in codon
usage between highly expressed genes and all other genes, a measure called codon
adaption index (CAI) can be defined (Sharp and Li, 1987). The CAI value for a
gene is therefore an estimate of the constitutive expression of the gene.

As proteins from certain functional classes (e.g. translation) are likely to be
more highly expressed than proteins from other classes (e.g. regulatory functions),
one should expect that the codon adaptation index will differ between different
classes for proteins. This has indeed previously been shown to be the case in
E. coli (Karlin et al., 1998).

Figure 8.1 shows the distributions of log-CAI values for the positive and neg-
ative S. cerevisiae data sets for cellular roles (Paper IV). It is observed that
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Aminio acid biosynthesis Biosynthesis of cofactors Cell envelope

Cellular processes Central intermediary metabolism Energy metabolism

Fatty acid metabolism Purines and pyrimidines Regulatory functions

-1 -0.5 0

Replication and transcription

-1 -0.5 0

Translation

-1 -0.5 0

Transport and binding

Figure 8.1: Differences in codon adaptation index for functional classes of genes. The
codon adaptation index is shown for ORFs encoding the positive (black) and negative (red)
S. cerevisiae sets for each cellular role category.
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proteins involved in translation and several types of metabolism have particu-
larly high CAI values whereas regulatory proteins have low CAI values. It is
therefore likely that the CAI value of a protein could be used as an additional
input feature to ProtFun and thereby improve performance.

8.1.2 DNA structure

In addition to calculating CAI values, it is also possible to estimate DNA struc-
tural properties of each gene given entire cDNA sequences. Such properties
have previously been used for revealing regions containing genes involved in
pathogenicity (Friis et al., 2000), and could be correlated with other classes of
genes as well.

Figure 8.2 shows one estimated structural feature, the position preference
(Satchwell et al., 1986), for S. cerevisiae genes encoding proteins involved in trans-
lation compared to other genes. The difference between the two distributions is
highly significant according to a Kolmogorov–Smirnov test. The position prefer-
ence score for a gene gives a measure of the anisotropic flexibility of the DNA,
and has previously been suggested to correlate with high expression (Pedersen
et al., 2000). This agrees with our observation since genes related to translation
are known to be highly expressed.

8.1.3 Promoter elements

I have previously co-authored a paper in which a method for finding correla-
tions between upstream patterns and protein function was presented (Jensen and
Knudsen, 2000). While this paper focused on identifying the upstream patterns

0.1 0.12 0.14 0.16 0.18
Position preference

0

20

40

60

Translation
Not translation

Figure 8.2: Higher DNA flexibility of ORFs encoding proteins involved in trans-
lation. The position preference measure of anisotropic flexibility (Satchwell et al., 1986) is
compared for genes involved in translation and other genes.
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Table 8.1: Predicted S. cerevisiae promoter elements correlated to particular cellular
roles. Patterns were discovered using the hypergeometric method described by Jensen and
Knudsen (2000). The statistical significance is reported as −log(α) in the pα column. Also
reported is the correlation coefficient (Corr.) and the number of true positives (TP) and false
positives (FP).

Pattern pα Corr. TP FP Function

Cbf1p-Met2p- ...CACGTG..... > 10 0.096 26 147 Amino acid
Met28p ...CACGTGA.... > 10 0.090 17 81 biosynthesis

Methionine ..AATGACT..... > 10 0.093 17 78 Amino acid
element ...ATGACT..... 6.8 0.127 44 251 biosynthesis

...ATGACTA.... > 10 0.096 15 61

...ATGACTC.... > 10 0.169 22 49

...TTGACTC.... > 10 0.100 13 45

...ATGACTCA... > 10 0.163 12 14

....TGACTCA... > 10 0.222 28 45

....TGACTCT... > 10 0.118 17 56

.....GACTCA... > 10 0.158 37 145

.....GACTCT... > 10 0.106 29 157

.....GACTCTT.. > 10 0.123 19 64

.....GACTCAT.. > 10 0.095 12 42

...TATCGTTT... > 10 0.113 13 37 Amino acid
biosynthesis

...CGTATAA.... > 10 0.110 16 70 Biosynthesis
of cofactors

...CACGTGA.... > 10 0.100 15 72 Biosynthesis
of cofactors

TATA box ...TATATAAG... 3.5 0.112 40 113 Energy
....ATATAA.... 5.2 0.114 194 1066 Metabolism

HOMOL1 TACATCC....... > 10 0.127 27 54 Translation
.ACATCCG...... > 10 0.155 23 27
..CATCCGT..... > 10 0.120 22 41
..AATCCGT..... > 10 0.115 18 30
..AATCCGTA.... > 10 0.119 12 12
...ATCCGTA.... > 10 0.171 32 44
....TCCGTAC... > 10 0.189 34 40
.....CCGTACAC. 6.3 0.122 10 7
......CGTACAT. > 10 0.125 31 71
.......GTACAT. 4.7 0.110 78 337
.......GTACATT 3.9 0.110 38 116

RPG .AACACCCA..... > 10 0.119 12 12 Translation
..ACACCCA..... > 10 0.120 26 55
...CACCCATA... > 10 0.140 18 20
....ACCCATA... > 10 0.145 34 67
.....CCCAT.... 5.0 0.107 118 609
.....CCCATAC.. > 10 0.164 31 45
......CCATAC.. 5.5 0.117 54 188
......CCATACA. > 10 0.151 37 73

Curved ..AAAAATTT.... 3.3 0.109 68 280 Translation
element ...AAAATTTT... 3.4 0.110 69 284

rather than the protein function, the correlations found between promoter ele-
ments and protein function of course hold both ways. One could thus use the
occurrences of oligomers in the upstream regions of genes as hints to the function
of proteins encoded.

A set of 500 bp 5’UTR sequence of yeast was combined with EUCLID assign-
ments of cellular roles to construct both a positive and a negative set of promoter
regions for each cellular role category. For each category, the saco patterns soft-
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ware (Jensen and Knudsen, 2000) was used to identify conserved DNA patterns
that are significantly overrepresented in the positive set compared to the negative
set according to a hypergeometric test. The results can be seen in Table 8.1.

Significant patterns were only discovered for five of the categories. The ma-
jority of these patterns are well described. Two of the three patterns found in the
upstream regions of amino acid biosynthesis genes have previously been associated
with methionine biosynthesis (Jensen and Knudsen, 2000). One of them is the
consensus recognition sequence for the Cbf1p-Met2p-Met28p complex (O’Connell
and Baker, 1992).

The only pattern found correlated to the energy metabolism category was
the yeast consensus sequence for TATA-box motifs, which apparently occur more
frequently in the upstream regions of these genes. This may be explained by the
high expression levels observed for many energy metabolism genes.

Three patterns were found to be significantly correlated to genes from the
translation category: the HOMOL1 (Larkin et al., 1987) and RPG (Vignais et al.,
1987, 1990) consensus sequences that occur in the upstream regions of most ribo-
somal protein coding genes and the putative curved promoter element previously
associated with protein synthesis (Jensen and Knudsen, 2000).

The approach described is likely to be most valuable for prokaryotes and
simple eukaryotes where the regulatory regions are fairly short and localized close
to the corresponding genes. In higher eukaryotes like humans where identification
of promoter elements is much harder, this approach is likely to be of limited value.

8.2 Predicting protein function for complete

genomes

If the complete genomic sequence of an organism is available, it should be possible
to make use of this when predicting protein function. Currently all predictions
are being made by the neural networks on a “gene by gene” basis.

8.2.1 Override predictions by database searches

When ProtFun is run on a complete genome, it will usually be an attempt to
annotate a putative function to as many proteins as possible. It would thus
make sense to automatically take into account matches to known protein families
and include them in the prediction output. When present, these matches could
be used to override the predictions made by neural networks to attain the best
possible prediction for each protein. Alternatively the matches could simply be
shown as additional information. This could be elegantly implemented using
InterPro-scan, which could also provide additional features for neural networks
as already described.

8.2.2 Making use of in silico functional links

Throughout this thesis a number of computational methods for linking together
proteins of similar function have been mentioned: The Rosetta stone method
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(gene fusions), phylogenetic profiles, and chromosomal localization. While many
might view these methods as competitors to ProtFun, it would make much more
sense to use these methods in conjunction with ProtFun, as they could improve
the prediction quality in several ways. Used together with the search for conserved
protein families described above, they would obviously provide an essentially
independent prediction of protein function to a large number of proteins.

Even when no links to proteins assigned based on sequence similarity exist,
the links can improve the quality of prediction. This can be done because it
allows ProtFun predictions of several individual proteins to be combined into a
more reliable prediction—if a group of proteins are predicted to be functionally
linked and ProtFun assigns them to the same category, it adds confidence to these
predictions.

8.2.3 Allow integration of additional experimental data

One possible step further would be to also allow the inclusion of additional data
such as microarray expression studies and/or protein–protein interaction screens.
These types of data are, as have been illustrated, very similar to the in silico
functional links and can thus be included in much the same way. Integrating
different data sources is in my opinion one of the most important challenges in
systems biology.

8.3 The future of function prediction

Given the difficulties encountered when assigning protein function from homolo-
gous proteins, the ab initio function prediction problem is unlikely to be solved
in a foreseeable future. Still, significant progress has been made in the past few
years where several methods have been developed which do not rely on direct
sequence similarity to proteins of known function.

All the methods have one thing in common: they make use of the fact that pro-
teins interact with its environment and in particular with other proteins. Several
of the methods developed rely on the prediction of protein–protein interactions
to infer function of uncharacterized proteins. The method presented in this thesis
(ProtFun) makes use of the cellular context in a different way. Central to the
method is the idea that proteins performing some function will have to perform
this function in the same context. They can therefore be expected to share certain
characteristics even if they are not evolutionarily related.

An important aspect of the ProtFun prediction method is that it makes use
of biologically relevant features as input. This allows the method to be used for
more than merely just predicting protein function—the neural networks and the
features they use can be analyzed to make biological discoveries. While it might
be possible to predict function equally well using for instance k-mer frequencies
as input, such a prediction method would be unlikely to give any insight into
how proteins work. In my opinion it is more important that future function
prediction methods capture the biology of the problem better rather than simply
outperforming todays methods.
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N. R., James, K. D., Harris, D. E., Quali, A., Kieser, H., Harper, D., Bateman,
A., Brown, S., Chandra, G., Chen, C. W., Collins, M., Cronin, A., Fraser, A.,
Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., Huang, C.-H., Kieser, T.,



193

Larke, L., Murphy, L., Oliver, K., O’Neil, S., Rabbinowitsch, E., Rajandream,
M.-A., Rutherford, K., Rutter, S., Seeger, K., Saunder, D., Sharp, S., Squares,
R., Squares, S., Taylor, K., Warren, T., Wietzorrek, A., Woodward, K., Barrell,
B. G., Parkhill, K., and Hopwood, D. A. (2002). Complete genome sequence of
the model actinomycete Streptomyces coelicolor A3(2). Nature, 417:141–147.

Bertram, P. G., Choi, J. H., Carvalho, J., Ai, W., Zeng, C., Chan, T. F., and
Zheng, X. F. (2002). Tripartite regulation of gln3p by TOR, ure2p, and phos-
phatases. J. Biol. Chem., 275:35727–35733.

Birney, E., Bateman, A., Clamp, M. E., and Hubbard, T. J. (2001). Mining the
draft human genome. Nature, 409:827–328.

Blaschke, C., Andrade, M. A., Ouzounis, C., and Valencia, A. (1999). Automatic
extraction of biological information from scientific text: protein–protein inter-
actions. In Proc. of Intelligent Systems for Molecular Biology, volume 7, pages
60–67, Menlo Park, CA. AAAI Press.

Blattner, F. R., Plunkett 3rd, G., Bloch, C. A., Perna, N. T., Burland, V., Riley,
M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor,
J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B.,
and Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12.
Science, 277:1453–1474.

Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based
prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol., 294:1351–
1362.

Bock, J. R. and Gough, D. A. (2001). Predicting protein–protein interactions
from primary structure. Bioinformatics, 17:45–460.

Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach,
J., Ehrlich, S. D., and Sorokin, A. (2001). The complete genome sequence of
the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res.,
11:731–753.

Bolten, E., Schliep, A., Schneckener, S., Schomburg, D., and Schrader, R. (2001).
Clustering protein sequences—structure prediction by transitive homology.
Bioinformatics, 17:935–941.

Bonetta, L. (2002). Systems biology—the new R&D buzzword? Nature Medicine,
8:315–316.

Bork, P. (2000). Powers and pitfalls in sequence analysis: the 70% hurdle. Genome
Res., 10:398–400.

Bork, P., Dandekar, T., Diaz-Lazcoz, Y., Eisenhaber, F., Huynen, M., and Yuan,
Y. (1998). Predicting function: from genes to genomes and back. J. Mol. Biol.,
283:707–725.



194 Bibliography

Bracco, L., Kotlarz, D., Kolb, A., Diekmann, S., and Buc, H. (1989). Synthetic
curved DNA sequences can act as transcriptional activators in Escherichia coli.
EMBO J., 8:4289–4296.

Brazma, A., Jonassen, I., Vilo, J., and Ukkonen, E. (1998). Predicting gene
regulatory elements in silico on a genomic scale. Genome Res., 8:1202–1215.

Brazma, A., Vilo, J., Ukkonen, E., and Valtonen, K. (1997). Data mining for
regulatory elements in yeast genome. ISMB, 5:65–74.

Breeden, L. (2000). Cyclin transcription: Timing is everything. Curr. Biol.,
10:R586–R588.

Brown, D. R. (2001). Copper and prion disease. Brain Research Bulletin, 55:165–
173.

Brown, D. R., Qin, K., Herms, J. W., Madlung, A., Manson, J., Strome, R.,
Fraser, P. E., Kruck, T., von Bohlen, A., Schulz-Schaeffer, W., Giese, A.,
Westaway, D., and Kretzschmar, H. (1997). The cellular prion protein binds
copper in vivo. Nature, 390:684–687.

Brown, M. P., Grundy, W. N., Lin, D., Cristianini, N., Sugnet, C. W., Furey,
T. S., Ares, Jr., M., and Haussler, D. (2000). Knowledge-based analysis of
microarray gene expression data by using support vector machines. Proc. Natl.
Acad. Sci. U.S.A., 97:262–267.

Brunak, S., Engelbrecht, J., and Knudsen, S. (1990). Cleaning up gene databases.
Nature, 343:123.

Brunak, S., Engelbrecht, J., and Knudsen, S. (1991). Prediction of human mRNA
donor and acceptor sites from the DNA sequence. J. Mol. Biol., 220:49–65.

Bult, J. C., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G.,
Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage,
A. R., Dougherty, B. A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek,
R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L.,
Geoghagen, N. S. M., and Venter, J. C. (1996). Complete genome sequence
of the methanogenic archaeon, Methanococcus jannaschii. Science, 273:1058–
1073.

Callan, H. G. (1972). Replication of DNA in the chromosomes of eukaryotes.
Proc. R. Soc. Lond., 181:19–41.

Cambillau, C. and Claverie, J. M. (2000). Structural and genomic correlates of
hyperthermostability. J. Biol. Chem., 275:32383–32386.

Casari, G., Ouzounis, C., Valencia, A., and Sander, C. (1996). GeneQuiz-II:
Automatic function assignment for genome sequence analysis. In Proceedings of
the First Annual Pacific Symposium on Biocomputing, pages 707–709, Hawaii.
World Scientific.



195

Chen, C. and Colley, K. J. (2000). Minimal structural and glycosylation require-
ments for ST6Gal I activity and trafficking. Glycobiology, 10:531–583.

Cheng, H. H., Muhlrad, P. J., Hoyt, M. A., and Echols, H. (1988). Cleavage of
the cII protein of phage lambda by purified HflA protease: control of the switch
between lysis and lysogeny. Proc. Natl. Acad. Sci. U.S.A., 85:7882–7886.

Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka,
L., Wolfsberg, T. G., Gabrielian, A. E., Landsman, D., Lockhart, D. J., and
Davis, R. W. (1998). A genome-wide transcriptional analysis of the mitotic
cell cycle. Mol. Cell, 2:65–73.

Chou, K.-C. and Elrod, D. W. (1999). Protein subcellular location prediction.
Protein Eng., 12:107–118.

Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O., and
Herskowitz, L. (1998). The transcriptional program of sporulation in budding
yeast. Science, 282:699–705.

Claverie, J.-M. (2001). What if there are only 30,000 human genes. Science,
291:1255–1257.

Cohen, P. (2000). The regulation of protein function by multisite
phosphorylation—a 25 year update. Trends Biochem. Sci., 25:596–601.

Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gor-
don, S. V., Eiglmeier, K., Gas, S., Barry 3rd, C. E., Tekaia, F., Badcock, K.,
Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin,
K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels,
K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osbourne, J.,
Quail, M. A., Rajandream, M. A., Rogers, J., Ruter, S., Seeger, K., Skelton,
J., Squares, R., Sulston, J. E., Taylor, K., Whitehead, S., and Barrell, B. G.
(1998). Deciphering the biology of Mycobacterium tuberculosis from the com-
plete genome sequence. Nature, 393:537–544.

Collinge, J., Palmer, M. S., Sidle, K. C., Hill, A. F., Gowland, I., Meads, J.,
Asante, E., Bradley, R., Doey, L. J., and Lantos, P. L. (1995). Unaltered
susceptibility to bse in transgenic mice expressing human prion protein. Nature,
378:779–783.

Collobert, R. and Bengio, S. (2000). Support vector machines for large-scale
regression problems. Technical Report IDIAP-RR-00-17, IDIAP, Switzerland.

Comer, F. I. and Hart, G. W. (1999). O-GlcNAc and the control of gene expres-
sion. Biochim. Biophys. Acta., 1473:161–171.

Comer, F. I. and Hart, G. W. (2000). O-glycosylation of nuclear and cytoso-
lic proteins: Dynamic interplay between O-glcnac and O-phosphate. J. Biol.
Chem., 275:29179–29182.



196 Bibliography

Dandekar, T., Snel, B., Huynen, M., and Bork, P. (1998). Conservation of gene
order: a fingerprint of proteins that physically interact. Trends Biochem. Sci.,
23:324–328.

Das, S., Yu, L., Gaitatzes, C., Rogers, R., Freeman, J., Bienkowska, J., Adams,
R. M., and Smith, T. F. (1997). Biology’s new rosetta stone. Nature, 385:29–30.

Davis, C. A., Grate, L., Spingola, M., and Ares, Jr., M. (2000). Test of intron
predictions reveals novel splice sites, alternatively spliced mRNAs and new
introns in meiotically regulated genes of yeast. Nucleic Acids Res., 28:1700–
1706.

Dayhoff, M. O., Schwartz, R. M., and Orcutt, B. C. (1978). A model of evolu-
tionary change in proteins. In Dayhoff, M., editor, Atlas of Protein Sequence
and Structure, volume 5, pages 345–352. National Biochemical Research Foun-
dation, Washington D.C.

Deane, C. M., Salwinski, L., Xenarios, I., and Eisenberg, D. (2002). Protein
interactions: Two methods for assessment of the reliability of high throughput
observations. Mol. Cell. Proteomics, 1:349–356.

Deckert, G., Warren, P. V., Gaasterland, T., Young, W. G., Lenox, A. L., Gra-
ham, D. E., Overbeek, R., Snead, M. A., Keller, M., Aujay, M., Huber, R.,
Feldman, R. A., Short, J. M., Olsen, G. J., and Swanson, R. V. (1998). The
complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature,
392:353–358.

Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R. A., Martinez-
Arias, R., Henne, A., Wiezer, A., Bäumer, S., Jacobi, S., Brüggemann, H.,
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