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Many protein features useful for prediction of protein function can be predicted from sequence, including
posttranslational modifications, subcellular localization, and physical/chemical properties. We show here that such
protein features are more conserved among orthologs than paralogs, indicating they are crucial for protein function
and thus subject to selective pressure. This means that a function prediction method based on sequence-derived
features may be able to discriminate between proteins with different function even when they have highly similar
structure. Also, such a method is likely to perform well on organisms other than the one on which it was trained.
We evaluate the performance of such a method, ProtFun, which relies on protein features as its sole input, and show
that the method gives similar performance for most eukaryotes and performs much better than anticipated on
archaea and bacteria. From this analysis, we conclude that for the posttranslational modifications studied, both the
cellular use and the sequence motifs are conserved within Eukarya.

Biological systems modeling at the molecular level normally re-
quires knowledge about the functionality of the interacting com-
ponents. The determination of protein function is an essential
requirement for many types of systems biology. It is a fundamen-
tal axiom that the structure of a protein determines its function.
However, whether this is true or not depends very strongly on
the level at which one defines “function.” A close relationship
between structure and function is observed if the detailed bio-
chemical function is studied, such as which reaction is catalyzed
by an enzyme. This type of functionality is often termed the
“molecular function,” and it is highly conserved within super-
families, members of which, according to the SCOP definitions,
are required to be related in sequence, structure, and function
(Todd et al. 2001).

When studying the much broader “cellular role” categories,
the relationship between structure and function becomes much
less clear. For example, predicted protein secondary structure is
much more useful for predicting enzyme class membership than
cellular roles (Jensen et al. 2002). Several examples exist in which
proteins have different cellular roles although they belong to the
same superfamily. The reverse is also true: Proteins from many
different superfamilies are involved in each of the particular cel-
lular role categories.

Even for the chemically related EC classification, the rela-
tionship to structure is unclear. For example, the �/�-hydrolase
superfamily—contrary to what the name indicates—contains not
only hydrolases but also oxidoreductases, transferases, and lyases
(Todd et al. 2001). Another example is the zinc peptidase super-
family, which includes a nonenzymatic receptor. Still, conserva-
tion of the enzyme class is seen for the majority of the enzyme
superfamilies.

Typically, in any genome the function of only half the pro-
teins can be assigned by sequence similarity search methods,
whereas the rest remain unassigned. Some of these sequences of
unknown function do not resemble any other known protein
sequence; others have homologs, but the function of these is also
unknown. In any case, it is very difficult to suggest a function for
these proteins.

For a long time, the paradigm behind solving this daunting
task has been based on protein structure determination and pre-
diction. The rationale has been that the structure of a protein is
what determines its function, for which reason the function
could be predicted via the structure, for example, by homology
building.

To be able to do this, several structural genomics initiatives
have been started. These initiatives will be very useful for gaining
new insight into the detailed chemical function of proteins that
are today poorly understood. But given the relatively weak cor-
relation between protein structure and cellular role combined
with the vast number of unrelated proteins of unknown func-
tion, we believe that a different approach to predicting the cel-
lular role of these proteins should be taken.

Instead, we have attempted to predict protein function
based on predicted properties of proteins, such as physico-
chemical properties, predicted posttranslational modifications,
and subcellular localization signals (Gupta et al. 2002; Jensen et
al. 2002). Although predicted from sequence, they are more con-
served among orthologs than paralogs, given the same degree of
sequence conservation. This is in contrast to three-dimensional
structure, which is conserved for paralogs as well as orthologs.

We furthermore demonstrate that the sequence-derived pro-
tein properties characterize proteins of different cellular roles in
ways that are conserved not only within Eukarya, but in several
cases within all three domains of life: Eukarya, Archaea, and Bac-
teria. These discoveries have been made through a cross-species
analysis of the performance of the ProtFun prediction method
(Jensen et al. 2002) for a wide variety of organisms covering
mammals, invertebrates, plants, and fungi as well as Crenar-
chaeota, Euryarchaeota, and Eubacteria.

RESULTS AND DISCUSSION

Features Are More Conserved Among Orthologs
Than Paralogs
It is well known and often used in function assignment that
orthologs more often have identical function than paralogs
(Jensen 2001). If the sequence-derived protein features we use
are, indeed, indicative of protein function, they should then be
expected to be more conserved within pairs of orthologous pro-
teins than within pairs of paralogous proteins. However, as most
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of the predicted features used as input by ProtFun have not been
experimentally verified, such comparison must be based on the
predicted features. The ProtFun method is used as a similarity
measure for this comparison, as similarity in feature space will
lead to similar function predictions. Orthologous proteins
should more often be predicted to have the same function than
paralogous proteins.

We have verified this on a data set consisting of all orthologs
and paralogs between the complete genomes of Homo sapiens and
Drosophila melanogaster. Because orthologs typically are more
similar than paralogs at the sequence level, we have examined
the feature similarities as a function of the sequence identity (see
Fig. 1). It is clear that the functional similarity as predicted from
sequence-derived features is most conserved for orthologs over
the entire range of sequence similarity studied.

The ProtFun predictions rely exclusively on sequence-
derived features as input. The ability of the method to discern
between orthologs and paralogs, therefore, has the implication
that the protein features are selectively conserved for orthologs.
This is consistent with the observation that O-glycosylation sites
are often not conserved between orthologs on a site-by-site basis
but rather as a bulk property (K. Julenius, R. Gupta, K. Rapacki,
L.J. Jensen, and S. Brunak, unpubl.).

Cross-Species Comparison
The ProtFun function prediction method has been trained on
human protein sequences of known function only (Jensen et al.
2002), but given that it relies on protein features that occur in all
eukaryotes, it should be expected to be able to generalize to other
organisms as well. Considering the results above, it would appear
that the method is able to generalize at least to metazoans.

To investigate this further, we evaluated the performance of
ProtFun on the complete genomes of 48 organisms. When doing
this kind of comparative analysis of genomes/proteomes from

many different species, there are several potential sources of ar-
tifacts. Because the genes have been annotated using different
gene-finding methods or different similarity cutoffs, there can be
vast differences in the quality of the annotations (Skovgaard et al.
2001). Also, because genomes have been annotated by different
groups, inconsistencies in the functional annotations are likely
to occur. To compare protein function across multiple genomes,
one has to make sure that the annotation is consistent.

We address these problems by reannotating the function of
all proteins based on sequence similarity using the EUCLID
method (Tamames et al. 1998; Andrade et al. 1999), restricting
ourselves to use proteins for which a function could be assigned
reliably. Because questionable ORFs that might have been anno-
tated as genes are very unlikely to display significant sequence
similarity to proteins in SWISS-PROT, these will automatically be
rejected. The fully automated assignments into functional classes
ensure comparability across organisms, but are likely to be less
accurate than the original annotations. The fact that not only our
own predictions will contain errors, but also the labeling to
which we compare, means that we will obtain a conservative
estimate of the ProtFun performance.

Good Performance on All Eukaryotes
To our surprise, the ProtFun method performs almost equally
well on all other eukaryotes tested including yeasts (see Fig. 2).
This ability to generalize across very different phyla shows that
the trends found by the artificial neural networks not only hold
for human proteins but have, in fact, been conserved throughout
the eukaryotic domain of life.

Sequence-Derived Input Features
Our approach to function prediction relies on sequence-derived
input features. These represent physical/chemical and functional
biological properties of the protein that can be either calculated
or predicted from the amino acid sequence alone. These features
include predicted protein secondary structure, transmembrane
helices, subcellular localization, and posttranslational modifica-
tions.

Although all of these features make biological sense for eu-
karyotes in general, many of the feature predictors had been
trained onmammalian or vertebrate data sets. Their performance
on other eukaryotes was therefore unknown.

In the case of prokaryotes, some of the features make no
sense at all. For instance, the lack of compartmentation in pro-
karyotes means that prediction of most subcellular localization
makes little sense. How well other features like posttranslational
modifications (PTMs) will work for prokaryotes is even less clear:
The functional role of a modification may be different from that
in eukaryotes, the motif may be different, or the modification
may not take place at all.

We have analyzed this in a systematic and quantitative fash-
ion. The performances obtained for cellular roles were mapped
according to feature importance. The resulting values represent
the performance contributed by each sequence-derived feature.
Figure 2 shows these values visualized in the same way as the
functional category performances. The general trends are as fol-
lows: Features representing structural properties like predicted
secondary structure and membrane-spanning helices as well as
more general physico-chemical properties of the proteins gener-
alize well to prokaryotes. On the other hand, most of the features
representing predicted PTMs and protein sorting signals are of
limited value in archaeal and bacterial genomes.

There are certain organisms that deviate from the patterns
described above. One example is Buchnera aphidicola, which be-
longs to the � subdivision of proteobacteria. In contrast to most

Figure 1 Estimated probability for same cellular role as function of
similarity for orthologs and paralogs. These probabilities were estimated
as the overlap integral of the ProtFun predictions for H. sapiens and D.
melanogaster proteins involved in each pair. The probabilities could not
be reliably estimated outside the range 30%–80% identity as orthology
versus paralogy cannot be reliably predicted for distant homologs and
because very closely related paralogs are likely predicted to be orthologs.

Conservation of Protein Function in Feature Space
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Figure 2 ProtFun performance for functional classes and performance contributions from input features. For 44 organisms the area under the receiver
output characteristic (ROC) curve has been plotted for all cellular role categories and enzyme classes (left panel). These performances were mapped into
input features based on the feature usage matrix (see Fig. 1 in Jensen et al. 2002).



other organisms, even the correlations between simple physical/
chemical properties (extinction coefficient, hydrophobicity, and
number of negative/positive residues) appear to break down (see
Fig. 2). All of these features reflect different aspects of the amino
acid composition. The lack of correlation is thus likely to result
from the unusual amino acid composition of B. aphidicola pro-
teins, which is reflected in the predicted isoelectric points of B.
aphidicola proteins (Shigenobu et al. 2000, 2001).

Many Features Fail on Prokaryotes
It was anticipated, because of the very different organization of
the eukaryotic and prokaryotic cells, that the predicted protein
subcellular localization (according to PSORT) would be of little
use in prokaryotes. Still, one could have expected N-terminal
signal peptide prediction to work, as the signal peptides not only
exist in prokaryotes but can be accurately predicted by the Sig-
nalP method that we use in ProtFun (Nielsen et al. 1997).

The problem is that signal peptides do not play the exact
same role in eukaryotes and in prokaryotes. Also, eukaryotes have
several types of similar N-terminal targeting sequences, which
can all be detected from the SignalP scores. For example, eukary-
otic proteins targeted for the mitochondria will have mitochon-
drial targeting peptides, whereas their prokaryotic counterparts
would be expected to be cytoplasmic and thus not have signal
peptides. This difference in the meaning of similar biological
motifs in prokaryotes and eukaryotes explains the very poor per-
formance of the energy metabolism predictor for prokaryotes.

Two types of predicted glycosylation sites, both targeting
secreted and membrane-associated proteins, are being used by
ProtFun. One is N-linked �-GlcNAc glycosylation of asparagines,
which takes place in the endoplasmic reticulum. The other is
O-linked �-GalNAc glycosylation of serines and threonines,
which takes place in the Golgi. Possibly because glycosylation
has not been studied nearly as much in prokaryotes as in eukary-
otes, only one of the two types (N-linked �-GlcNAc glycosyla-
tion) has been observed in prokaryotes (Spiro 2002). As with
signal peptides, the consensus sequence for this modification ap-
pears to be the same in prokaryotes and eukaryotes. It is thus
reasonable to expect the NetNGlyc predictor to work on prokary-
otes even though it was trained on eukaryotic sequences.

Glycosylation also seems to play much the same role in
prokaryotes and eukaryotes, but much fewer proteins appear to
be glycosylated in prokaryotes (Spiro 2002). The small number of
glycoproteins may explain why glycosylation predictions appear
to be of limited value for predicting functional classes in prokary-
otes, despite both the consensus sequence and function being
conserved.

Similar to glycosylation, phosphorylation is known to play
an important role in prokaryotes, where it is involved in regula-
tion as in eukaryotes. This makes phosphorylation sites a biologi-
cally relevant feature, which could be used for function predic-
tion in prokaryotes. However, it was questionable if predicted
phosphorylation sites could be used because the NetPhos predic-
tor was trained solely on eukaryotic data. This depends entirely
on whether the specificities of some of the prokaryotic kinases
are sufficiently close to those of eukaryotic kinases. In our cross-
species analysis, we find that predicted phosphorylation sites
contribute little to the performance on prokaryotic proteins,
which indicates that the specificities of prokaryotic kinases are
quite different from those of eukaryotic kinases.

Considering that so many of the input features used by
ProtFun make little or no sense for prokaryotic organisms (the
predictors are most often based on mammalian data), it is some-
what surprising that the method works at all for them. Figure 2
shows that the features mainly responsible for this are the physi-

cal/chemical properties, in particular the size and charge of the
protein represented by the number of negative/positive residues.
The only other features that contribute significantly are those
related to structure, that is, secondary structure and transmem-
brane helix prediction, which also are somewhat species unspe-
cific. In this sense, our work reconfirms very early work by de Lisi
and coworkers (Klein et al. 1984).

Universal Feature Usage and Consensus in Eukarya
An interesting implication of the ability to generalize across spe-
cies is that the different posttranslational modifications appar-
ently serve the same purposes for most if not all eukaryotes. Not
only do eukaryotes have the gene repertoire for making the same
modifications, they also use them in a consistent manner.

The fact that all feature–function correlations hold within
Eukarya has one further implication. It indirectly indicates that
most (if not all) of the predictors that are used by ProtFun can be
expected to work with reasonable accuracy for all eukaryotes. As
mentioned above, this could not be taken for granted as some of
them have been trained on data sets consisting exclusively of
human proteins.

Same Structure—Different Function
In the Introduction, several examples were presented of SCOP
superfamilies containing enzymes from entirely different en-
zyme classes and superfamilies containing both enzymes and
nonenzymes. These cases show that conservation of structure at
the superfamily level is not sufficient to guarantee that function
is also conserved.

With respect to enzyme classification, the Cupredoxin su-
perfamily is one of the most diverse, containing an almost equal
proportion of enzymes and nonenzymes. Table 1 shows the en-
zyme probabilities predicted by ProtFun along with the experi-
mental assignment (Todd et al. 2001). Although all the proteins
have the same conserved three-dimensional structure, our ap-
proach is able to correctly discriminate between the enzymatic
and nonenzymatic members of the Cupredoxin superfamily. It
should be pointed out, however, that all the enzymatic members

Table 1. Predictions for Members of the
Cupredoxin Superfamily

PDB
identifier Chain

Enzyme
prob.

Experimental
assignment

1NWP A 0.257 Nonenzyme
1NWP B 0.257 Nonenzyme
2CBP 0.289 Nonenzyme
1AAC 0.301 Nonenzyme
1PLC 0.310 Nonenzyme
1RCY 0.325 Nonenzyme
2CUA B 0.354 Nonenzyme*
2CUA A 0.368 Nonenzyme*
1JER 0.404 Nonenzyme
1PAZ 0.416 Nonenzyme
1CYW 0.483 Nonenzyme*

1A65 A 0.652 Enzyme
1NIF 0.688 Enzyme
1AOZ A 0.773 Enzyme
1AOZ B 0.773 Enzyme
1KCW 0.792 Enzyme

For each member of the superfamily, the enzyme probability score from
ProtFun is listed along with the experimental enzyme/nonenzyme as-
signment (Todd et al. 2001). The nonenzymes marked with an asterisk
are part of enzymatic complexes, but do not contain active sites.
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of the superfamily belong to the same protein family, even
though some of them are <30% identical at the amino acid level.

Evolution of members within the same superfamily of pro-
teins both with and without enzymatic activity is likely to have
happened through gene duplication events and subsequent ad-
aptation of one of the copies for a new function. An enzymatic
and a nonenzymatic member of the same superfamily are thus
likely to be paralogs. It is therefore plausible that the stronger
conservation of protein features observed for orthologs com-
pared with paralogs is related to the ability to discriminate be-
tween structurally similar but functionally dissimilar proteins.

Conclusions
For a long time, there has been a very strong focus on the im-
portance of protein structure for understanding protein function.
However, based on our analysis we conjecture that many other
protein properties, for example, posttranslational modifications,
may in fact be more, or at least, equally important for determin-
ing and maintaining the function of a protein. These properties
appear to be conserved among proteins of similar function, both
in cases in which the evolutionary relationship can be detected
by sequence similarity and in more distantly related proteins of
similar structure.

METHODS

Generation of the Data Set
A set of 23,740 protein sequences corresponding to predicted
human genes was downloaded from the Ensembl database (Hub-
bard et al. 2002). Similarly, a set of 14,334 D. melanogaster protein
sequences was obtained from FlyBase (Rechsteiner and Rogers
1996), 20,263 Caenorhabditis elegans sequences from the protein
database WormBase, and 25,617 Arabidopsis thaliana protein se-
quences from The Arabidopsis Information Resource (TAIR;
Huala et al. 2001).

In addition to these eukaryotic data sets, the complete ge-
nome sequences of the two yeasts Saccharomyces cerevisiae and
Schizosaccharomyces pombe were downloaded from GenBank, and
all translations of annotated protein coding regions were ex-
tracted (Benson et al. 2002). Protein data sets for 14 archaea and
28 bacteria were extracted in the same manner from the com-
plete genome sequences (see Table 2).

To ensure comparable function annotation among these
many genomes, all existing (if any) information on protein func-
tion was discarded and the proteins were automatically reas-
signed to cellular role categories by using the EUCLID method
(Tamames et al. 1998; Andrade et al. 1999) and to enzyme cat-
egories based on the following criteria.

Based on BLAST matches to known proteins in SWISS-PROT,
EUCLID collected keywords that are used in an additive scoring
system to calculate a Z-score for each cellular role category. We
annotated each category separately based on the EUCLID Z-
scores with the same rules used to label the training examples
used for development of the ProtFunmethod (Jensen et al. 2002).
Sequences were labeled as “positive examples” if their Z-scores
were above 3 whereas sequences with a Z-score <0 were labeled as
“negative” examples. Any sequences having a Z-score from 0 to 3
were left out of the analysis for the category in question.

Sequences were assigned to enzyme classes based on the
same BLAST matches used for selecting keywords above. As
SWISS-PROT provides enzyme class information for most en-
zymes in the description field, this information was extracted for
all BLAST matches identified by running EUCLID. Labeling of
enzyme versus nonenzyme as well as the major enzyme class was
decided by voting among the matches. At least two-thirds ma-
jority for either “yes” or “no” was required for a sequence to be
labeled.

Performance Evaluation
One of the best commonly used performance evaluation criteria
is the correlation coefficient, which we have used as the main
criterion during development of the ProtFun method. However,
the correlation coefficient cannot be used for the problem at
hand because of its dependence on the relative frequency of posi-
tive and negative examples in the data set (Baldi et al. 2000).
Correlation coefficients can thus not be used for comparing the
performance of our prediction method across genomes with dif-
ferent breakdown on functional categories.

Table 2. Data Sets Used for Cross-Species Evaluation

Organism
Protein

sequences
Assigned by

EUCLID

Homo sapiens 23,740 13,419
Drosophila melanogaster 14,334 7235
Caenorhabditis elegans 20,263 7840
Arabidopsis thaliana 25,617 11,771
Schizosaccharomyces pombe 4952 2786
Saccharomyces cerevisiae 6329 3302

Aeropyrum pernix 2694 684
Pyrobaculum aerophilum 2605 867
Sulfolobus solfataricus 2977 1186
Sulfolobus tokodaii 2826 1045
Archaeoglobus fulgidus 2407 1074
Methanobacterium thermoautotrophicum 1869 867
Methanococcus jannaschii 1715 781
Methanosarcina mazei 3371 1420
Methanopyrus kandleri 1691 653
Methanosarcina acetivorans 4540 1850
Pyrococcus abyssi 1765 855
Pyrococcus horikoshii 2064 786
Thermoplasma acidophilum 1031 783
Thermoplasma volcanium 1499 792

Anabaena sp. 5366 2444
Aquifex aeolicus 1522 926
Borrelia burgdorferi 850 461
Bacillus halodurans 4066 2223
Bacillus subtilis 4100 2240
Buchnera sp. 564 469
Campylobacter jejuni 1654 975
Chlamydia pneumoniae 1052 530
Chlamydia trachomatis 894 498
Deinoccocus radiodurans 2937 1332
Escherichia coli 4289 2883
Fusobacterium nucleatum 2068 1083
Haemophilus influenzae 1709 1183
Helicobacter pylori 1566 815
Lactococcus lactis 2266 1229
Mycoplasma genitalium 480 332
Mycoplasma pneumoniae 677 441
Mycobacterium tuberculosis 3918 1973
Neisseria meningitides ser. A 2121 1132
Neisseria meningitides ser. B 2025 1088
Rickettsia prowazekii 834 548
Streptomyces coelicolor 7848 3625
Synechocystis sp. 3169 1598
Thermotoga maritima 1846 1064
Treponema pallidum 1031 507
Vibrio cholerae 3828 2054
Xylella fastidiosa 2766 1184
Yersinia pestis 4008 2566

The column “protein sequences” lists the number of protein-coding
regions annotated in the genomes, with the exception of the organ-
isms H. sapiens, D. melanogaster, C. elegans, and A. thaliana (see text
for details on these data sets). The protein sequences that could be
assigned to a cellular role by the EUCLID method (last column) show
the amount of data available for validation of the ProtFun method for
each organism.

Jensen et al.
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Instead, we opt for using the area under the receiver output
characteristic (ROC) curve, a plot of true negative rate versus true
positive rate. The area under this curve will be 1 for a perfect
predictor and 0.5 for a predictor performing no better than ran-
dom. Like the correlation coefficient, this performance measure
is balanced, taking into account the tradeoff between high sen-
sitivity and low rate of false positives. In addition to this, it is also
independent of the data set composition in terms of positive and
negative examples.

Feature Mapping
The ROC area performances functional classes were mapped onto
the sequence-derived features. These sequence-derived features
were the prediction methods NetNGlyc (data not shown), NetO-
Glyc (Hansen et al. 1998), NetPhos (Blom et al. 1999), PEST re-
gions (Rechsteiner and Rogers 1996), PSIPRED (Jones 1999),
PSORT (Nakai and Horton 1999), SEG filter (Wootton 1994), Sig-
nalP (Nielsen et al. 1999), and TMHMM (Krogh et al. 2001), as
well as the number of calculated features: extinction coefficient,
grand average hydrophobicity, and the numbers of positively
and negatively charged residues.

For each organism, the performance of each of these 14
input features was calculated as a weighted average of the ROC
areas of the 12 cellular role categories. Each cellular role category
entered with a weight corresponding to the number of neural
networks in its ensemble of predictors that make use of the fea-
ture in question (see Fig. 1 in Jensen et al. 2002). We decided not
to include the enzyme classifiers in this mapping procedure be-
cause all of the neural network ensembles make use of a large
number of sequence-derived features. This makes it very difficult
to correctly attribute the predictive performance to the right fea-
tures for these classifiers.

Obtaining Sets of Orthologs and Paralogs
Assignment of orthologs versus paralogs is far from being a trivial
problem. To obtain a large data set of orthologs/in-paralogs and
out-paralogs, we have made use of the INPARANOID tool to clas-
sify the pairs of homologous proteins between the H. sapiens and
D. melanogaster data sets described above (Remm et al. 2001).
Paralogs were assigned based on BLAST matches covering at least
50% of the sequence length, which were not listed as orthologs
by INPARANOID. By this approach, we predicted 13,562 pairs of
orthologous proteins and 151,923 pairs of paralogous proteins.
To ensure comparability of the two data sets, only pairs of para-
logs consisting of one H. sapiens and one D. melanogaster protein
were included.
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