
  1998 Oxford University Press 697–702Nucleic Acids Research, 1998, Vol. 26, No. 3

Scoring functions for computational algorithms
applicable to the design of spiked oligonucleotides
Lars Juhl Jensen , Kim Vilbour Andersen , Allan Svendsen and Titus Kret zschmar*

Department of Enzyme Design, Novo Nordisk A/S, DK-2880 Bagsværd, Denmark

Received December 3, 1997; Accepted December 4, 1997

ABSTRACT

Protein engineering by inserting stretches of random
DNA sequences into target genes in combination with
adequate screening or selection methods is a versatile
technique to elucidate and improve protein functions.
Established compounds for generating semi-random
DNA sequences are spiked oligonucleotides which are
synthesised by interspersing wild type (wt) nucleotides
of the target sequence with certain amounts of other
nucleotides. Directed spiking strategies reduce the
complexity of a library to a manageable format compared
with completely random libraries. Com putational
algorithms render feasible the calculation of appropriate
nucleotide mixtures to encode specified amino acid
subpopulations. The crucial element in the ranking of
spiked codons generated during an iterative algorithm
is the scoring function. In this report three scoring
functions are analysed: the sum-of-square-differences
function s, a modified cubic function c, and a scoring
function m derived from maximum likelihood
considerations. The impact of these scoring functions
on calculated amino acid distributions is demonstrated
by an example of mutagenising a domain surr ounding
the active site serine of subtilisin-like proteases. At
default weight settings of one for each amino acid, the
new scoring function m is superior to functions s and
c in finding matches to a given amino acid population.

INTRODUCTION

With the advent of efficient site-directed mutagenesis methods,
protein engineering became a widely-used method for analysing
structure–function relationships (1,2). It has produced a wealth of
information on protein functions and is a precious tool for the closer
understanding of binding events, enzymatic activity, or stability of
proteins on the molecular level. Site-directed mutagenesis is
typically guided by some pre-knowledge of structural features of the
protein and putative binding sites or conserved motifs.

In order to obtain higher degrees of diversity at a certain region
of the protein and to accelerate the protein engineering process,
random saturation mutagenesis (or combinatorial cassette
mutagenesis) has been introduced (3–6). One or more codons
consisting of equimolar mixtures of up to all four nucleotides at each

position (NNN) are inserted into a gene. By this technique libraries
of variants encoding all 20 natural amino acids plus the translation
stop signals are created at a defined region of the gene which are then
screened or selected by appropriate assays. This type of library
encodes a biased pool of amino acids according to the degeneracy
of the codons. A more parsimonious approach is using NN(G/C) or
NN(G/T) codons which reduce the complexity at the DNA level by
a factor of two per codon and result in a more even distribution of
the amino acids with a smaller percentage of stop signals (7,8).
NN(G/C) or NN(G/T) mutagenesis confines the window of the
mutagenic area to about five codons, i.e., 3.4 × 107 variants at the
DNA level with ∼15% harbouring stop codons, because of limits in
transforming host cells. A major disadvantage with these kinds of
libraries, however, is the dilution of functionally active proteins by,
e.g., misfolded, catalytically inactive, or prematurely truncated
variants due to the very high density of mutant positions (9,10).

In order to overcome the constraints in window size and to drive
the mutagenesis towards a larger fraction of functional molecules,
three different strategies have evolved which aim at creating
specified amino acid pools at certain positions based either on
phylogenetic considerations, e.g., sequence alignments, on
structurally derived properties of the protein, or simply on guesses.

Firstly, split-and-mix methods have been devised where during
oligonucleotide synthesis the resin is split, differently processed,
and mixed before proceeding with synthesis (11,12). The result
is oligonucleotide pools exactly encoding a reference amino acid
distribution. This approach becomes experimentally impractical
when several complex split-and-mix steps are required.

Another elegant and efficient way of mutagenesis is the
application of pre-formed trinucleotide phosporamidites for
mixed oligodeoxyribonucleotide synthesis which also allows
precise adjustment of a specified amino acid subset (13–17). The
trinucleotide phosporamidites technique is not yet widespread
and reagents are not commercially available.

Today’s most applied method is exploiting spiked oligo-
nucleotides. During oligonucleotide synthesis wild type (wt)
bases are deliberately mixed with certain amounts of the other
bases (18–25). Due to constraints imposed by the natural genetic
code, spiking of oligonucleotides frequently does not result in
perfect matches to a given amino acid distribution. Thus, the
spiking approach has to consider the generation of an amino acid
population which is as close to the reference amino acid set as
possible while keeping the amount of stop codons low
(12,26–28). In order to enable the calculation of appropriate
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nucleotide mixtures, algorithms eligible to computer application
have been developed. The essential element of these algorithms
is the scoring function which allows for ranking of the spiked
codons according to the best fit to a given amino acid population
(12,26, this report).

We designed three scoring functions and discuss here their
influence on semi-random mutagenesis with spiked oligo-
nucleotides. We have chosen an example of mutagenesis of
subtilisin-like proteases. Subtilases are of significant importance in
detergent industry. Protein engineering, modelling and
investigations on the mechanism of action as well as on the
considerable stability of subtilisins have been performed for some
time (29–33).

METHODS

Outline of the algorithm

The algorithm consists of 100 or more cycles and each cycle of
1000 iterations. Each iteration is based on a Monte-Carlo
simulation: starting from any nucleotide composition of a codon a
new random nucleotide composition is chosen for each position in
the codon. The absolute difference between the starting and the
new composition is controlled by a parameter d for each of the four
nucleotides in all three positions of the codon. The parameter d is
only kept constant within one iteration and decreases linearly from
one to zero within one cycle. The encoded amino acid distribution
is then scored by the respective scoring functions s, c, or m (see
below) and compared with the starting score. If the new score is
better or equal to the score of the current base composition, the new
base composition will be the next starting point. If the new score
is worse, the probability of keeping the new composition as new
starting point equals e(–1000 × |new_score–current_score|). The term
‘better score’ means, in the case of function s and function c, a
lower score, and in the case of function m a higher score obtained
by the algorithm. The entire algorithm was written in C++. It is
compiled with the GNU C compiler and runs under Linux on a
standard 100 MHz Pentium personal computer with 16 Mb of
memory capacity. Performing 1000 cycles consisting each of 1000
iterations takes ∼4 min of computing time.

Scoring functions

(i) The function s is derived from the least square sum method. A
basically equivalent function is also used by Tomandl et al. (12):
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with xi defined as the fraction of an amino acid species i calculated
by the algorithm for the current base composition, ai is the
reference fraction of amino acid species i as given by the user, and
wi is a user-specified weighting factor allowing for amino acids of
special interest to be favoured. Default weight setting for all herein
presented scoring functions is one.

(ii) The function c is based on a cubic sum calculation:
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with the same definitions of xi, ai and wi as described above.
(iii) The function m is derived from maximum-likelihood

considerations:
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with the same definitions of xi, ai and wi as described above. The
term 00 is defined as being one.

Statistics on the mutagenised cassette

Average number of mutations. The average number of mutations
per molecule is estimated from randomly generated variants by
taking into account the probability of getting a non-wt amino acid
at the individual positions. The number of mutations and of stop
codons in each variant is counted and the average number of
mutations is calculated on the basis of all species harbouring no
stop codons. One thousand or more variants are generated until
the estimated standard deviation of the average is <0.05.

Calculation of library sizes. For the calculation of the library size
that has to be screened to cover at a 95% confidence level all
demanded variants having n mutant sites, the probability of the
least likely specified variant with n mutant sites has to be
determined. The following algorithm is applied:

(i) The probability p-wt of getting wt amino acids at all
positions is calculated.

(ii) For every position i the ratio ri of the probability of getting
the specified amino acid with the lowest amount divided by the
probability of getting wt is calculated.

(iii) To find the probability p1 of the least likely single mutant,
the probability p-wt is multiplied with the smallest of the ratios ri.

(iv) The probability p2 of the least likely double mutant is found
by multiplying p1 with the second smallest ratio ri.

(v) The probabilities p3–pn are analogously calculated.
(vi) The library size which has to be screened to cover all

variants with n mutant sites at a 95% confidence level equals
log(1 – 0.95)/log(1 – pn).

Subtilisin mutagenesis

The influence of the scoring functions s, c and m on the encoded
amino acid population of mixed oligonucleotides and on the library
size is shown here by the mutagenesis of six amino acids within a
10 amino acid stretch encompassing the active site serine of
subtilisin proteases. For the analysis, 35 subtilisin sequences of class
I type are used (30). We extracted the following distribution of
amino acids at the positions 218–227 (Table 1). The wt amino acid
is defined as the most abundant amino acid in the compilation of the
position in question (e.g., serine in position 218, see Table 1).

Robustness of the calculated distribution of bases towards
deviations caused by the imprecision of oligonucleotide
synthesising machines

The calculated base composition in a codon encoding a given
amino acid distribution is deliberately randomised imitating a 1%,
5% or 10% deviation range of the oligonucleotide synthesisers. For
example, when assuming a maximum of a 10% error of the
synthesiser, instead of 5% of A at a certain position in the codon,
random numbers ranging from 0% to 15% of A were generated.
The corresponding encoded amino acid distribution is then
calculated. By repeating this algorithm 105 times a standard
deviation for the amount of each amino acid as a function of the
maximum error possible of the oligonucleotide synthesiser is
obtained (Table 8).
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Table 1. Distribution of amino acids in percentage at positions
218–227 of 35 compiled subtilisins class I (30)

RESULTS AND DISCUSSION

In this study we present a new scoring function m which meets the
requirements of both getting all requested amino acids and giving
reasonable initial solutions even at default weight settings. This will
keep the possible subsequent optimisation of spiked oligo-
nucleotides by weight changes in the function m at a minimum.

Scoring functions

Before designing function m we looked at the function s, the
sum-of-square-differences. In simple cases like aiming at 50% of
cysteine and 50% of methionine residues problems emerged with
function s. The anticipated solution is the codon (A/T)(G/T)(G/T)
encoding 12.5% of each cysteine, methionine, arginine, isoleucine,
leucine, phenylalanine, serine and tryptophan. With all weights at
their default settings, this codon results in a score of 0.0179. But
the triplet (T)(G)(25%G/25%A/50%T) yielding 50% cysteine,
25% tryptophan and 25% stops also gives a score of 0.0179 even
though no methionine is obtained. In contrast, by exploiting the
sum-of-cubic-differences function c for scoring, the expected
(A/T)(G/T)(G/T) codon is always found. Another problem
inherent to the function s is the loss of amino acids of which only
small amounts were requested. We observed in several instances
that one or more amino acids were lacking in the calculated
solutions. An illustrative example is depicted in Table 6: neither
glycine, leucine, nor lysine are obtained by the scoring function s
at default settings (see Table 6, column s-def.). It should be noted
that the problem could be overcome by optimising the weights,
although in a time-consuming trial and error approach (see Table 6,
column s-opt.). The underlying problems with scoring function s
are its symmetry and the use of absolute instead of relative
differences.

In order to circumvent these pitfalls the asymmetric, cubic
scoring function c was designed. We noticed that with function c
small amounts of specified, non-wt amino acids are easily
preserved, however, in some instances unsatisfactory low
amounts of the wt amino acid are retained (see for example
Table 3, column c-def.) By increasing the weight for wt, it usually
is possible but again rather time-consuming to come to a
reasonable compromise between getting all the minor amino
acids and an acceptable amount of wt. As functions c and s are
sum functions, specified amino acids might be lacking in the
calculated solutions, although such a case has not yet been
observed with function c.

Table 2. Distributions of amino acids in percentage at position
218 of subtilisin class I (30), and the resulting amino acid
distribution when either scoring function s, c, or m with default
(def.) or optimised (opt.) weights are applied for the design of
the respective spiked codons

Table 3. Distributions of amino acids in percentage at position
222 of subtilisin class I (30), and the resulting amino acid
distribution when either scoring function s, c, or m with default
(def.) or optimised (opt.) weights are applied for the design of
the respective spiked codons.

Finally, a completely different approach was chosen for the
design of the scoring function m. It was inspired by the likelihood
function for the polynomial distribution. Function m is attaining
values in the range [0;1]. The maximum value of one is only
obtained for a perfect match with the target amino acid subset.
This is also valid when aiming at non-identical amounts for the
amino acid species in the given target pool. Because of the latter
feature and the possibility for putting weight factors on each
single amino acid, function m is much more generally applicable
than the earlier described function PG (26). Compared to the
functions s and c, function m has two major advantages. Firstly,
if any reference amino acid is missing, the score will be zero
rejecting any incomplete solution. Secondly, the function m at
default weight settings gives solutions where all specified minor
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Table 4. Distributions of amino acids in percentage at position
223 of subtilisin class I (30), and the resulting amino acid
distribution when either scoring function s, c, or m with default
(def.) or optimised (opt.) weights are applied for the design of
the respective spiked codons

components and the wt fraction are kept at a balanced level
(e.g., compare columns s-def., c-def. and m-def. in Tables 3 and
6). In combination with the fact that function m is much more
responsive to weight changes than functions s or c because the
weights are entered as powers, the optimisation of function m for
a user-specified purpose is significantly less time consuming (by
a factor of 5–10).

Example of subtilisin mutagenesis

The performance of these three scoring functions is examined by
mutagenising a domain of subtilisin-like proteases. The domain
comprises 10 amino acid sites (positions 218–227 in subtilisin
BPN′) of which four are strictly conserved and the residual six sites
shall be mutagenised to match as precisely as possible the amino
acid distribution derived from compilation of 35 subtilases.

In positions 223 (Table 4), 224 (Table 5), and 227 (Table 7) the
reference amino acid distributions were closely matched by all
three scoring functions without having to change weights. The
corresponding codon composition is stable against errors which
might occur during oligonucleotide synthesis (e.g., Table 8,
position 224).

As for position 218 (Table 2) the scoring functions were
providing reasonable results. With function s at default weight
settings the requested phenylalanine was not present in the
solution. The function m with default weights also yielded very
small amounts of phenylalanine. By modifying the weights, the
percentages of phenylalanine could be increased to acceptable
values. As expected, the function c yielded relatively high
amounts of the specified minor components alanine, aspartate and
phenylalanine, at the expense of the major components serine and
asparagine.

Regarding position 222 (Table 3), a matching combination for
the five specified amino acids is difficult to obtain as can easily be
deduced from codon tables. All found solutions generated at least
10 different amino acids. It is mutually excluding to get ∼17%
alanine and >70% methionine. The function s had no difficulty in
identifying spiked codons encoding ∼70% methionine but at the

Table 5. Distributions of amino acids in percentage at position
224 of subtilisin class I (30), and the resulting amino acid
distribution when either scoring function s, c, or m with default
(def.) or optimised (opt.) weights are applied for the design of
the respective spiked codons

Table 6. Distributions of amino acids in percentage at
position 226 of subtilisin class I (30), and the resulting amino
acid distribution when either scoring function s, c, or m with
default (def.) or optimised (opt.) weights are applied for the
design of the respective spiked codons

cost of alanine, while the function c had tremendous problems in
preserving methionine. The function m at default weight settings
resulted in a compromise between both extremes. Again, the
solution calculated with function m is robust towards potential,
non-deliberately introduced deviations by oligonucleotide
synthesisers (Table 8, position 222). We noticed that it was
impossible within a reasonable time-frame to optimise function s
by trial and error weight adjustments without losing reference
amino acids.

In position 226 (Table 6) it is impossible to obtain a high quality
solution due to constraints imposed by the genetic code. With
function s at default weight settings, glycine, leucine and lysine
were missed. It was not trivial to find a set of weights driving the
amino acid pool to contain all specified amino acids. In the course
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Table 7. Distributions of amino acids in percentage at position
227 of subtilisin class I (30), and the resulting amino acid
distribution when either scoring function s, c, or m with default
(def.) or optimised (opt.) weights are applied for the design of
the respective spiked codons

Table 8. Robustness of the amino acid distributions towards deviations in
the base composition of codons caused by the imprecision of the
oligonucleotide synthesising machines

Assuming perfectly synthesised spiked oligonucleotides, the encoded amino acid
distribution of the codons obtained with function m at default weight settings for
subtilisins class I positions 222 and 224 are given (pos.222 m-def., pos.224 m-def.,
see also Tables 3 and 5). Assuming deviations of 1%, 5% or 10% during the oli-
gonucleotide synthesising process, the respective changes in the amino acid dis-
tribution are calculated as described in Methods (mean ± standard deviation).

of optimising the weights for all three scoring functions, function
m proved to be superior with regard to time considerations.

Statistics on the numbers of mutations and library sizes

If one had exploited one of the techniques for generating perfect
matches to the given amino acid distributions in the above

Figure 1. Distribution of mutant sites per molecule obtained when applying the
scoring function m for the design of spiked codons. The distribution of mutant sites
per molecule is calculated as described in Methods. (�) The ideal mutant
distribution obtained by a spiked 30mer oligonucleotide which encodes the perfect
match to all 10 reference amino acid populations as extracted from positions
218–227 of 35 compiled subtilisins (see Table 1). (● ) The corresponding mutant
distribution when the scoring function m with optimised weights is applied for the
oligonucleotide design.

subtilisin example, the average number of mutations per molecule
would have been 2.1. In contrast, applying the scoring function m
at optimised weight settings gives ∼2.5 mutant sites per molecule.
The distributions of mutant sites per molecule are shown to be
rather similar (Fig. 1). When aiming at covering with a 95%
confidence level all transformants harbouring specified double or
triple mutants, and when the function m is used for ranking the
spiked codons, the corresponding libraries should consist of 8.0 ×
105 and 4.4 × 107 members. These libraries are clearly larger than
those obtained with an optimal technique where only 2.9 × 104 and
4.9 × 105 transformants have to be screened to cover all double and
triple mutants, respectively. As many as 63% of all the members
of the library created by the exploitation of the function m harbour
at least one non-wanted mutation.

CONCLUSIONS

(i) If the reference amino acid distributions are readily accessible
because of the absence of genetically impossible combinations,
scoring functions s, c and m are working equally well.

(ii) The use of scoring function s may lead to a complete loss
of minor components in the requested amino acid set.

(iii) The scoring function c strongly favours minor components
in the specified amino acid sub-population at the expense of the
major components.

(iv) The scoring function m generally yields good compromises
between the functions s and c. It is unambiguously preferred
because of the ease of handling the weight settings. Hence, it is
the function of choice for designing spiked oligonucleotides.
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