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One of the major challenges of functional genomics is to unravel the connection between genotype and phenotype. So
far no global analysis has attempted to explore those connections in the light of the large phenotypic variability seen
in nature. Here, we use an unsupervised, systematic approach for associating genes and phenotypic characteristics that
combines literature mining with comparative genome analysis. We first mine the MEDLINE literature database for
terms that reflect phenotypic similarities of species. Subsequently we predict the likely genomic determinants: genes
specifically present in the respective genomes. In a global analysis involving 92 prokaryotic genomes we retrieve 323
clusters containing a total of 2,700 significant gene–phenotype associations. Some clusters contain mostly known
relationships, such as genes involved in motility or plant degradation, often with additional hypothetical proteins
associated with those phenotypes. Other clusters comprise unexpected associations; for example, a group of terms
related to food and spoilage is linked to genes predicted to be involved in bacterial food poisoning. Among the
clusters, we observe an enrichment of pathogenicity-related associations, suggesting that the approach reveals many
novel genes likely to play a role in infectious diseases.
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Introduction

The universal tree of life spans a diverse set of species with
distinct phenotypic characteristics, here referred to as traits.
These include specialized lifestyles (e.g., parasitism), usage of
different energy sources (e.g., sunlight), and morphological
properties (e.g., motility). Identification of genotype–pheno-
type relationships is one of the major goals of the genomics
era [1], as it may lead to the discovery of novel biochemical
and cellular processes and to the molecular understanding of
complex phenotypic phenomena, including diseases.

Comparative genome analysis was proposed for resolving
trait–gene relationships [1,2] and has recently been used to
predict genomic determinants for the well-known trait
characteristics hyperthermophily [3,4], flagellar motility [4,5],
and pili assembly [4]. The underlying principle is that species
sharing a phenotype are likely to utilize orthologous genes in
the involved biological process—thus correlations between the
presence and absence of both genes and traits across species
should indicate relevant genotype–phenotype associations
(similarly, the co-occurrence of genes across species indicates
functional links between proteins [6,7]).While the applicability
of the principle was demonstrated by the case studies above
[3,4,5], they require manually curated knowledge on pheno-
types in particular species, which is both time-consuming and
unlikely to reveal unexpected relationships in the global
context of all associations between genes and phenotypes.

We have thus developed an approach that involves an
unbiased large-scale search for trait-descriptive terms leading
to the discovery of several novel and unanticipated gene–
phenotype relationships. Using literature mining, trait

characteristics of species may be retrieved directly from
MEDLINE abstracts (currently, the database contains more
than 12 million abstracts) by identifying words that prefer-
entially occur in abstracts referring to particular species. We
focus on traits scattered across the universal tree of life (those
characteristic for subsets of distantly related species), which
allow species to be grouped by phenotypic rather than
phylogenetic similarity. Finally, we identify systematically
associations between genes and phenotypes based on the
similarity of their phyletic distribution.

Results

A Systematic Approach Associates Genotypes and
Phenotypes
Historically, phenotypes are probably best understood as

visible or measurable characteristics of species, which have
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been observed and described by biologists. The most
complete resource of phenotypic knowledge is therefore the
scientific literature itself. We thus identified associations
between traits and genes using a multistep procedure
involving genome and literature mining (see Figure 1, and
Materials and Methods for a detailed description).

First, we computed associations between 172,967 nouns
from MEDLINE abstracts and 92 prokaryotic species, for which
both a complete genome sequence and a controlled vocabu-
lary entry (Medical Subject Headings [MeSH] term) are
available. Thereby, we assumed that words that preferentially
co-occur with a subset of species are likely to be trait-
descriptive (see for instance the examples given in Table 1).

Second, to record the presence and absence of 224,754
genes across these 92 genomes, 11,026 orthologous groups
(OGs) of genes were obtained from the Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database [8].

Third, to correct for the phyletic sampling of genome
sequencing, we transformed the species association profiles of
both trait-descriptive words and OGs, using principal
component analysis (PCA).
Fourth, after comparing the resulting species–word and

species–OG vectors, 2,700 significant associations between
trait-descriptive words and OGs were obtained from a total of
1.9 3 109 possible binary relationships. We consider as
significant word–OG association scores causing at least 5-
fold enrichment in true positives over expectation; this has
been measured by comparing predicted associations to
previously established trait–gene relationships, which were
also extracted from MEDLINE (see Figure 2, and Materials
and Methods).
As significant associations include substantial numbers of

words and OGs with similar phyletic distributions, we
independently generated sets of both words and OGs using

Figure 1. A Systematic and Unbiased Approach Combines Literature Mining and Comparative Genome Analysis with Associate Genes and Phenotypes

Words likely to describe phenotypic characteristics, that is, those preferentially co-occurring with certain species, are retrieved from MEDLINE
abstracts. Phyletic distributions of genes are obtained using OGs from STRING [8]. As an example, phyletic distributions across bacteria for
selected words and genes are shown in (I): we show species–word association scores for the words ‘‘flagellum’’, ‘‘flagellin’’, and ‘‘sewage’’, as well as
presence/absence patterns of the selected genes fliR (COG1684) and fliQ (COG1987). Species–word association scores greater than 0 indicate that
a word is likely to describe a trait of the species (colours indicate that green = true positive, i.e., the flagellar phenotype was correctly inferred;
yellow = false negative; red = false positive). (I9) Black and grey bars indicate OG presence in a species (tree shown in [I99]), while grey bars
indicate presumably inactive genes [34,35]. To identify informative phyletic distributions of traits and OGs, both species–word association and
species–OG occurrence vectors are transformed using PCA. The similarity of the resulting transformed and normalized word and OG vectors
(i.e., the word–OG association score) is computed from their inner vector products. A ‘‘heat map’’ (II) shows the distribution of word–OG
association scores for the more than 300 words (y-axis) and over 500 OGs (x-axis) that reveal at least one significant, high-confidence association.
Dendrograms are constructed by means linkage analysis, independently applying the inner products of transformed and normalized word and
OG vectors as similarities. Clusters of associated words and OGs include many previously known trait–gene relationships. For example, terms
mainly related to flagellar motility form a cluster with 29 OGs known to be involved in movement; see (III).
Abbreviations: Flagellum, flagellar function; Ct, involved in chemotaxis.
DOI: 10.1371/journal.pbio.0030134.g001

Table 1. Selected Representative Prokaryotic Species with Significantly Associated Words, Assumed to Directly Relate to Phenotypic
Characteristics of the Species

Species Description Words Significantly Associated with the Species Score

Bacillus subtilis Endospore forming bacterium Forespore, sporulation, levansucrase .3

Surfactin, sporangium, prespore, marburg, germination, endospore, decoyinine,

sterilizer, phosphorelay, outgrowth, germinants

2–3

Buchnera aphidicola Intracellular endosymbiont in aphids symbiont, endosymbionts, evolution, linage, genome 2–3

Streptococcus mutans Caries causing pathogen Caries, enamel, saliva, glucosyltransferase, cariogenicity .4

Varnish, sanguis, dentine, denition, fissure, fluoride, demineralization, glucosyl-

transferases, pellicle, xylitol, glucan, ionomer, glucans, amalgam, appliance, pla-

que, hydroxyapatite, toothpaste, dentifrice, mouthrinse

3–4

Streptococcus pyogenes Human pathogen Pharyngitis, fasciitis, glomerulonephritis, streptolysin, throat .3

Pharyngotonsillitis, tonsillitis, antistreptolysin, lancefield, opacity, myositis, tonsillo-

pharyngitis, streptokinase, carditis, benzathine, erysipelas, antideoxyribonuclease,

rheumatism, resurgence, culturette, exotoxin, tonsillectomy, impetigo, testpack,

pharyngeal, nephritis, hewitt, office, tonsil

2–3

Synechocystis sp. Cyanobacterium Photosystem, chlorophyll .4

Photosynthesis, antenna, illumination, darkness, plastocyanin 3–4

Photoinhibition, thylakoids, phycocyanin, thermoluminescens, plastoquinone,

chloroplast, excitation, phytochrome, spinach, harvesting, manganese, photore-

duction, desaturation, ferredoxin, desaturase, pigment, photosystems, phyto-

chromes, cyanophycin, desaturase

2–3

Sulfolobus tokodaii Aerobic thermoacidophilic crenarchaeon Glycosidase, thermostability, thermophilicity, hyperthermophiles, chaperonin, ox-

oacid, thermoplasma, denaturation, melting, glycosidases

.2

Here, words extracted from MEDLINE that are significantly associated with a species, i.e., those with species–word association score .2, are presented (the full list of species–word associations is available as Table S4). Trait-descriptive words

are derived from the 30 most significantly associated words for a species. Words referring to a species or gene name, such as ‘‘bacillus’’, ‘‘subtilis’’, or ‘‘spoiiaa’’ were removed. The column ‘‘Score’’ indicates the level of significance (i.e.,

different levels of word–species association scores).

DOI: 10.1371/journal.pbio.0030134.t001
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means linkage clustering. The resulting sets were linked if
they shared at least one significant word–OG association,
leading to 323 significant word–OG clusters. Visual inspec-
tion of trait–gene associations in the well-studied processes of
flagellar motility and plant constituent degradation revealed
that for significant word–OG association scores the vast
majority of all predicted associations between the phenotype
and the respective cellular processes can be justified based on
previous knowledge. At a more stringent level of .7.5-fold
enrichment over expectation, virtually all known trait–gene
relations identified seem to agree with the clustering, and
these ‘‘high-confidence’’ scores are analyzed here in detail
(see, e.g., Figures 1 and 3, and Table 2). The entire list of
significant clusters of trait–gene associations is available as
Tables S1 and S2.

Altogether, we can infer at least one significant word–OG
association for 811 OGs, corresponding to 28,888 genes.
While many of these correspond to previously known trait–
gene relationships, numerous relationships are novel or of
unexpected character and complexity.

Identification of Previously Known Trait–Gene
Associations

Among the many previously known trait–gene relation-
ships are genes involved in pathogenicity, the degradation of
plant constituents, capsule biosynthesis, and photosynthesis
(see Table 2). Furthermore, determinants for flagellar motility
and hyperthermophily, the target for previous case studies
[3,4,5], were identified (see Tables 3 and S3). For example,
72% of all genes involved in synthesizing or maintaining the
bacterial flagellum, according to Kyoto Encyclopedia of Genes and
Genomes (KEGG [9]), are recovered with high-confidence
scores (see Figure 1 and Table 3).

Prediction of Novel Genes in Known Processes: Enzymes
Involved in Plant Degradation

We can predict trait relationships for many hypothetical
genes. Within the 20 best scoring clusters (all of high-
confidence trait–gene associations), 113 uncharacterized OGs
(i.e., no functional annotations are given in SWISSPROT,

TREMBL, or the Clusters of Orthologous Groups [COGs]
database) are linked to trait-descriptivewords (seeTables 2 and
S1). For example, ‘‘hypothetical’’ andpoorly characterizedOGs
are predicted to encode enzymes involved in the biodegrada-
tion of plant constituents (Figure 3A); altogether 13 words,
mainly describing reactions that break down plant polysac-
charides, form a set with 15, mostly enzyme-encoding, OGs.
Out of the latter, 75% (i.e., nine of the 12 OGs that have at least
provisional functional annotations) are already known, or have
been suggested, to break down plant polysaccharides (see
Tables S1 and S2). We predict involvement in plant degrada-
tion also for the remaining OGs, which include three uncha-
racterized OGs, and two with unspecific functional annotation
(nonsupervised orthologous group [NOG]12385 is a ‘‘putative
oxidoreductase’’; COG4187 members are annotated as ‘‘Argi-
nine degradation protein’’ and ‘‘predicted deacylase’’).

Prediction of Unexpected Associations: Novel Genomic
Determinants for Food Poisoning?
Of the many unanticipated trait–gene relationships, we will

discuss in detail a cluster of word–OG associations that
groups several terms related to food and food poisoning with
a number of OGs encoding metabolic enzymes (Figures 3B
and 4). The words of the respective set refer, for instance, to
common habitats of food pathogens, such as processed and
spoiled food (e.g., ‘‘cheese’’, ‘‘sausage’’, ‘‘broiler’’, ‘‘spoilage’’,
and ‘‘carcass’’), and to natural food preservatives used to
inhibit their growth (‘‘bacteriocin’’). Furthermore, several
specific pathogenicity-related terms were revealed: for
example, ‘‘monocytogene’’, ‘‘gastroenteritis’’, and ‘‘abortion’’
that refer to immune response, direct and indirect results of
intestinal infections, respectively [10]. Also the terms ‘‘phos-
pholipase’’ and ‘‘lecithinase’’ in this word set have been
implicated in toxicity mechanisms [11,12], despite the general
cellular roles of the proteins. Other words may refer to
unspecific connotations of more general words, which play an
important role in clinical praxis or the food industry, such as
‘‘starter’’ (culture) and ‘‘vacuum’’ (packaging). We predict for
37 OGs with high-confidence association to these words that
they are involved in food spoilage and toxicity. All of these
OGs are present in food-borne pathogens, and absent from
most other prokaryotes. One of them has already been
demonstrated experimentally to be involved in food spoilage
and pathogenicity: the manR gene (COG3933) of the food
pathogen Listeria monocytogenes encodes a transcriptional
regulator that was shown to be involved in resistance to
natural food preservatives [13].
Of the remaining 36 OGs, four are components of the

utilization pathway for 1,2-propanediol and eight participate
in ethanolamine usage. Among the remaining, mostly poorly
characterized OGs, one is a cobalt chelatase likely to be
involved in providing the essential cobalamin for both
pathways [14]. Intriguingly, propanediol and ethanolamine
are abundant compounds in the human gut [14,15] and in
processed food [16,17] that can be utilized as the main source
of carbon, nitrogen, and energy under aerobic and anaerobic
conditions [10,14]. The corresponding genes form conserved
operons in three of the most hazardous food-borne patho-
gens—L. monocytogenes (a low-GC Gram-positive bacterium,
Bacillales family), Clostridium perfringens (high-GC Gram-pos-
itive), and Salmonella typhimurium (Gram-negative)—but are
absent from almost all other species. Further sequence

Figure 2. Assessment of Prediction Quality

The figure demonstrates cumulative fractions of predicted OG–word
associations that agree with previously known word–gene relation-
ships (as extracted from MEDLINE). Independently confirmed
predictions are enriched for high word–OG association scores.
DOI: 10.1371/journal.pbio.0030134.g002
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Figure 3. Associations between Trait-Descriptive Words and OGs for Two Illustrative Clusters

‘‘Heat maps’’ display word–OG association scores (scores greater than 0 are indicated; negative values are set to 0). We considered all words and
OGs contributing to the respective cluster with at least one high-confidence association. Protein interaction networks, shown below, were
derived from genomic context analysis (see Materials and Methods). (A) Traits and genes related to plant constituent degradation. Functional
descriptions are: Plant-degr., involved in plant constituent degradation; Ox, putative oxidoreductases; Arg, Arginine degradation protein/
predicted deacylase; UV, UV damage repair endonuclease; those with no description are uncharacterized. Terms related to sporulation reflect a
domination of exo- and endospore-forming species from different genera (e.g., Streptomyces, Bacillus, and Clostridium) in these degradation
processes. (B) Traits and genes related to food spoilage and poisoning. Some proteins have previously been implicated in virulence of food
pathogens such as ManR (‘‘T’’), a transcriptional antiterminator involved in resistance to natural food preservatives, and some propanediol
degradation proteins (‘‘Prop-diol’’). We suggest the involvement of additional proteins in pathogenicity: for example, ethanolamine degradation
proteins (‘‘Eth.-amine-usage’’; the phospholipid phosphatidyl-ethanolamine, cleaved to ethanolamine by phospholipase, is abundant in the gut
[14]); the cobalt chelatase CbiK (‘‘C’’; cobalt is an essential factor for propanediol and ethanolamine utilization [14]); a phosphotransferase
system (‘‘PTS’’) involved in sorbitol transport [36] (sorbitol is an artificial food sweetener naturally found in fruits and may act as an additional
carbon source; we suggest that alternatively the chemically similar inositol, cleavage product of another abundant phospholipid, may be utilized).
Other proteins that may also be involved are a presumably anaerobically used butyrate kinase (‘‘B’’), gamma-glutamylcysteine synthetase (‘‘G’’),
an electron transport complex protein (‘‘O’’), a predicted metal-binding enzyme (‘‘E’’), and several uncharacterized proteins (no description).
DOI: 10.1371/journal.pbio.0030134.g003
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Table 2. Significant Associations of Trait-Descriptive Words with Biological Functions

Word Set

Description

Trait-Descriptive Words No. of OGs

(hypoth. OGs)

Enrichment

of Disease-Related

Terms and OGs

Molecular Functions

of the Associated OG Set

Word–OG

Association

Score

Food pathogenicity Abortion, bacteriocin, bacteriocins

broiler, capsid, carcass, cheese,

cytosol, gastroenteritis, lecithinase,

monocytogene, phospholipase,

sausage, serovar, serovars, sewage,

spoilage, starter, vacuum, vegetable

37 (15) Yes Transcription regulation involved

in resistance to natural food

preservatives [13], propanediol [18]

and ethanolamine utilization [10,14],

glycopeptide antibiotics (teicoplanin)

resistance [37], anaerobic butyrate

biosynthesis [38], transport system,

less informative enzymes

0.812

Flagellum Flagellin, flagellum, motility, sewage,

vegetable

29 (0) No Flagellar biosynthesis/regulation [39],

chemotaxis [40].

0.808

Gastrointestinal

disease

Antitoxin, colitis, cytotoxin,

enterocolitis, metronidazole,

stomach

12 (7) Yes Polysaccharide/capsule biosynthesis [41],

hydroxylamine reductase activity,

less informative enzymes

0.807

General clinically

relevant terms

Chemoprophylaxis, fatality,

lipooligosaccharide,

lipo-oligosaccharides, meningitis,

multilocus, postvaccination,

tetanus, toxoid, transferring, vaccines

37 (17) Yes Capsule polysaccharide export [42],

envelope-protein export and

stability [43,44], ribosomal RNA

transcription activation [45], DNA

replication/repair, pili biogenesis,

less informative proteins

0.807

General clinically

relevant terms

Amikacin, cefoperazone, coagulase,

cornea, dermatitis, fibrosis,

gentamicin, implant, ointment,

osteomyelitis, prosthesis, silicone,

vegetation

3 (1) Yes Multidrug resistance efflux [46],

urea transporter (Ref. Antibiotics = urea

in blood, because of AB metabolism) [47]

0.803

General clinically

relevant terms

Catheter, cefazolin, chlorhexidine,

coagulase, cornea, dermatitis, device,

implant, implantation, ointment,

osteomyelitis, prosthesis, silicone,

vegetation

11 (9) Yes Penicillin-binding beta-lactamase

precursor [48] and less informative

enzyme

0.802

Photosynthesis

and sporulation1

Biochemistry, chlorophyll, chloroplast,

cyanobacteria, endospore, ferredoxin,

ferredoxins, flavodoxin, glutamine,

photosynthesis, photosystem, spinach

20 (13) No Sporulation [49] transport,

cyanophycinase activity [50],

less informative enzymes

0.799

Plant degradation Amylase, barley, cellulose,

endoglucanase, endospore,

germination, glucanase,

glucosyltransferase, methyltransferase,

sporulation, subtilisin, xylanase,

xylanases

15 (2) No Plant degradation [51], UV-damage

repair, less informative enzyme

0.791

General clinically

relevant terms

Anaerobe, clindamycin 3 (3) Yes Unspecific helicase, membrane-

associated proteins

0.780

General clinically

relevant terms

Abcess, admission, amoxillicin,

aspiration, childhood, coagulation,

debridement, diabetes, drainage,

effusion, emergency, empyema,

episode, fibrinogen, fibronectin,

institution, isolate, management,

opsonization, outpatient, peritonitis,

phagocytosis, physician, recurrence,

susceptibility

7 (4) Yes Unspecific surface antigen and

enzymes, Transport/cadmium

resistance

0.766

Animal related,

transmitted disease

Biovars, pseudotuberculosis, rattus,

rodent

10 (8) Yes Transport, pilus assembly 0.764

Sporulation Catalysis, endospore, germination,

glucanase, sporulation, thermophile,

thermostability, thymine, xylanase

10 (5) No Sporulation/germination [52],

spermidine biosynthesis,

less informative enzyme

0.764

General clinically

relevant terms

Aneurysm, artery, bypass, diabetes,

fibrinogen, prevention, surgery

4 (0) Yes Sugar metabolism, transport,

putative cell adhesion

0.756

General clinically

relevant terms

Bacteraemia, carriage, cefaclor,

cellulites, colonisation,

glomerulonephritis, hinton, hypotension,

mueller, nasopharynx, otitis, prophylaxis,

sanguis, sinusitis, tonsillitis

5 (3) Yes Cell wall metabolism/surface

antigen [53], Transport/cadmium

resistance

0.755

Gastrointestinal

disease

Colitis, cytotoxin, diarrhea, diarrhoea,

metronidazole, stomach

7 (2) Yes Hydrogen metabolism 0.752

Antibiotics Macrolide, macrolides 4 (2) Yes Hyaluronidase, methicillin resistance [54]

and another secreted enzyme

0.750
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analysis in National Center for Biotechnology Information’s
NRDB revealed the presence of ethanolamine usage genes in
the recently sequenced species Enterococcus faecalis—another
gut pathogen from a distinct phylogenetic clade (Lactobacil-
lales). Based on these associations we predict that both
propanediol and ethanolamine utilization pathways are
crucial genomic determinants of pathogenicity associated
with food poisoning, presumably by promoting anaerobic
growth both in the host and in processed food. Thereby, they
may provide a growth advantage over natural gut inhabitants
not possessing those genes (Figure 4). In agreement with these
predictions, genes involved in propanediol utilization were
previously proposed to be involved in pathogenicity of S.
typhimurium as deletion of the respective genes specifically
impairs growth in the host [18].

Discussion

We present here a computational approach that combines
literature data mining with comparative genome analysis to
systematically identify numerous novel phenotype–genotype
relationships. Text-mining methods have previously been
used for function prediction, for example, to associate
functionally interacting proteins (e.g., [19,20]) and to link
human genes to hereditary diseases (e.g., [21]). However, this
is, to the best of our knowledge, the first unbiased and
systematic approach that enables the identification of
genomic determinants for numerous phenotypes, without
requiring manually curated knowledge on phenotypic char-
acteristics.

Besides identifying several previously known relationships,
our approach predicts many novel and unanticipated trait–
gene associations with high confidence (Figures 3 and 4 and
Table 2). The association of food- and spoilage-related terms
with genes presumably involved in food intoxication exem-
plifies the identification of unforeseen relationships using an
unsupervised strategy. A typical example is the significant
association of ‘‘cheese’’, ‘‘abortion’’, and predicted pathoge-
nicity factors, presumably explained by Listeria infections

following raw-milk cheese consumption, which may cause
miscarriage.
Given the focus of research and, in particular, genome

sequencing on tackling human health issues, it is not
surprising that a considerable proportion of all inferred
genes are predicted to be involved in bacterial pathogenicity
(Table 2). It was furthermore proposed that genes responsible
for virulence are frequently transferred horizontally across
distant clades [22], which would favour them in our analysis.
These arguments imply that our approach represents a well-
suited tool for identifying disease-related genes that may
serve as promising novel classes of drug targets.
Altogether, we have identified 2,700 significant OG–word

associations, which link more than 800 OGs (encoding over
28,000 proteins) to at least one trait-descriptive word. Our
approach to function prediction is complementary to
computational methods that utilize evolutionary signals, such
as genomic context methods that analyze conserved gene
neighbourhood [23,24,25], or gene fusion [26,27], to predict
functional associations in terms of involvement in a common
cellular process. Notably, the majority of poorly characterized
OGs we identify cannot be functionally annotated by these
methods (see Figure 3 and Materials and Methods). Further-
more, even if genomic context methods link to a set of OGs,
our approach can associate these sets to phenotypic
characteristics. For example, while genes involved in ethanol-
amine utilization can be inferred using existing genome
context methods, our approach enables linking this cellular
process with food-borne pathogenicity. Furthermore, group-
ing of ethanolamine utilization with the food preservative
resistance factor manR and other genes indicates that
independent cellular processes can be combined by the
approach, if they are involved in the same trait.
As more genomes are sequenced and the available

literature in MEDLINE is constantly increasing in size, our
approach is expected to predict more fine-grained trait–gene
relationships in the future. This may pave the way for
mapping numerous distinctive phenotypic characteristics
observed in nature to the genes responsible.

Table 2. Continued

Word Set

Description

Trait-Descriptive Words No. of OGs

(hypoth. OGs)

Enrichment

of Disease-Related

Terms and OGs

Molecular Functions

of the Associated OG Set

Word–OG

Association

Score

Hyperthermophily Archaeon, holliday,

hyperthermophile,

hyperthermophiles

26 (7) No Hyperthermophile-specific reverse

gyrase [55], Transcription regulation,

DNA-modification and repair,

less informative enzymes

0.750

Plant-related Glucans, seedling, symbiont,

tomato

4 (2) No less informative enzymes 0.738

General clinically

relevant terms

Capsular, haemin, hinton 8 (6) Yes Transport, transcription regulation 0.738

Chemical compounds Catechol, toluene 9 (7) No Less informative enzymes 0.736

The table demonstrates associations of words and biological functions retrieved from the functional annotation of the respective OGs. Related trait–gene associations are shown as clusters, ranked according to the best scoring association

contributing to the cluster. Only large clusters are shown (i.e., Clusters 9, 11, 12, 18, and 22–24 [see Tables S1and S2] were not considered here as they contain only one word or OG). Clusters 15 (sporulation) and 21 (hyperthermophily) were

manually refined (see Tables S2 and S3). The second column indicates trait-descriptive words; the third column indicates numbers of associated OGs (OGs comprising hypothetical proteins in parentheses). We considered all words and OGs

contributing to the cluster with at least one high-confidence association. The fifth column lists annotated functions of the OGs; the best word–OG association score is given in column six. The table indicates a striking enrichment of disease-

related terms and OGs (see fourth column). This is most likely due to a bias in genome sequencing towards disease-causing bacteria, and a bias in MEDLINE towards disease-related topics. Furthermore, horizontal gene transfer may be

particularly frequent for pathogenic species [22].
1 Some photosynthetic cyanobacteria may reproduce using endospores, or may form spore-like structures during nitrogen fixation.

DOI: 10.1371/journal.pbio.0030134.t002
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Materials and Methods

Identification of species–word associations. We first identified the
distribution of phenotypic traits across species by analyzing the co-
mentioning of species and trait-descriptive words across MEDLINE
abstracts. Namely, nouns that preferentially co-occur with a subset of

species are likely to be trait-descriptive (e.g., the words ‘‘flagellum’’
and ‘‘motility’’ are enriched in abstracts dealing with motile species;
see Figure 1). We focused on nouns because these presumably carry a
more considerable proportion of the relevant information repre-
sented in the scientific literature than verbs and adjectives [28].
Nouns were extracted from MEDLINE abstracts using a part-of-

Figure 4. Phyletic Distributions across Bacteria of Genes and Associated Representative Trait-Descriptive Words Related to Food, Food Spoilage, and

Food Poisoning (Cluster 1)

The complete figure, including phylogenetic distributions of all trait-descriptive words and OGs in Cluster 1, is available online as Figure S1.
Black squares indicate gene occurrences across species for the respective OGs. Blue squares indicate predicted associations between trait-
descriptive words and species (species–word association scores greater than 0). Function descriptions (grey bar) are the same as in Figure 3.
DOI: 10.1371/journal.pbio.0030134.g004
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speech tagger (i.e., Tree Tagger [29]). Words of five characters or less
were excluded from the analysis, as many of those are gene names and
other noninformative words leading to an increase in noise. Species
names were taken from the corresponding MeSH terms associated
with the abstracts, that is, from the MeSH B category corresponding
to ‘‘organisms’’ (applying the controlled MeSH vocabulary reduces
errors in species name recognition—for example, in the case of
synonym usage; on the other hand, using all nouns in MEDLINE
abstracts for identifying trait-descriptive words allows searching a
variety of traits not accessible via a controlled vocabulary). Some
species were not represented in MeSH, and were thus mapped to
their genus. A total of 255,249 MEDLINE abstracts connected with
any of the 92 species analyzed were considered in the analysis. We
considered the occurrence of distinct species in abstracts. Frequen-
cies of words within abstracts were not taken into account (single and
multiple occurrences were equally treated as ‘‘word presence’’). Given
the set of n1 words and n2 species associated with an abstract, we
counted all possible species–word pairs (n1 3 n2). For each species–
word pair, a species–word association score ssw was determined using
a regularized log-odds score:

ssw ¼ log10
nswN þ pN
nsnw þ pN

ð1Þ

where ns is the number of abstracts mentioning a particular species,
nw refers to the number of abstracts mentioning a particular word, nsw
is the number of abstracts that co-mention species and word, and N is
the sum of all nsw. The log-odds framework quantifies correlation
strengths and, in particular, facilitates the handling of species or
words for which only sparse scientific literature exists. To allow the
handling of sparse data, the standard log-odds formula was
augmented with pseudocounts, p = 1. The resulting score, ssw, yields
positive values for enriched species–word pairs and negative values
for underrepresented pairs. The magnitude of the score provides a
measure of the strength of the association, indicating its potential
relevance in describing a characteristic trait. To record over-
representation, the species–word association score requires fre-
quently used words and species (such as ‘‘flagellum’’ and Escherichia
coli) to be co-mentioned more often than infrequent ones (e.g.,
‘‘oligosaccharide’’ and Ralstonia solanacearum).

Associations were calculated for each species–word pair, and a
species association vector was subsequently constructed for each
word, representing its association scores with each of the 92
prokaryotic species studied.

Identification of orthologues and species–gene associations. We
obtained groups of OGs covering those 92 completely sequenced
genomes from the STRING server [8], version 4 (the raw data can be
downloaded from http://string.embl.de). The OGs include protein
families originally obtained from the COG database [30], which were
subsequently expanded and extended to accommodate more recently
sequenced species [8]. Species–OG association vectors were con-
structed for each OG;þ1 signifies presence of a gene (i.e., orthologue)
in a certain species, while�1 signifies absence.

PCA. To reduce the sampling bias introduced by genome
sequencing projects, which have been focused on certain groups of
closely related species, we performed PCA (also known as singular
value decomposition) on the species–OG association matrix. The
PCA transformation collapsed groups of species with very similar
gene content to a single dimension, thereby eliminating inherent
correlations from our representation. Subsequently, the same linear
transformation was applied to the species–word association vectors.
For both species–OG and species–word association vectors, the first
32 principal components were further considered, yielding an
acceptable signal-to-noise ratio. The performance of the approach
was comparable (i.e., slightly weaker) when applying distinct numbers
of components in the range from approximately 25 to 40. Consid-
ering even smaller or larger numbers of components led to
performance drops, as too little information or too much noise was
included in the further analysis.

Mapping genes to phenotypes and vice versa. Before mapping
genes and traits, further filtering was applied to diminish the
contribution of rarely occurring OGs and words; that is, only OGs
occurring in at least four distantly related species clades were
considered; similarly, we focused on words yielding positive species–
word associations in at least four distantly related species clades
(thereby utilizing clades of closely related species from STRING [8];
see Table S1 in [25]). OGs encoding phage-associated proteins (i.e.,
those with description lines including the terms ‘‘phage’’, ‘‘trans-
posase’’, and ‘‘integrase’’) were regarded as a source of ‘‘contami-
nation’’ within the genomes of analysed species and thus ignored.

Table 3. OGs and Terms Associated with Motility (Cluster 2)

OG Protein

Name

Member of the

Flagellar

Assembly Process

According to

KEGG [9]

Words Associated

with High Confidence

COG0643 CheA – Flagellin, flagellum

COG0835 CheW – Flagellin, flagellum

COG1157 FliI þ Flagellin, flagellum

COG1256 FlgK þ Flagellin, flagellum, motility,

sewage

COG1261 FlgA þ Flagellum

COG1291 MotA þ Flagellin, flagellum, motility,

sewage

COG1298 FlhA þ Flagellin, flagellum

COG1317 FliH þ –

COG1338 FliP þ Flagellin, flagellum

COG1344 FlgL þ Flagellin, flagellum, motility,

sewage

COG1345 FliD þ Flagellin, flagellum, sewage

COG1360 MotB þ Flagellin, flagellum, motility,

sewage

COG1377 FlhB þ Flagellin, flagellum

COG1419 FlhF – Flagellin, flagellum

COG1516 FliS þ Flagellin, flagellum, sewage

COG1536 FliG þ Flagellin, flagellum

COG1558 FlgC þ Flagellin, flagellum, motility,

sewage

COG1580 FliL þ Flagellum

COG1677 FliE þ Flagellin, flagellum, motility,

sewage

COG1684 FliR þ Flagellin, flagellum, motility,

sewage

COG1706 FlgI þ Flagellin, flagellum

COG1749 FlgE þ Flagellin, flagellum, motility,

sewage, vegetable

COG1766 FliF þ Flagellin, flagellum, motility,

sewage

COG1815 FlgB þ Flagellin, flagellum, motility,

sewage

COG1843 FlgD þ Flagellin, flagellum, motility,

sewage

COG1868 FliM þ Flagellin, flagellum, motility,

sewage

COG1886 FliN þ Flagellin, flagellum

COG1987 FliQ þ Flagellin, flagellum, motility,

sewage

COG2063 FlgH þ Flagellum

COG2747 FlgM þ —

COG2882 FliJ þ —

COG3144 FliK þ —

COG3190 FliO þ —

COG3418 FlgN þ —

COG4786 FlgG þ Flagellin, flagellum, motility,

sewage

COG4787 FlgF þ —

NOG04255 FlhC þ —

NOG07455 FlhD þ —

NOG08749 FliT þ —

We recovered 72% of all genes involved in synthesizing or maintaining the bacterial flagellum. Twenty-six out of 36

genes listed in the KEGG database [9] were identified unambiguously with high-confidence word–OG association

scores. Flagellar OGs form a distinct cluster (Cluster 2) together with OGs involved in chemotaxis, a process tightly

linked to motility [56]. Thus, all OGs in Cluster 2 were previously known to be motility-related. Analysis of conserved

gene neighbourhood and gene fusions confirms the functional linkage between all motility-related OGs identified

by our approach. The words ‘‘flagellin’’ (which represents a major component of the bacterial flagellum [57]) and

‘‘flagellum’’ are most tightly associated with their respective genes, followed by ‘‘motility’’, and the more general

terms ‘‘sewage’’ and ‘‘vegetable’’. Although at first sight surprising, the latter two terms may refer to niches

preferably colonized by motile bacteria [58]—that is, sewage and food—where bacteria that possess flagella may

distribute most rapidly. In the table, the first column indicates the OG identifier; the second column shows

representative gene names; the third column is annotated as a part of the flagellum in the KEGG database; the

fourth column consists of associated words.

DOI: 10.1371/journal.pbio.0030134.t003
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Finally, we eliminated words that did not display sufficiently strong
association with any of the species studied; this was done by
removing all but the 1,000 longest transformed species–word vectors
(these were considered to be the most informative vectors). The
remaining vectors were normalized to a length of 1; similarly, all
species–OG vectors were normalized. Subsequently, the pair-wise
similarity of each word–OG pair was computed, that is, the word–
OG association score, defined as the inner product of normalized
species–OG and species–word vectors (the highest word–OG
association score obtained is 0.812; see Table 2). Furthermore, the
similarity score for pairs of OGs and for pairs of words was
computed in the same way as described for the word–OG
associations. Using means linkage clustering analysis as implemented
in OC [31] (‘‘similarity mode’’; cutoff = 0.45), sets of words and OGs
were independently generated. Finally, combined clusters were
constructed by combining word sets with OG sets, if these were
linked by at least one significant word–OG association. Note that this
‘‘loose’’ clustering procedure allows word sets to be combined with
several OG sets, and vice versa (i.e., words or OGs may in principle
be part of several clusters).

Assessment of prediction quality. We reasoned that the quality of
the predictions may be examined using an orthogonal strategy—
comparing the predicted word–OG associations to previously
established trait–gene relationships, which can be extracted from
MEDLINE when focusing on significantly associated word–gene pairs.
Namely, previously established relations were extracted from
scientific abstracts, by detecting significant co-mentioning of trait-
descriptive words and gene names, using the hypergeometric
distribution [32,33]. Thereby, gene names were associated to species,
considering MeSH terms and organism names occurring in abstracts,
and including gene synonyms retrieved from http://www.bork.embl-
heidelberg.de/synonyms. (For instance, the word ‘‘flagellum’’ co-
occurs significantly with fliR from S. typhimurium, p = 0.00063,
consistent with a gene function in motility). We assume confirmation
of a predicted word–OG association (‘‘true positive’’), if any gene within
an OG significantly co-occurs with a word (i.e., when p � 1/101.5,
roughly corresponding to p � 0.03). Figure 2 demonstrates the
enrichment of true positives among the highest scoring predictions.
Words not significantly associated with any gene, or OGs lacking
genes significantly linked to any word were ignored. Furthermore, we
conservatively estimated expected fractions of true positives by
shuffling both OGs and the 1,000 most informative words, and
subsequently repeating the assessment with previously established
trait–gene relationships on these randomized associations. By
comparing to expected scores, we estimated two significance thresh-
olds: word–OG association scores �0.5675 (true positives are 5-fold
enriched over expectation) are regarded as significant; scores
�0.6125 (7.5-fold enrichment) indicate ‘‘high-confidence’’. OGs and
words discussed in detail (see, e.g., Figures 1, 3, and 4 and Tables 2 and
3) all contribute with at least one high-confidence association to the
respective clusters.

Construction of genomic context association networks. We tested
whether functional annotations predicted from our method can also
be inferred with existing computational methods (which utilize
different methodologies than the approach described here). We
compared predictions from our approach to functional associations
between proteins inferred from genomic context methods (see, e.g.,
Figure 3), which predict involvement in a common metabolic
pathway or biochemical process. Thereby, we considered OGs to be
functionally characterized by another method, if the corresponding
genes can be significantly associated to genes of known function, that
is, if they are fused to such genes [26,27], or if they occur in conserved
proximity with these (we analyzed conserved organization of putative
operons [23,24], and of divergently transcribed gene pairs [25]; gene
fusions and conserved [putative] operon structures were examined
using STRING [8] with the default probability cutoff of 0.400,
excluding evidence from sources other than gene fusion or
neighbourhood; for the divergently transcribed gene pair method,

all pairs conserved across at least three distant evolutionary species
clades were considered [25]).

Species analyzed. The following species were analyzed:
Aeropyrum pernix, Agrobacterium tumefaciens (Cereon), A. tumefaciens

(Wash.), Aquifex aeolicus, Archaeoglobus fulgidus, Bacillus halodurans, B.
subtilis, Bifidobacterium longum, Borrelia burgdorferi, Bradyrhizobium japoni-
cum, Brucella melitensis, Buchnera aphidicola, B. aphidicola Schiz, Campy-
lobacter jejuni, Caulobacter crescentus, Chlamydia muridarum, C. trachomatis,
Chlamydophila pneumoniae AR39, C. pneumoniae CWL029, C. pneumoniae
J138, Clostridium acetobutylicum, C. perfringens, Corynebacterium efficiens, C.
glutamicum, Deinococcus radiodurans, Escherichia coli K12, E. coli O157:H7,
E. coliO157:H7 EDL933, E. coliO6, Fusobacterium nucleatum, Haemophilus
influenzae, Halobacterium sp. NRC-1, Helicobacter pylori 26695, Lactococcus
lactis, Leptospira interrogans, Listeria innocua, L. monocytogenes, Mesorhi-
zobium loti, Methanococcus jannaschii, Methanosarcina acetivorans, M. mazei,
Mycobacterium leprae, M. tuberculosis CDC1551, M. tuberculosis H37Rv,
Mycoplasma genitalium, M. pneumoniae, M. pulmonis, Neisseria meningitidis
A, N. meningitidis B, Nostoc sp. PCC 7120, Pasteurella multocida,
Pseudomonas aeruginosa, P. putida, Pyrobaculum aerophilum, Pyrococcus
abyssi, P. furiosus, P. horikoshii, Ralstonia solanacearum, Rickettsia conorii, R.
prowazekii, Salmonella typhi, S. typhimurium, Shewanella oneidensis, Shigella
flexneri, Sinorhizobium meliloti, Streptococcus agalactiae, S. mutans, S.
pneumoniae R6, S. pneumoniae TIGR4, S. pyogenes, S. pyogenes M3, S.
pyogenes MGAS8232, Staphylococcus aureus Mu50, S. aureus MW2, S.
aureus N315, S. epidermidis, Streptomyces coelicolor, Sulfolobus solfataricus, S.
tokodaii, Synechococcus elongatus, Synechocystis sp. PCC 6803, Thermoplasma
acidophilum, T. volcanium, Thermotoga maritima, Treponema pallidum,
Ureaplasma parvum, Vibrio cholerae, Xanthomonas axonopodis, X. campestris,
Xylella fastidiosa, Yersinia pestis, and Y. pestis KIM.
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