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DNA microarrays have been used extensively to identify cell cycle
regulated genes in yeast; however, the overlap in the genes identified is
surprisingly small. We show that certain protein features can be used to
distinguish cell cycle regulated genes from other genes with high con-
fidence (features include protein phosphorylation, glycosylation, sub-
cellular location and instability/degradation). We demonstrate that
co-expressed, periodic genes encode proteins which share combinations
of features, and provide an overview of the proteome dynamics during
the cycle. A large set of novel putative cell cycle regulated proteins were
identified, many of which have no known function.
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Introduction

The eukaryotic cell cycle is regulated at many
levels, from transcription and translation to post-
translational modification and targeted degra-
dation. Its molecular machinery consists of highly
diverse proteins, with little sequence similarity.1 – 3

A major goal of cell cycle research is to uncover
the size and complexity of the underlying molecu-
lar system, by identifying all cell cycle regulated
genes and proteins.4 Two DNA microarray studies
have been performed in Saccharomyces cerevisiae in
which expression levels for the yeast genome were
measured during the cell cycle.5,6 These data have
been analyzed by visual inspection,5 Fourier
analysis and correlation to profiles of known cell
cycle regulated genes,6 as well as by a single-pulse
statistical model.7 Each study proposed a list of
periodically expressed genes based on their
analysis of the data. However, pronounced dis-
crepancies exist between these lists of cell cycle
regulated genes, as shown in Figure 1.

In these studies, a total of 940 genes were pro-
posed to be periodic, yet less than half of them
(397) were suggested by at least two groups and

only 144 genes were identified by all three. Zhao
et al.7 analyzed the three cell cycle experiments
(synchronized with a-factor, Cdc28 and Cdc15 tem-
perature sensitive mutants) individually and
concluded that 1088 genes showed significant
periodicity in one of the experiments, 260 were
periodic in at least two of three and only 71 genes
were significant in all three experiments. This
view is supported by a recent analysis by Shedden
& Cooper which concludes that the periodicity of
a given gene in one experiment (a-factor, Cdc28 or
Cdc15) often cannot be reproduced in the other
experiments.8 Together, these observations demon-
strate discrepancies both between the individual
synchronization experiments analyzed with the
same method, and between the conclusions of
different research groups analyzing the same data
set with different methods (Figure 1). A subset of
the suggested periodic genes may thus be false
positives. The variability does, presumably, not
stem from the microarray technology as such, but
is rather a result of different synchronization
methods, different experimental conditions and
different analysis methods. A genome-wide study
was conducted recently to identify genes whose
promoters are bound by one of nine known cell
cycle transcription factors.9 Interestingly, these
authors could only detect binding to 27–50% of
the 800 genes proposed by Spellman et al.6

The results presented here demonstrate that
many cell cycle proteins display correlations
between their features, which are different from
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those of other yeast proteins. These features
include phosphorylation, glycosylation, stability
and/or disposition for targeted degradation, as
well as localization in the cell. Further analysis
reveals systematic temporal variations in the
protein features during the cell cycle, demonstrat-
ing that many co-expressed cell cycle genes encode
proteins that share the same features (even if they
have no sequence similarity). Using such discrimi-
native features as input, prediction algorithms
were trained to identify cell cycle regulated
proteins in the yeast proteome. Feature-based
classification methods have been described for
Mycobacterium tuberculosis and Escherichia coli,33

and has been employed recently for function pre-
diction of human proteins.10 Our method identifies
a set of new putative cell cycle regulated proteins.

Results

Following a new periodicity analysis of the
publicly available microarray data, a training set
was selected consisting of 97 proteins displaying
very significant periodicity in expression during
the cell cycle, along with 556 proteins encoded by
non-periodic genes. Both sets display large
diversity in biochemical function, sequence and
three-dimensional structure. Neural networks
were trained to distinguish cell cycle proteins
from non-cell cycle proteins solely based on their
features. Although S. cerevisiae was the first eukary-
otic organism to be sequenced,11 annotations of
protein features are today only available for a sub-
set of the proteins encoded in the genome. The
classification method was therefore based on pro-
tein features calculated or predicted from the
amino acid sequence by a set of well-documented
bioinformatics tools and predictors (see Figure 2).

Characteristic features of cell cycle proteins

Clearly, not all features are of equal discrimina-
tive value for separating the two classes of yeast
proteins. We therefore performed data-driven
feature selection, where an iterative procedure

Figure 1. Extent of agreement between the published
lists of periodically expressed transcripts. Data shown
for Cho et al.5 (green, 421 genes), Spellman et al.6 (red,
800 genes) and Zhao et al.7 (blue, 260 genes).

Figure 2. Characteristic protein features of cell cycle
regulated proteins. The features selected by the neural
networks for best discriminative value were: sequence
length, N-linked glycosylation (Ramneek Gupta, unpub-
lished results), PEST regions,16 number of positively
charged residues, extinction coefficient, isoelectric point,
serine/threonine phosphorylation,15 aliphatic index, sub-
cellular localization,25 O-GalNAc glycosylation26 and
instability index.19 The different colored arcs show
which features were used in each of the four input com-
binations. The following features were tested and dis-
carded in the process due to their relatively poor
discriminative value in input combinations: tyrosine
phosphorylation,15 signal peptides,27 O-GlcNAc glycosy-
lation (Ramneek Gupta, unpublished results), transmem-
brane helices,28 hydrophaticity (GRAVY),29 amino acid
composition and number of negatively charged residues.
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was used to select features that contribute the most
to the predictive performance (see Materials and
Methods). The iterative feature selection procedure
started out with 18 features (Figure 2) and ended
up with four powerful feature combinations, con-
taining five to nine protein features. For increased
predictive performance, the output from 15 neural
networks using the four best input feature combi-
nations were combined into one score. This ensem-
ble integrated a total of 11 protein features (Figure
2) and had better predictive performance than any
of the individual neural networks, when tested on
independent test examples (see supplementary
information†).

The discriminatory features provide an interest-
ing characterization of cell cycle regulated proteins
as a class, and many can be directly linked to exist-
ing knowledge of the cell cycle. Serine/threonine
protein phosphorylation proved very useful for
the classification. Our findings indicate that high
potential for serine/threonine protein phosphoryl-
ation are over-represented in cell cycle regulated
proteins, consistent with the known involvement
of many serine/threonine kinases, e.g. the yeast
Cdk, Cdc28p, in cell cycle regulation.1 The pre-
dicted subcellular localization also proved very
valuable for the discrimination. Cell cycle regu-
lated proteins appear to be over-represented in the
nuclear and cell wall categories, most likely
explained by their involvement in processes such
as transcription, DNA replication, repair, chroma-
tin functions, budding and cell wall formation.
Underrepresentation in other subcellular compart-
ments is also very useful for the neural networks,
since they are able to use negative information.
Other correlations picked up by the neural net-
works indicate that many cell cycle proteins are
unstable (have a high instability index) and/or
contain so-called PEST regions in their amino acid
sequence, regions known to be recognized by
ubiquitin ligating complexes such as the anaphase
promoting complex/cyclosome (APC/C) and the
Skp1p-Cdc53p/Cullin-F-Box protein complexes
(SCF) that target numerous cell cycle proteins for
degradation by the proteasome.3 Many cell cycle
regulated proteins appear to have high potentials
for N-linked glycosylation, a post-translational
modification found almost exclusively in secreted
or extracellular proteins, suggesting that many of
these proteins could be related to budding and
cell wall formation. All in all, the data-driven
selection procedure identifies key features that are
consistent with existing knowledge that phos-
phorylation, localization and degradation are
major regulatory mechanisms of the cell cycle.1 – 3

Predictive performance of the neural
network ensemble

The neural networks in the ensemble perform a

complex integration of the feature information,
and output a single numerical value, indicating to
what degree a specific protein has combinations of
features characteristic of cell cycle proteins. The
predictive performance of the ensemble was esti-
mated on the independent test sets (see Materials
and Methods), and used to construct performance-
curves showing sensitivity and false positive rate
of the method as function of the threshold applied
to the output from the neural network ensemble
(Figure 3). Figure 3 shows how well the method
works on test proteins (not used for training). At
high threshold values the sensitivity is relatively
low, but the method has also a very low false posi-
tive rate. This means that high scores are to be
taken as strong supporting evidence for a cell
cycle role, whereas low scores are less conclusive.
In other words, the method will not identify all
cell cycle proteins, rather it is suited for finding
new putative candidates that may be missed by
other techniques.

Proteome-wide prediction of cell cycle
regulated proteins

The ensemble was applied to the S. cerevisiae
proteome, to identify new putative cell cycle regu-
lated proteins. No predictions were made on the
proteins used for training. Two hundred and fifty
proteins scored above a conservative threshold at
0.863, which in the performance-curve (Figure 3)
corresponds to an estimated sensitivity of 37.8%
and a false positive rate of 3.8%. From this list we
removed proteins considered in a recent re-annota-
tion by Wood et al.12 to be “spurious” or “very
hypothetical”, leaving a total of 211 proteins above
the threshold (out of 5042 predictions). The method
appeared to over-predict slightly on these ORFs,
possibly because features such as PEST regions,
glycosylation and phosphorylation were normal-
ized with respect to the sequence length, meaning
that very short sequences could appear relatively
strong in these features. However, the average
length of the highest scoring 211 proteins was
essentially identical with the proteome average,
meaning that the method does not prefer short
sequences.

By assuming a given number of true cell cycle
regulated proteins, Ntrue; among the total number
of predictions, Ntotal; one may estimate the enrich-
ment over a random predictor, E; by:

E ¼
Nensemble

Nrandom
¼

sNtrue

sNtrue þ f ðNtotal 2 NtrueÞ
M

� �
Ntrue

Ntotal
M

� �

¼
Ntotal

Ntrue þ
f

s
ðNtotal 2 NtrueÞ

where s is the sensitivity, f is the false positive rate
and M is the number of proteins included above† http://www.cbs.dtu.dk/cellcycle
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the threshold. Assuming, Ntrue ¼ 500; the expected
number of true hits should be Nensemble ¼ 110
among the highest scoring 211 and Nrandom ¼ 21
by random, i.e. a fivefold enrichment. Figure 3
shows the estimated enrichment as a function of
the applied threshold (assuming Ntrue ¼ 500). For
comparison, Ntrue ¼ 800 and Ntrue ¼ 300 corre-
spond to four- and 6.5 fold enrichment, respect-
ively (at threshold 0.863). Another way to assess
the predictive performance, is to consider the 104
known cell cycle regulated genes (compiled by
Spellman et al.) and the 144 genes identified in all
three microarray studies (see Figure 1).5 – 7 Of
these, 75 were used for training the neural network
method, leaving 128 periodically expressed
proteins, of which 19 were included among the
211 highest scoring. By random sampling
211ð128=5042Þ ¼ 5:3 proteins should be expected,
meaning a three- to fourfold enrichment. The
estimated enrichment among the top-scoring 211
proteins thus depends somewhat on the analysis
method, but is likely to be between three- and six-
fold. The highest scoring 211 proteins and the
proteome-wide predictions are available†.

Proteins predicted to be cell cycle regulated

Inspection of the predictions shows large diver-
sity in function as well as subcellular location of
the proteins suggested by the neural networks.
Among the top-scoring proteins we found kinases,
phosphatases, cyclins, transcription factors and
proteins related to DNA replication/repair, cyto-
kinesis, spindle pole body or cell wall biogenesis.
The method, as expected from the statistics, also
suggested proteins whose function appears
unrelated to the cell cycle, such as mRNA splicing,
intracellular transport or ribosomal proteins. How-
ever, many of the proteins identified have no
known function, suggesting a high potential for
new discoveries. Table 1 shows the 50 highest
scoring proteins currently with unknown function
in the Saccharomyces Genome Database (SGD).

The major strength of the feature-based
approach is its independence of experimental
errors and biases. It is itself not perfect, but it
should not be expected to make the same types of
errors as the methods it complements. Many of
the highest scoring proteins have previously
shown periodicity in one or more of the cell cycle
gene expression experiments. In cases where the
gene expression evidence is not consistent
(periodic in some experiments and non-periodic in
other), the neural network score provides an

Figure 3. Predictive performance of the neural network ensemble. The false positive rate and sensitivity is plotted
against the threshold applied to the ensemble output on the left axis, along with the estimated enrichment over a
random predictor on the right. Here, we define the sensitivity as TP/(TP þ FN) and the false positive rate as FP/(FP þ
TP), where TP are true positives (positive in reality, positive in prediction), FN are false negatives (positive in reality,
predicted negative) and FP are false positives (negative in reality, predicted positive). The estimated enrichment was
based on an assumption of 500 true cell cycle regulated proteins among the 5042 predicted, as described in the text.

† http://www.cbs.dtu.dk/cellcycle
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independent source of supporting evidence. Inter-
estingly, the ensemble also suggests a number of
known cell cycle proteins (CDC24, SIR4, CDH1,
MPS1, MLH2 and HPC2) that display no periodic
expression. It is therefore possible, that the features
are conserved among cell cycle proteins as such,
and not just among those whose expression is
periodic during the cycle.

The highest scoring of all proteins in the
S. cerevisiae proteome is encoded by the gene
YIL169C. It has no known function, but was pro-
posed periodic by Cho et al.5 This finding was,
however, not confirmed by the lists published by
Spellman et al.6 and Zhao et al.7 Figure 4 shows

gene expression profiles for YIL169C and the two
forkhead transcription factors FKH1 and FKH2.
These genes all display maximal expression
approximately 50% into the cell cycle, in late S or
early G2 phase. FKH1 and FKH2 are known2,9 to
promote transcription of a large number of cell
cycle genes in G2=M; and recent genome-wide
location data9 suggest the promoter region of
YIL169C to be associated with at least one of these
known cell cycle transcriptional activator, Fkh2p,
possibly also Fkh1p and Ndd1p. Furthermore, the
protein product of YIL169C has reported protein–
protein interactions with Mob1p and Fus3p.13

Mob1p is required for cytokinesis and mitotic

Table 1. The 50 highest scoring protein with no annotated function in the Saccharomyces Genome Database

ORF SGD name ANN Fourier Zhao et al.7 Spellman et al.6 Cho et al.5

YIL169C 0.98 2.8 C
YDL038C 0.98 5.3
YOR009W TIR4 0.98 1.0
YOL155C 0.97 3.0 C
YOL030W GAS5 0.97 4.1 Z S
YOR220W 0.97 2.5
YMR317W 0.97 2.1
YLR194C 0.96 5.4 S
YGR161C 0.96 2.4
YFR054C 0.96 1.6
YDL211C 0.96 3.3 S
YHR212C 0.95 0.8
YIR016W 0.95 0.8
YDR451C YHP1 0.95 5.3 S C
YNL176C 0.94 3.7 Z S C
YMR233W TRI1 0.94 0.8
YNL074C MLF3 0.94 0.8
YLR040C 0.92 2.6 S
YHR214W 0.92 2.3
YAR066W 0.92 1.7
YFR022W 0.92 2.2
YPL014W 0.92 3.5 S C
YPR171W 0.92 1.1
YML041C VPS71 0.92 0.9
YGR035C 0.92 4.5 S C
YNR014W 0.92 1.8
YLR042C 0.91 1.6
YNL078W NIS1 0.91 5.3 S C
YOR019W 0.91 0.8
YBR162C TOS1 0.91 2.6
YDL129W 0.91 1.6
YAL065C 0.90 2.0
YBR203W 0.90 1.7
YOL036W 0.90 1.0
YDR223W 0.90 1.0
YOR324C 0.90 3.3 S
YJR115W 0.90 0.8
YDR200C VPS64 0.90 1.7
YJL160C 0.89 2.0
YGR079W 0.89 1.1
YPL070W MUK1 0.89 1.1
YOL070C 0.88 3.4 S C
YKR045C 0.88 1.0
YDL037C 0.88 8.3 S
YBR255W 0.88 1.3
YLR003C 0.88 1.4
YBL031W SHE1 0.88 2.1
YHR049C-A 0.88 1.1
YLR031W 0.87 1.4
YPL158C 0.87 6.1 S C

ANN is the score from the artificial neural network ensemble, Fourier is the score from the Fourier periodicity analysis (see
Materials and Methods) and Z, S, and C indicate whether the gene was included in any of the lists published by Zhao et al.,7 Spellman
et al.6 and Cho et al.,5 respectively.
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exit,14 whereas the FUS3 gene encodes a MAP ser-
ine/threonine kinase. These data indicate that
YIL169C transcription could be activated in G2=M
phase, possibly by Fkh1p, and that the protein
might play a role toward the end of the cell cycle.
Prediction of phosphorylation sites indicates
Yil169p to be heavily phosphorylated on serine
and threonine residues.15 Also, the sequence is pre-
dicted to contain several PEST regions,16 indicative
of a high potential for targeted degradation.

Both forkhead transcription factors contain a
protein domain, the forkhead-association domain
(FHA), demonstrated to specifically recognize and
bind phosphothreonine epitopes on proteins.17

Such domains are also present in the DNA damage
checkpoint protein Rad53p and in the protein
Tos4p, both of which are recognized by the neural
network ensemble and found to peak at the pre-
sumed G1=S transition. Interestingly, the neural
network ensemble also identifies a protein,
encoded by the gene YDR200C, which in one of
the cell cycle experiments (the Cdc28 arrest) dis-
plays a cyclic pattern of expression (Figure 4) simi-
lar to that of FKH1/2, and which is also reported to
contain an FHA domain.17,18 It has no known func-
tion, but has reported interactions with another
FHA containing protein of unknown function,
Ylr238p, with Far3p, which plays a role in phero-
mone-mediated cell cycle arrest and with a protein
of unknown function, Ynl127p, which shows weak
similarity to Fus2p, a protein involved in cell
fusion during mating. Our analysis finds
YDR200C to be periodic, but only in the Cdc28-
experiment performed by Cho et al.5 It was, how-
ever, not included in any of the published lists of
periodically expressed genes.5 – 7 A possible
explanation for this is the weak regulation of the
gene (relative magnitude of up-regulation during
the cell cycle was only around twofold).

Table 2 shows a selection of other proteins of

unknown function that were suggested by the
neural network ensemble, for which we have been
able to find other sources of data that may support
a cell cycle role. We show these to draw attention
to what we believe to be some of the most
promising and interesting candidates suggested
by our method.

Weakly expressed genes

Figure 5 shows the distributions of signal inten-
sity on microarrays (see Materials and Methods)

Figure 4. Gene expression pro-
files. Profiles of gene expression
during the cell cycle for FKH1,
FKH2, YIL169C and YDR200C. Data
taken from the Cdc28-experiment of
Cho et al.5 and the a-factor experi-
ment of Spellman et al.6 The time-
scale was normalized and shifted
to make the microarray data from
different experiments comparable
(see Materials and Methods). The
first, second and third cell division
are marked on the abscissa.

Table 2. Selected putative cell cycle proteins of unknown
function, for which other sources of evidence exist that
may support a role in the cell cycle

ORF Other information

YJL160C Mcm1/Swi5 binding, weakly expressed
YNL269W Swi5 binding, weakly expressed
YBR162C/
TOS1

Swi4 binding, SBF binding31

YAL028W Fkh2 binding
YCL063W Fkh1 binding, periodic in expression
YJL051W Fkh2/Mcm1/Ndd1 binding, periodic in

expression
YDR055W Swi5 binding, periodic in expression
YJL078C/PRY3 Ace2/Swi5 binding, periodic in expression
YOL030W/
GAS5

Fkh1 binding, periodic in expression

YLR194C Swi5 binding, periodic in expression
YDR200C FHA domain, possibly periodic in expression
YOR008C/
SLG1

Cell cycle phenotype when overexpressed32

Data for binding of individual cell cycle transcription factors
were taken from Simon et al.9 and Lee et al.,30 and only reported
if the binding was significant ( p , 0.001) in both studies. Data
for SBF binding was taken from Iyer et al.31 Periodicity in gene
expression was based on the microarray data reported by
Spellman et al.6 “Cell cycle phenotype when overexpressed”
refers to an over-expression screen performed by Stevenson
et al.32 that proposed a number of new cell cycle genes.
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for different sets of proposed cell cycle regulated
genes (“spurious” and “very hypothetical” ORFs
were removed from all sets). It demonstrates an
under-representation of weakly expressed genes
among the sets of genes identified as cell cycle
regulated in microarray studies, compared to the
entire genome distribution. The under-represen-
tation appears to be most significant for the genes
identified by mathematical analysis of the data
(Zhao et al.7 and Spellman et al.6). The problem is
most pronounced for the genes identified by Zhao
et al.,7 who used the most strict criteria and only
included genes found significantly periodic in at
least two of the three time series experiments
(a-factor, Cdc15 and Cdc28). The under-represen-
tation thus appears to be largest among the genes
for which the data speaks most convincingly for a
periodic expression. A likely explanation for this
is that weakly expressed genes have a poorer sig-
nal-to-noise ratio on microarrays. In comparison,
the neural network method does not display any
significant under-representation (Figure 5), and
may therefore identify cell cycle regulated genes
previously undetected on microarrays.

Temporal feature variation of the cell cycle
proteome subset

To assess temporal variations in protein feature
space, the 500 highest scoring proteins from the
predictions were mapped to time-points in the cell
cycle, based on the time of maximal expression of
their encoding genes in the three gene expression
experiments.6 Here, we included the periodically
expressed genes used for training the method. Of
these 500 genes, 309 could be confidently assigned
a time of maximal expression (see Materials and
Methods). The strength of a particular feature (e.g.
isoelectric point) was computed at all time-points
during the cell cycle by averaging over proteins
whose encoding genes peak in the neighborhood

of the particular time-point. This yielded a division
of the cell cycle into a “clock”, with each time-point
corresponding to 1% of the cell cycle. Zero time
was set to be the presumed position of G1 phase
entry, right after cell division. A circular plot was
constructed (Figure 6) where each of the concentric
circles corresponds to a particular feature. The
color indicates whether proteins expressed around
a given time-point have higher or lower value of a
given feature than the average of all the 309
mapped proteins.

Figure 6 thus offers a novel in silico view of the
cell cycle proteome dynamics and reveals
intriguing temporal variations in characteristic
features of these proteins during the cell cycle.
The time resolution of this “clock” is much higher
than the conventional division of the cycle into
four phases (G1; S, G2 and M) depicted inside the
feature circles of Figure 6. Our results demonstrate
that genes maximally expressed at the same stage
in the cell cycle appear to share features at the pro-
tein level. The patterns observed in Figure 6 were
largely conserved in similar plots representing the
sets of periodically expressed genes previously
suggested in microarray studies5– 7 (data not
shown), suggesting that the feature patterns of
Figure 6 may be representative of the entire yeast
cell cycle proteome subset. Also depicted in
Figure 6 are known cell cycle transcriptional acti-
vators (marked in blue) positioned at the time
where they are reported to function,9 along with
nine cyclins (marked in orange) placed at the time
where their genes are maximally expressed.

Feature patterns during the cell cycle

In the beginning of the cell cycle (going clock-
wise from the top of Figure 6), in early G1, a large
uniformly colored area was observed, which indi-
cates that no features are over or underrepresented
among the proteins expressed here. This changes

Figure 5. Distributions of ranked
intensity for selected gene sets. The
Figure shows smoothed distri-
butions of median intensity (see
Materials and Methods) for the
entire S. cerevisiae genome, the cell
cycle regulated genes proposed by
Spellman et al.,6 by Cho et al.,5 by
Zhao et al.7 and the 500 highest
scoring genes (no training
examples) from the neural network
ensemble. ORFs annotated as
“spurious” or “very hypothetical”
by Wood et al.12 were removed
from all sets.
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Figure 6. Feature variation during the cell cycle. The temporal variation in nine selected protein features during the cell cycle, with zero time (at the top of the plot)
corresponding to the presumed time of cell devision (M=G1 transition). The color scales correspond to ^ two standard deviations from the cell cycle average. The concentric
feature circles correspond to: isoelectric point, nuclear and extracellular localization predictions,25 PEST regions,16 instability index,19 N-linked glycosylation potential,
O-GalNAc glycosylation potential,26 serine/threonine phosphorylation potential15 and tyrosine phosphorylation potential.15 The presumed positions of the four cell cycle
phases G1; S, G2 and M are marked. Also depicted are known cell cycle transcriptional activators (marked in blue), positioned at the time where they are reported to function,9



into a very distinct feature pattern 20–30% into the
cycle (late G1), where proteins have a large number
of features in common, particularly post-transla-
tional modifications and PEST regions. This pattern
correlates with the maximal expression of several
cyclins (CLN1, CLN2, CLB5, CLB6), with the
expression of genes involved in budding (BUD9,
BNI4, GIN4, CSI2, CRH1, AXL2, SVS1, QRI1,
MCD4, RSR1, MSB2, MNN1) and DNA replica-
tion/repair (PRI2, DPB2, POL12, POL30, DBP2,
CDC9, CDC21, RAD53, MSH6, RFA1, RAD27,
RNR1, SLD2, CTF18, TOF1, RFA2, OGG1, CDC45,
HYS2, MSH2, POL2), as well as with the timing of
MBF and SBF activity. Together, these data suggest
the feature space pattern 20–30% into the cell
cycle to be a fingerprint of the G1=S transition
(termed START in yeast). Figure 6 indicates that
this group of G1=S proteins contains many mem-
bers with PEST regions, relatively low isoelectric
point, high potential for phosphorylation and gly-
cosylation. This group of proteins is also predicted
to be rich in extracellular proteins or proteins
related to the cell wall. The latter correlates well
with proteins involved in budding and cell wall
formation.

The late G1 pattern changes completely 35–45%
into the cycle (Figure 6) caused by the expression
of a new group of proteins characteristic of being
mostly nuclear, having very high isoelectric points,
being very stable (low instability index and few
PEST regions) and displaying lower potential for
glycosylation and phosphorylation than the
average yeast cell cycle regulated protein. Among
the proteins expressed here are eight histones
(Hht1p, Htb1p, Htb2p, Hhf1p, Hhf2p, Hht2p,
Hta1p and Hho1p) supporting the notion that this
pattern corresponds to the S-phase of the cell
cycle. Histones are stable, nuclear proteins with
high isoelectric point and no potential for glycosyl-
ation. But the histones are not the only proteins in
this group that possess these characteristic
features. IRS4, SHE1, TOF2, ENT4 and YNR014W
all encode proteins with high isoelectric point (all
above 8.0), and are all predicted to be nuclear.
Most of these have no reported relation to the cell
cycle.

Only few features stand out in the presumed G2

phase. The proteins expressed appear to have a
higher instability index, indicating a short life-
time. Unlike PEST regions, this feature does not
directly imply targeted degradation of the proteins.
Rather it has been found that certain protein com-
positions render the proteins unstable.19 Almost as
a burst, the serine and threonine phosphorylation
increases in a small window in G2; where the tyro-
sine phosphorylation potential at the same time
reaches its lowest level throughout the cycle. It

coincides with the maximal expression of the two
cyclin genes CLB1 and CLB2, and with the reported
function of the transcriptional activators Mcm1p,
Fkh1p, Fkh2p and Ndd1p that activate the tran-
scription of G2=M genes.2,9

Towards the end of the cell cycle, in mitosis,
Figure 6 displays a very complex pattern of feature
strengths, which indicates that many subgroups of
proteins with distinct features are expressed here.
In general, there are relatively few nuclear proteins
and relatively many extracellular proteins. Glyco-
sylation potentials are high, with the O-glycosyla-
tion most abundant in the early stage and the
N-glycosylation dominating in the later proteins.
Tyrosine phosphorylation is strong, whereas the
serine/threonine phosphorylation potential is
relatively low, in good agreement with existing
knowledge that the kinase activity decreases at
this stage.1,20 PEST regions are abundant in some
subgroups, whereas late M proteins appear to be
relatively stable (low instability index). The com-
plex patterns may result from the fact that the M
phase is composed of sub-phases (prophase, meta-
phase, anaphase and telophase), where the sub-
phase proteins represent different combinations of
features.

Protein phosphorylation during the cell cycle

We find the changing patterns of phosphoryl-
ation particularly interesting. In general, our
results indicate that serine/threonine phosphoryl-
ation is highly over-represented in cell cycle
proteins. However, Figure 6 demonstrates signifi-
cant temporal variations in both kinds of phos-
phorylation at three stages in the cycle, all with a
different correlation between the two types. Pro-
teins mapped to time-points 20–30% into the cell
cycle have high potentials for both kinds of phos-
phorylation with the tyrosine potential rising first.
The next differential phosphorylation pattern is
seen 60–70% into the cell cycle, where proteins
have high potentials for serine/threonine phos-
phorylation, but very low potentials for tyrosine
phosphorylation. Towards the end of the cell
cycle, before cell division, tyrosine phosphoryl-
ation peaks again, whereas the serine/threonine
phosphorylation reaches its lowest level. These
observations are, at least in part, consistent with
previous experimental observations that the
activity of the cyclin dependent kinases rise during
the cell cycle from the G1=S transition (START)
until the end of mitosis, where it drops due to
activity of inhibitors and targeted degradation of
the cyclins.1,20 Our results also suggest tyrosine
phosphorylation to be more abundant among
proteins expressed both at the suspected G1=S

along with nine cyclins (marked in orange), placed at the time where their genes are maximally expressed. Most of the
cyclins are believed to activate Cdc28 kinase activity when expressed, but it should be noted that Clb5p and Clb6p are
kept inactive in G1 phase by the inhibitor protein Sic1p.1,2
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transition and towards the end of the cell cycle in
mitosis. The literature describes several examples
of tyrosine phosphorylation related to the cell
cycle. Swe1p and Mih1p regulate phosphorylation
of Tyr19 in Cdc28p, thereby controlling the timing
of nuclear division21 and entry into mitosis.1

Swe1p is a tyrosine kinase whose transcription
peaks in late G1: Other cell cycle related tyrosine
kinases are Rad53p (involved in DNA replication
and DNA damage checkpoints) and Mps1p
(involved in spindle pole body duplication and
the spindle checkpoint in M phase). Furthermore,
it has been discovered that nuclear localization of
Cdc48p in late G1 is controlled by tyrosine phos-
phorylation of the protein.22 These examples con-
firm that tyrosine phosphorylation plays a role in
late G1/early S phase and in mitosis. The feature
pattern (Figure 6) indicates that there may be
many other instances of cell cycle related tyrosine
phosphorylation not yet discovered.

Link between protein features and function

The classification approach used in this study
relies on the conservation of protein features
within a class of proteins, namely those involved
in the cell cycle. A similar approach, the ProtFun
method,10 has recently been developed for predict-
ing other functional categories of human proteins.
The most recent analysis of this work reveals that
features are more conserved among orthologs
than paralogs, indicating that protein features are
selectively conserved among proteins with similar
function (L.J.J. et al., unpublished results). This
also seems reasonable, since many functionalities
require the presence and recognition of short
sequence motifs for post-translational modification
or binding of other factors to the protein, but do
not require the sequence or structure to be con-
served. Proteins with the same cellular role will
thus often be similar in protein feature space, but
not necessarily similar at the level of protein
sequence or three-dimensional structure. Cell
cycle regulated proteins constitute a very broad
class, but it would still be expected that certain
functionalities or features are characteristic, if not
unique to this class, distinguishing them from
other proteins in feature space. Interestingly, we
have found the temporal variations in protein
features (Figure 6) to be largely conserved between
the subsets of proteins identified by the neural net-
work and those identified in microarray studies.
Since the two identification approaches are inde-
pendent, this suggests the characteristic features
identified in this study and their dynamics to be
generalizable to the entire yeast cell cycle proteome
subset.

Cell cycle proteins in the human proteome

The ProtFun method10 was trained on human
data alone, but recent, unpublished data shows
that it works surprisingly well on other eukaryotic

organisms, including yeast. Inspired by this, we
have applied the cell cycle prediction method
trained on yeast to a set of protein sequences corre-
sponding to all predicted genes in the human
genome, as identified in the Ensembl database.23

The data are not fully analyzed yet, but among the
top scoring candidates with known function are
several histones, the cell division kinase Cdk5p,
the Cdk inhibitor Cdkn3p, the T1 cyclin, the DNA
replication proteins Mssp1p and Mcm3p, the p53-
binding protein Mdm4p and Rbbp8p which inter-
acts with both Brca1p and the retinoblastoma
protein. Another alternative in identifying human
cell cycle proteins is to use the recent human cell
cycle gene expression data and apply a method
similar to that described here for yeast. Work on
these data is in progress.

Materials and Methods

Training set

A periodicity analysis was performed on the three
publicly available synchronization experiments (a-factor,
Cdc28 and Cdc15) compiled by Spellman et al.5,6 to
identify periodically as well as non-periodically
expressed genes in S. cerevisiae. A Fourier-like analysis
was applied to the data, such that each gene i was
assigned a score Di based on its temporal expression
profile during the experiment, with cell cycle frequency
v ¼ 2p=T:

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

sinðvtÞxiðtÞ

 !2

þ
X

t

cosðvtÞxiðtÞ

 !2
vuut

The cell cycle periods, T, estimated by Zhao et al.7

were used (58 minutes for the a-factor experiment,
115 minutes for the Cdc15 experiment and 85 minutes
for the Cdc28 experiment), and a combined Fourier
score, Fi; was computed as:

Fi ¼
ðDi;a þ 0:8Di;cdc15 þ Di;cdc28Þ

3

The contribution from the Cdc15 experiment was
scaled in the combined score, because this experiment
covers 2.5 cell cycles, whereas the a-factor and Cdc28
experiments cover only two (using the Zhao et al.7 esti-
mates). The lowest scoring 556 genes (threshold at 0.75)
were used as examples of “non-cell cycle regulated pro-
teins”, which display no periodic regulation during the
cell cycle. By an estimation method described in detail
elsewhere†, we selected 115 genes in a set of very signifi-
cantly periodic genes (a conservative threshold at 6.0). To
ensure consistent behavior over multiple cycles, we
required the Pearson correlation between the expression
profiles of the first and the second cycle to be above 0.4,
thereby excluding 18 genes. The procedures outlined
above resulted in a training set consisting of 97 “cell
cycle regulated proteins” and 556 “non-cell cycle regu-
lated proteins”.

† http://www.cbs.dtu.dk/cellcycle
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Neural network training

Threefold cross-validation was used (division of the
data set in three different ways), each with 430
protein sequences for training and 215 for independent
evaluation of the classification performance, which was
measured as the Matthews test correlation coefficient
over all three test sets.24 As input to neural networks we
used protein features derived directly from the amino
acid sequence of the proteins to give a feature space
representation of each protein.

An iterative heuristic (similar to that used by Jensen
et al.10) was applied to select the most discriminative
features and the best performing combinations of these:
combinations of two features were tested to select the
best performing pairs, from which combinations of
three features were generated. The best performing of
these were used as starting points for generating combi-
nations of four features, etc. The method thus only
retains features that perform well alone or in combi-
nation with one other feature. In that way, irrelevant
features are filtered out in the very beginning of the
selection procedure.

For each input combination the performance was
measured as the combined Matthews correlation
coefficient24 over all three independent test sets (for
further details, see supplementary information†).
Eighteen features were investigated and Figure 2 shows
the four best input combinations, which were used in
an ensemble of neural networks. For rescaling the indi-
vidual network output, the test set scores were ranked
and their distribution used as conversion table for output
from that network, making it possible to average all 15
neural network output scores into one final score
(between 0 and 1). As expected, the ensemble out-
performed all of the individual neural networks. The
performance of the ensemble was only tested on
sequences not used for training. A prediction was
obtained from the trained ensemble for the entire
S. cerevisiae proteome (set of all translated ORFs from
SGD‡). No predictions were, however, made for the
training examples and the “spurious” or “very
hypothetical” ORFs described by Wood et al.12

Microarray intensity distributions

The median fluorescence intensity (microarray spot
intensity) was computed for each gene in each of the
three cell cycle time series experiments5,6 (a-factor,
Cdc28 and Cdc15). Within each experiment, the median
intensities were ranked. The median rank over all three
experiments was then used as measure of the median
intensity of each gene. For additional details, see the
website.

Temporal variation in protein features

The three cell cycle experiments5,6 (a-factor, Cdc28 and
Cdc15) were used to determine the time of maximal
expression of periodic cell cycle genes. The time series
data were normalized within each experiment with the
cycling times estimated by Zhao et al.7 to bring the data
on a comparable time scale. Within each experiment, the
time of maximal expression was compared between two

consecutive cycles, averaging the two time-points if the
time difference between them was less than 20% of the
cell cycle period. In this way, a peak time was computed
only for the self-consistent genes in each experiment. The
three experiments were aligned by comparing the distri-
bution of peak times for genes known to peak in the
G1-phase,6 and furthermore shifted to set zero time to
the suspected time of cell devision (beginning of G1).
The peak time thus indicates how many percent into the
cell cycle a given cell cycle protein is maximally
expressed. The peak times were compared between the
three experiments and averaged only if the difference
between them was less than 20% of the cell cycle period.
Out of the 500 top-scoring proteins, 309 met this double
self-consistency criterion and were assigned a unique
average peak time (based on one, two or three
experiments).

The cell cycle was divided into 100 time-points and
the strength of a particular protein feature was calcu-
lated at each of the time-points by averaging over the
proteins with average peak time in a window of ^5
time-points. The strengths were visualized with respect
to their deviation from the average value of all 309 cell
cycle regulated proteins, using one color for values
higher than the average and another color for lower
values. The extremes of the color scale were set at ^2
standard deviations. The temporal variation in the nine
most interesting protein features is illustrated in Figure 6.
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