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Materials and methods

We here describe in detail how the dynamic
network of the cell cycle was derived. That
includes revisions to the curated MIPS
complexes, a new topology based scoring
scheme for large-scale interaction data
sets, and an approach to filter interac-
tions data based on protein subcellular
localization data. Finally, we describe a
novel procedure for combining data on
mRNA expression and protein interactions
to extract a cell cycle network.

Protein interaction datasets and
their refinement

Three different types of interaction evidence were
utilized for constructing the physical interaction
network: yeast two-hybrid screens (S1, S2), com-
plex pull-down screens (S3, S4), and MIPS com-
plexes (S5). The manually curated MIPS com-
plexes had to be refined as some annotations did
not reflect known dynamic aspects. For example,
the Cdc28p complexes are represented in MIPS
(S5) as a single entity consisting of Cdc28p and
all its 9 associated cyclins. However, Cdc28p can
only interact with a single cyclin at a time. To
correctly reflect this, we instead annotated 9 com-
plexes that each consist of Cdc28p together with a
single cyclin. The equivalent correction was made
for Pho85p and the 6 cyclins with which it was an-
notated in MIPS. Furthermore, 4 missing Pho85p-
cyclin complexes were added (Pcl5p, Pcl6p, Pcl7p,
and Pcl9p).
The myosin and kinesin motor proteins were

annotated as two large complexes, but in fact
these proteins function individually and do not
form complexes with each other. We consequently
removed these two complexes. Also, the proteins
Aut2p and Aut7p were removed from the “tubu-
lin associated” complex as this published relation-
ship (S6) has since then been contested (S7,S8).
While SCF was correctly annotated as three

entities, namely the core complex together with

each of three regulatory subunits, only the core
complex was annotated for APC. For consistency,
we annotated two APC complexes consisting of
the APC core together with each of its two regu-
latory subunits, Cdc20p and Cdh1p.
The revised version of the MIPS complexes

used for our analysis is available from http://
www.cbs.dtu.dk/cellcycle.

Quality scores for individual binary
interactions

For the two different types of high-throughput
data sets, scoring schemes were developed that
allow the reliability of individual, binary interac-
tions to be compared and integrated across data
sources.
For the yeast two-hybrid experiments, the re-

liability of an interaction was found to correlate
well with the number of non-shared interaction
partners for each interactor. We summarize this
in the following raw quality score:

S1 = − log((N1 + 1) · (N2 + 1))

where N1 and N2 are the numbers of non-shared
interaction partners. This score is similar to the
IG1 measure suggested by Saito et al. (S9). For
this scoring, the core interaction set by Ito et al.
(S1) and the interaction set by Uetz et al. (S2)
were pooled and treated as one experiment. This
was done because the two experiments appeared
to be of equal quality as well as to have correlated
errors (data not shown). The full set of interac-
tions by Ito et al. (minus interactions in the core
set) was treated as a separate set because of its
much higher rate of false positives.
In the case of complex pull-down experiments,

the reliability of the inferred binary interactions
was found to correlate better with the number of
times the interactors were co-purified vs. purified
individually:

S2 = log

[

N12 ·N

(N1 + 1) · (N2 + 1)

]
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Table S1: Compatible subcellular localizations. Subcellular localizations between which protein
interactions were allowed are marked by dots.

Bud Cell Plasma Cytosol Nucleus ER Vacuole Mitochondria
wall mem.

Bud • • • •

Cell wall • • •

Plasma mem. • • • •

Cytosol • • • • • •

Nucleus • •

ER • •

Vacuole • •

Mitochondria •

where N12 is the number of purifications contain-
ing both proteins, N1 and N2 are the numbers of
purifications containing either protein 1 or 2, and
N is the total number of purifications.
Each of these four interaction sets were bench-

marked against co-occurence on KEGG maps.
Calibration curves for converting the raw qual-
ity scores to probabilistic confidence scores were
obtained by fitting sigmoid functions to plots of
specificity vs. score. This procedure is identical to
that used for other evidence types in the STRING
and ArrayProspector servers (S10,S11). Because
no correlation was observed for false positive in-
teractions from each of the four sets, the individ-
ual confidence scores were combined under the as-
sumption of independence:

P = 1−
∏

i

(1− Pi)

For this purpose, all interactions between mem-
bers of a MIPS complex were assigned a con-
fidence value of 0.95, which corresponds to the
global agreement between MIPS complexes and
KEGG maps.

Interaction filtering by subcellular
localization

The final set of binary protein interactions was
filtered to remove interactions between proteins
with incompatible subcellular localizations. For
this purpose, annotated subcellular localizations
were downloaded from SGD (S12), which includes
results of two large scale localization experiments
(S13,S14).
Table S1 shows the compatibility matrix used

for filtering the interactions. As some proteins
have multiple subcellular localizations, a pair of
proteins was allowed to interact if any of their
subcellular localizations were compatible accord-
ing to Table S1. Proteins of unknown subcellular
localization were allowed to interact with all other
proteins.

Automated extraction of periodic
and non-periodic cell cycle proteins

A set of 600 periodically expressed yeast
genes was identified from microarray expres-
sion studies (S15, S16) as described elsewhere
(S17). However, as some pairs of periodi-
cally expressed genes encode identical proteins
(CUP1-1/CUP1-2, HHF1/HHF2, HHT1/HHT2,
YRF1-3/YRF1-7, YEL076C-A/YLR464W, and
YLR036C/YMR051C), the set of 600 genes corre-
sponds to 595 unique, periodically expressed pro-
teins on which our analysis is based.
This set was augmented by non-periodically

expressed (“static”) proteins which interact with
periodically expressed (“dynamic”) ones from the
set. For each static, the interaction partners at
a confidence of 0.85 or better were examined; if
at least 30% of these were dynamic, the static
protein was considered cell cycle related. In
the network, interactions with confidence scores
down to 0.45 are shown among the proteins in-
cluded. The extraction parameter values were
chosen based on manual assessment of the bio-
logical correctness of the resulting networks. To
allow detailed inspection, an interactive version is
available online, as is a tab-delimited file of in-
teractions and their associated confidence scores
(http://www.cbs.dtu.dk/cellcycle).
We checked all MIPS complexes for overrepre-

sentation of periodic proteins. For each complex,
the statistical significance was calculated accord-
ing to the hypergeometric distribution. Even at
a significance level as low as 20%, all members of
periodic complexes had already been captured by
the approach described above.

Clustering of the cell cycle network

To objectively define the number of modules in
the cell cycle network, we clustered the network
with the OC implementation of means cluster-
ing (S18). The interaction confidence scores were
used as pairwise similarity scores and a cutoff of
0.01 was applied to define the clusters. This re-
sulted in 31 binary complexes and 29 modules of
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three or more proteins.

Statistical significance of correlations

A hypergeometric distribution was used to test
the significance of the correlations between tran-
scriptional and post-translational control. 50 pu-
tative Cdc28p targets were also dynamic (out of
184 dynamic proteins in total) compared to a to-
tal of 59 putative targets among all 300 proteins
in the network. This overrepresentation of puta-
tive Cdc28p targets among the dynamic proteins
is significant at P < 10−4.
Among the 300 proteins, 115 were predicted to

contain at least one PEST region by the PESTfind
program (S19). Of these 115 proteins, 34 were pu-
tative Cdc28p targets (out of 59 in total); PEST
regions are thus overrepresented among Cdc28p
targets at a significance level of P < 10−3. Sim-
ilarly, there are 81 dynamic proteins (of 184)
among the 115 proteins with PEST regions, mean-
ing that PEST regions are overrepresented among
the dynamic proteins at P < 10−2.
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Error rate, coverage, and robustness

The cell cycle network is based on in-
teractions from the curated MIPS com-
plexes (S5) (important for comprehensive-
ness) as well as interactions from several
large-scale experiments (S1–S4) (required
for novelty). Unfortunately, the latter
suffer from about 30–50% false positive
interactions (S20,S21). For detailed studies
of biological systems such as the cell cycle,
it is thus of utmost importance to improve
specificity. We employ a scheme (see
“Materials and methods”) that is specif-
ically tailored to extract high-confidence
interactions relevant to the cell cycle. In
the following, we show that our procedure
reduces the error rate by an order of
magnitude, i.e. to 3–5%. Moreover, we
show that our coverage is four-fold higher
than for other integrated data sets with
equally low error rates.

Estimating the error rate of our in-
teraction data sets

We benchmark the performance of our extraction
procedure by calculating the overlap between an
interaction set and the curated MIPS complexes.
For this we consider the following four sets:

• de Lichtenberg et al. “all” contains the
union of the yeast two-hybrid screens by
Uetz et al. (S2) and Ito et al. (S1, full set)
and the matrix representations of the two
complex pull-down experiments by Gavin
et al. (S3) and Ho et al. (S4). This interac-
tion set is the raw data for which the error
rate has been estimated to be 30–50%.

• de Lichtenberg et al. “45%” consists of
the subset of “all” to which we assign a
topology-based quality score (see “Materials
and methods”) of at least 0.45, correspond-
ing to the cutoff for including an interac-
tion between two cell cycle proteins in the
final network (Figure 1). Interactions were
not filtered based on subcellular localization
data.

• de Lichtenberg et al. “85%” consists of
the subset of “all” to which we assign a
topology-based quality score (see “Materi-
als and methods”) of at least 0.85, corre-
sponding to the cutoff for including static
proteins in the final network. Interactions
were not filtered based on subcellular local-
ization data.

• de Lichtenberg et al. “cell cycle” was con-
structed by applying the entire scheme de-

scribed in “Materials and methods” to “all”.
The MIPS complexes were not included for
this analysis.

Figure S1a shows the percentile overlap of each
interaction data set with a matrix representation
of the MIPS complexes. As expected, filtering the
interactions based on our topology score consid-
erably improves the overlap from 3.4% (“all”) to
14.2% (“45%”) and 21.3% (“85%”). Applying the
full extraction scheme to create a cell cycle specific
network further increases the overlap to 33.8%, i.e.
a ten-fold improvement over the raw data.
Based on the estimate that the error rate in

the raw data (“all”) is 30–50%, we can estimate
the error rate in any interaction data set from its
overlap with the MIPS complexes:

error = errorall ·
overlapall

overlap

The estimated error rate of each interaction data
set is shown in Figure S1b, assuming errorall of
30% (best case) and 50% (worst case). When
calculating these estimates, interactions involving
ribosomal proteins were excluded (explained be-
low).
These estimates demonstrate that our scoring

and extraction procedure is capable of reducing
the error rate by an order of magnitude, such
that the resulting interaction network (based on
high-throughput data alone) contain only 3–5%
false positive interactions. The final network (Fig-
ure 1) contains 734 interactions among 300 pro-
teins, of which 198 interactions are supported by
high-throughput data alone. Consequently, only
6–10 wrong interactions should be expected in the
entire network. As poorly characterized proteins
only account for about 15% of these 198 inter-
actions, only 1 or 2 of the assignments should
be expected to be wrong. Even in the very un-
likely event where all of the false positive interac-
tions are related to poorly characterized proteins,
it would still leave us with at least 20 correct novel
functional assignments.

Comparison with other published in-
teraction data sets

Numerous other integrative approaches and com-
bined interaction sets have been published over
the years based on the same raw data that we
analyze:

• Han et al. (S22) recently analyzed an inter-
action data set derived from many of the
same sources as those used in our work. In-
teractions were required to be present in at
least two of the following five sets: the union
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Figure S1: Agreement with known complexes and error rate estimates. The accuracy of
four data sets from our extraction procedure and five data sets from other groups is compared. A)
Overlap with the curated MIPS complexes. White bars show the agreement for the original data sets,
while gray bars represent versions that have been modified to remove biases. For the Han et al. (S22)
data set, the gray bar corresponds to not including the small-scale experiments and curated complexes
from MIPS. The gray bar for Schwikowski et al. (S23) corresponds to removing the MIPS small-scale
experiments (S5). For all other data sets, the gray bars correspond to excluding interactions involving
ribosomal proteins. B) Error estimates. From the overlap with the MIPS complexes, the absolute
error rate is estimated for each data set under the assumption of 30% (best case, white bars) and 50%
(worst case, gray bars) error rate on the raw data.

of Uetz et al. (S2) and Ito et al. (S1, full set),
the union of the spoke representations of
Gavin et al. (S3) and Ho et al. (S4), poten-
tial interactions derived from genomic con-
text (S21), the MIPS complexes in matrix
representation, and the MIPS physical inter-
actions from small-scale experiments (S5).

• The Jansen et al. PIE600 set (S24) was
derived from the same four large-scale data
sets (S1–S4) included in our “all” data set.
Confidence scores were calculated from pres-
ence/absence in the four interaction data
sets using a full Bayesian scheme.

• The Jansen et al. PIE300 set (S24) was con-
structed exactly like the PIE600 set except
from using a less strict confidence cutoff.

• The Jansen et al. PIT600 set (S24) relies
on a Bayesiean integration of the interaction
data with additional data on mRNA expres-
sion, gene essentiality, and annotated func-
tion from both GeneOntology and MIPS.

• Schwikowski et al. (S23) constructed a data
set of interactions from Uetz et al. (S2), Ito
et al. (S1) and the MIPS physical interac-
tions from small-scale experiments (S5).

Figure S1a shows how the overlap with the cu-
rated MIPS complexes compares across different
data sets. In the data sets from Han et al.
(S22) and Schwikowski et al. (S23), the small-
scale MIPS physical interactions were included.

This will likely cause the accuracy of these data
sets to be overestimated as these data were proba-
bly used when curating the MIPS complexes. We
thus benchmarked these two data sets both in-
cluding and excluding the interactions obtained
from MIPS (white and grey bars, respectively).
Ribosomal proteins are known to co-purify

with a wide variety of proteins in complex pull-
down experiments, leading to many false posi-
tive interactions in the Gavin et al. (S3) and Ho
et al. (S4) data sets. Also, interactions among
ribosomal proteins accounts for a large fraction
of all true interactions. Ribosomal proteins alone
can thus greatly influence the apparent quality of
an interaction data set. For this reason, we re-
benchmarked our own data and the interaction
sets of Jansen et al. (S24) after removing all inter-
actions involving ribosomal proteins (gray bars).
The effect of this is seen most clearly in the raw
data (“all”).
Figure S1b shows the estimated error rate

based on each of the filtered data sets (grey bars in
Figure S1a). Only the data set of Han et al. (S22)
and the two “PIE” data sets by Jansen et al. (S24)
show an error rate as low or lower than our “85%”
set.

Coverage and robustness

The “cell cycle” data set (or network) described
above is based on large-scale data sets alone. It
consists of 193 interactions among 188 proteins,
of which 139 proteins were dynamic and 49 static.
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In comparison, the same approach yields 183 dy-
namic and 98 static proteins when including the
curated MIPS complexes (these numbers are lower
than those mentioned in the manuscript, because
the APC and SCF complexes were added manu-
ally). Although including curated complexes ob-
viously improves the network, it is important to
note that a large network can be obtained from
using high-throughput data sets alone. Also, al-
though there are several tunable parameters in our
extraction method, the resulting network changes
are minor for even large changes in parameters
(data not shown). From these tests we conclude
that the approach is highly robust.
For comparison, we also applied the extraction

scheme to the Han et al. (S22) data set and the
two “PIE” data sets by Jansen et al. (S24). For
the Han et al. (S22) and Jansen et al. “PIE600”
(S24) data sets, the resulting networks consist of
only 25 interactions among 42 proteins and 8 in-
teractions among 14 proteins, respectively. The
low error rate of these two data sets is thus ob-
tained at the price of a very low coverage. The
potential for novel findings would thus be small if
these data sets were used.
The Jansen et al. “PIE300” set (S24) has

about the same global error rate as our “85%” set.
When applying the network extraction scheme to
the PIE300 set, a cell cycle network of 104 inter-
actions among 121 proteins is obtained, i.e. about
40% smaller than obtained with our own interac-
tion set. Surprisingly, the resulting network only
shows 12.5% overlap with the curated MIPS com-
plexes (S5) as compared to 33.8% for our “cell cy-
cle” set. Consistent with the higher error rate and
lower coverage of the “PIE300” derived network,
it provides a cell cycle context for only five pro-
teins of unknown function. Of these, three were
also identified in our network, while the remain-
ing two both seem highly unlikely to be correct,
as one shows sequence similarity to tRNA-ligases
and the other is localized to the mitochondria.
We thus conclude that our scoring and extrac-

tion scheme provides the best balance between
specificity (low error rate) and sensitivity (cov-
erage) of all the sets investigated.
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Details on individual complexes

In this section, we provide additional infor-
mation on individual proteins and modules
included in our interaction network (Figure
1 in the paper). For detailed inspection
of the network, we recommend that the
reader simultaneously studies either the
interactive Java version or the detailed
PDF version of the network available from
http://www.cbs.dtu.dk/cellcycle. They
both contain names of individual proteins
and allow the user to zoom in and out;
the interactive version further allows the
layout of the network to be changed.

New cell cycle contexts for uncharac-
terized proteins

In addition to the few examples mentioned in the
paper, the temporal interaction networks allows
us to place a handful of other uncharacterized pro-
teins in a cell cycle context.
The temporal network reveals that Ypl014p,

a nuclear/cytoplasmic (S14) protein of unknown
function, is associated with the cyclin dependent
kinase Cdc28p complexes: it has the same subcel-
lular localization as its predicted interaction part-
ners, its expression peaks at the M/G1 transition
and it has been co-purified with several other G1
phase proteins including Sic1p, Cln1p, and Cln2p
(S3). The association between the latter and
Ypl014p was recently confirmed in a targeted pro-
teomics study of the cyclin–Cdc28p module (S25).
Furthermore, based on various properties of the
protein itself, Ypl014p was predicted to play a role
in the cell cycle (S26).
The two completely uncharacterized proteins

Yml119p and Yll032p interact and are expressed
close in time in G2 phase. Their role in the cell
cycle is further supported by recent, experimental
evidence that both are Cdc28p substrates (S27).
The uncharacterized Ypl208p is expressed in late
G1 phase and co-immunoprecipitates with Bcp1p
in both of the analyzed complex pull-down screens
(S3,S4). Both Ypl208p and Bcp1p are localized in
the cytoplasm as well as the nucleus. In support
of a role in the cell cycle, the Schizosaccharomyces
pombe ortholog of Ypl208p (SPBC1709.13C) is
also expressed in M or G1 phase, which are hardly
separable in S. pombe (S28). Bcp1p is a static
protein involved in nuclear export and required
for cell cycle progression (S29).
The uncharacterized protein Ylr254p is peri-

odically expressed and interacts with Pac1p ac-
cording to both yeast two-hybrid screens included
in our analysis (S1, S2). Although Pac1p is not
periodically expressed, it is known to be involved
in nuclear migration (S30). Consistent with this,

the expression of Ylr254p peaks in M phase.
In accordance with being involved in biosyn-

thesis of the contractile ring, the chitin synthase
Chs2p is expressed during M phase. In a yeast
two-hybrid screen (S1), it was observed to inter-
act with the putative protein kinase Isr1p, which
is also periodically expressed. As phosphorylation
events can sometimes be seen in yeast two-hybrid
interactions (S31), it is tempting to speculate that
Chs2p may be a Isr1p substrate.
Ydl156p, a protein of unknown function, has

been co-purified with a complex of DNA repair
proteins (S3), six of which are included in the
cell cycle network (Msh2p, Msh3p, Msh6p, Rfa2p,
Rfa3p, and Shs1p). Ydl156p is periodically ex-
pressed with a timing of peak expression similar
to these genes, suggesting a role in DNA repair.
With relatively low confidence, the unchacter-

ized Ycl042p interacts with a DNA replication
protein, Rfc3p, based on co-purification evidence
(S4). In support of the interaction, Ycl042p is ex-
pressed in G1 phase like many known components
of the DNA replication machinery.

Additional detail on the nucleo-
some/bud formation module

The cell cycle network (Figure 1) reveals a novel
module that appears to connect processes related
to chromosome structure with mitotic events in
the bud (Figure 3a). The module is composed of
two mitotic signaling kinases (Gin4p and Kcc4p),
a histone variant (Htz1p), a nucleosome assem-
bly protein (Nap1p), and two poorly character-
ized proteins (Nis1p and Yol070p). The two ki-
nases (Gin4p and Kcc4p) are both expressed in
G1 phase and are involved in budding and assem-
bly of the septin ring. Nap1p, which connects
the module to the nucleosome complex, is known
to shuttle between the nucleus and cytosol (S32)
where it is required for activation and deactivation
of Gin4p during mitosis (S33).
The module is supported by numerous inde-

pendent physical interactions. Using Nap1p as
bait, Gin4p, Kcc4p, Htz1p, Nis1p, and Yol070p
were co-purified by Gavin et al. (S3). Nap1p also
has also been observed to interact with Hta1p
(S2, S4), Htb2p (S3), Gin4p (S4), Kcc4p (S2),
and Nis1p (S1,S2). The inclusion of the potential
Cdc28p substrate Yol070p in the module is fur-
ther supported by a yeast two-hybrid interactions
with Nis1p (S2). Both proteins are expressed in
mitosis and localize to the bud neck.
The interactions of Nis1p with Nap1p, Gin4p,

and Kcc1p have also been identified in small-scale
experiments, based on which it was suggested to
play a role in mitotic signaling (S34). Considering
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that Nap1p interacts with Hta1p and Htb2p, its
interaction with the histone H2A variant Htz1p is
also very plausible. The observed interaction be-
tween Htz1p and Mps3p (S2) links the module to
the sister chromatid assembly, which is consistent
with the suggested role of the S. pombe ortholog
of Htz1p in chromosome segregation (S35).

Additional detail on the pre-
replication complex

Even though the pre-replication complex has been
extensively studied, the network suggests several
novel hypothesis related to this complex (Fig-
ure 3b). The array data show that the CDC45
gene is periodically transcribed and this may seem
to conflict with the earlier observation that the
protein level of Cdc45p is constant through the
cell cycle (S36). However, the expression of this
gene is induced right before the time where it is
known to function in recruiting the replication
machinery to origins of replication. Phosphory-
lation and other post-translation mechanisms are
known to play a key role in regulating the assem-
bly of the pre-replication complexes (S37, S38),
and we propose that the conflicting observations
for Cdc45p could be explained by simultaneous
synthesis of new, unmodified Cdc45p and degra-
dation of the modified form.
Furthermore, Mcm2p was co-purified with an

uncharacterized putative helicase (Yil177p) and
the trehalose complex (Tps1p, Tps2p, Tps3p, and
Tsl1p) (S3). Yil177p belongs to a family of highly
homologous putative helicases, Y’ helicases, that
all appear to be co-expressed in early G1 phase
(S16). Although the Mcm complex is known to
exert helicase activity (S38) on its own, the in-
teraction suggests that one or more Y’ helicases
could also be involved in this process. Yil177p and
Tsl1p (the only dynamic subunit of the trehalose
complex) appear functionally unrelated, however,
their interaction is supported by the fact that the
expression of the two genes peaks simultaneously
during G1 phase. Indeed, trehalose synthesis has
been shown to be influenced by the length of the
G1 phase (S39).

Glycogen synthesis

Like the trehalose synthesis, glycogen synthesis
is also affected by the length of the G1 phase
(S39). This is consistent with the observation that
the major isoform of glycogen synthetase, Gsy2p,
is expressed in G1 phase. Two other glycogen
biosynthesis genes are also included in the net-
work: the minor isoform of glycogen synthetase
(Gsy1p, expressed in late M phase), and a glyco-
gen synthesis initiator protein (Glg2p, expressed
in G2 phase). In spite of the genes being expressed
at very different phases of the cell cycle, all pos-
sible pairwise interactions have been observed in
a yeast two-hybrid screen (S1). The functional

Pho85

Pcl7

Pcl1

Pcl2
Swi5

Mmr1

+P

+P?
Pcl5

Figure S2: The Pho85p cyclin module. This
module contains the cyclin dependent kinase
Pho85p together with four of its associated cyclin
(Pcl1p, Pcl2p, Pcl5p, and Pcl7p). The interac-
tions correctly recover the known phosphorylation
of Swi5p by Pho85p–Pcl2p and predict Mmr1p as
a novel Pho85p–Pcl7p phosphorylation target.

importance of the expression patterns on complex
assembly remains unclear, though.

Pho85p–cyclin complexes

One of the proteins known to regulate glycogen
synthesis is the cell cycle related cyclin depen-
dent kinase Pho85p (S40). Similar to the Cdc28p
module, the network places Pho85p together with
four of its associated cyclins. We assign the
expression of the cyclins to peak at G1 phase
(Pcl1p and Pcl2p), S phase (Pcl5p), and G2 phase
(Pcl7p). Interestingly, Pcl7p is at the time of
writing not listed as one of the cell cycle related
Pho85-cyclins in SGD (S12). In the context of
this module, we also find the cell cycle transcrip-
tion factor Swi5p and the uncharacterized phos-
phoprotein Mmr1p. Swi5p interacts with Pcl2p,
which is known to target it for phosphorylation by
Pho85p (S40), possibly to affects its localization
to the nucleus. Based on the interaction between
Pcl7p and Mmr1p, we therefore propose Mmr1p
as a novel Pho85p–Pcl7p target. In support of a
cell cycle role, Mmr1p localizes to the bud via an
mRNA transport system involving She2p, which is
co-expressed with Mmr1p and also peaks in early
M phase.

Cell cycle transcription factors

In addition to Swi5p, our network contains sev-
eral other cell cycle related transcription factors.
Swi6p and Mbp1p together form the transcrip-
tion factor complex called MBF, involved predom-
inantly in transcription of genes related to DNA
replication and repair. Swi6p is synthesized in
late S phase, whereas Mbp1p is expressed even
later, in G2 phase. This is very surprising, since
MBF induces transcription of its targets in late G1
phase, i.e. before the expression of both its sub-
units. Recent evidence suggest that Swi6p is ex-
ported from the nucleus around the G2/M phase,
somehowmodified in the cytoplasm, and imported
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back into the nucleus (S41). These observations
could indicate a mechanisms in which an inactive
form of Swi6p is synthesized and only activated
after shuttling between the nucleus and the cyto-
plasm. In either case, the biological importance
of the transcriptional regulation of Swi6p is not
understood (S42).
Mbp1p has also been co-purified with Fkh1p,

a forkhead transcription factor expressed in G2,
and a functionally uncharacterized protein ex-
pressed in late S phase, Ymr144p (S4). The role
of Ymr144p in the cell cycle is strongly supported
by chromatin-IP experiments as the YMR144W
promoter is bound by Mbp1p, Swi4p, Fkh2p, and
Ndd1p at P < 10−3 in both the Simon et al. (S43)
and Lee et al. (S44) experiments. Although we
have found no known connection between Mbp1p
and Fkh1p, their interaction is supported by re-
cently published evidence of weak cooperativity
between the two factors (S45).
Swi4p (which forms the G1 transcription fac-

tor SBF with Swi6p) is found in the network to-
gether with Tbf1p (a DNA binding protein es-
sential for mitotic growth) and Rad53p (a kinase
involved in cell cycle arrest in response to DNA
damage). SBF activates the transcription of an-
other transcription factor, Tos4p, that interacts
with the histone protein Hta1p, both of which are
expressed around the G1/S transition. In addi-
tion to being transcriptionally regulated, Tos4p is
a potential Cdc28p substrate (S27).

Septin filaments

Also a transcription factor, Ace2p is known to
localize to the bud and later to the nucleus
of the daughter cell where it is responsible for
expression of e.g. enzymes involved in septum
degradation (S46). Consistent with this func-
tion, Ace2p directly interacts with the septin
ring component Cdc11p with which it is also co-
expressed in S phase. Cdc11p belongs to the
conserved septin family, which was first discov-
ered in yeast and subsequently found in numerous
other fungi and animals, including human, mouse,
D. melanogaster, and C. elegans (S47,S48). The
four yeast septins that have been studied exten-
sively (Cdc3p, Cdc10p, Cdc11p, and Cdc12p) are
required for cytokinesis, axial bud site selection,
as well as the correct localization of several other
proteins involved in cytokinesis, morphogenesis,
and bud site selection.

Anaphase promoting complex

The anaphase promoting complex (APC) has two
regulatory subunits, Cdh1p and Cdc20p. Only
the latter is periodically expressed and peaks in
M phase. Cdh1p has an interaction with Clb2p,
its well known substrate (S49).
One of the core subunits (Apc1p) of APC in-

teracts with Yck3p, which clusters with Yck2p

and Yck1p. All three are membrane-bound casein
kinase I homologs, but only Yck1p is periodically
expressed with peak expression in G2 phase. In
support of the interaction with the APC, at least
two of the three kinases (Yck1p and Yck2p) ap-
pear to be involved in phosphorylation of PEST
sequences required for the ubiquitination of some
proteins, e.g. Ste3p and Fur4p (S50,S51).

Sister chromatid cohesin complex

In yeast, a complex known as cohesin (Smc1p,
Smc3p, Irr1p, Mcd1p) is responsible for holding
together the sister chromatids during S, G2 and
beginning of M phase (S52). In agreement with
this, the network contains a cluster containing
these four dynamic and co-expressed proteins; all
synthesized in early S phase. The module also
contains the periodically expressed kinase Cdc5p,
which is synthesized in G2 phase and plays impor-
tant parts in regulating exit from mitosis (S53).
Also linked to the cohesin complex, is an unchar-
acterized nuclear protein, Pwp1p, which has addi-
tional interactions with the histone Hta2p and the
nucleolar protein Cbf5p. Recent studies of the hu-
man homolog, endonuclein, have found that it is
up-regulated in pancreatic cancer and that both
expression and localization of the protein varies
in a cell cycle dependent manner (S54). These
data clearly support a relation to the cell cycle,
although the precise functional role of the protein
is unknown in both yeast and human. The net-
work context, however, may help to generate more
precise hypotheses to be tested experimentally.

Mitotic exit

The segregation of the sister chromatids is medi-
ated by the dissociation of the cohesin complex,
trigged by the protease Esp1, which specifically
targets Mcd1p. This protease is kept inactive by
its association with the protein Pds1p, which is
expressed in G1 phase and targeted for degrada-
tion by the APC–Cdc20p complex at the onset
of anaphase. The interaction between the static
Esp1p and its dynamic partner Pds1p is captured
in the network. Interestingly, we also observe an
interaction between Esp1p and another dynamic
protein, Amn1p, expressed at the M/G1 transi-
tion. Amn1p has recently been identified as part
of a daughter-specific system that resets the cell
cycle after exit from mitosis. It competes with
Cdc15p for binding to Tem1p, which is involved
in activating the Cdc14p phosphatase that in-
hibits Cdc28p activity through a number of dif-
ferent mechanisms (S53). At the time of writ-
ing, however, no functional link between Amn1p
and Esp1p appears to have been described in the
literature. The interaction is interesting because
Amn1p is synthesized shortly after Pds1p is de-
stroyed, suggesting that Amn1p could associate
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with the free form of Esp1p, possibly after its
cleaveage of Mcd1p.
Esp1p also interacts with Spt16p, which is ex-

pressed in G1 phase and involved in RNA poly-
merase II transcription. Spt16p interacts with an-
other RNA polymerase II related protein, Paf1p,
which is expressed in M phase and required for ex-
pression of key regulatory cell cycle genes (S55).
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Two distinct types of modules and protein hubs

This section reports the existence of two
types of modules and shows that these are
closely related to two recently discovered
classes of protein hubs.

Two distinct types of modules

In the derived cell cycle network (Figure 1) we
observe that interacting proteins are typically ex-
pressed close in time; this is quantified by the his-
togram in Figure S3a, showing the distribution of
distance in the cell cycle between interacting dy-
namic proteins. The majority of complexes and
modules thus contain dynamic subunits that are
expressed at approximately the same time (Fig-
ure S3a). Examples of this include the nucleosome
complex, the DNA replication machinery, and the
spindle pole body (SPB) (see Figure 1 and “De-
tails on individual complexes”). However, there is
also a second rarer type of module in which the
proteins are expressed at different stages of the
cell cycle; these are exemplified by the Cdc28p
complexes and the novel nucleosome–bud linker
module (see Figure 3a,c and “Details on individ-
ual complexes”).

Party and date hubs

To better understand the biological importance of
these two classes of modules, we concentrated on
the most highly connected proteins, also known as
“hubs”. We defined hubs as proteins with more
than five interaction partners and computed the
average difference in peak time (distance in the
cell cycle) among the interaction partners of each
hub. As shown in Figure S3b the distribution of
these average distances is bimodal, supporting the
recent proposal of two distinct classes of protein
hubs, namely “party hubs” (interaction partners
are co-expressed) and “date hubs” (interaction
partners vary and are condition-dependent) (S22).
These classes were discovered by Han et al. based
on gene expression across different cellular condi-
tions (S22); however, our results show that they
also exist in the context of a single dynamic pro-
cess and that they are closely related two the two
types of modules observed in the cell cycle inter-
action network (Figure 1). A prime example of
a date hub is the static cyclin-dependent kinase
Cdc28p, the activity and specificity of which is
regulated by association with different interaction
partners at different stages of the cell cycle (see
Figure 3c).
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Figure S3: Timing of expression for inter-
action partners. A) The distribution of time
differences between dynamic interaction partners
reveals a strong preference for interactions be-
tween proteins expressed close in time. B) For
each hub protein, the average difference in peak
time was calculated among the dynamic interac-
tion partners. The distribution is bimodal, sup-
porting the proposition of two classes of hubs,
namely “party” and “date” hubs (S22). Repre-
sentative hub proteins (histones, MCM/ORC and
Cdc28p) are marked in the figure to illustrate the
relation between the two types of hubs and mod-
ules.
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