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ABSTRACT
Motivation: We have previously developed a rule-based approach for
extracting information on the regulation of gene expression in yeast.
The biomedical literature, however, contains information on several
other equally important regulatory mechanisms, in particular phos-
phorylation, which we now expanded for our rule-based system also
to extract.
Results: This paper presents new results for extraction of relational
information from biomedical text. We have improved our system,
STRING-IE, to capture both new types of linguistic constructs as
well as new types of biological information [i.e. (de-)phosphorylation].
The precision remains stable with a slight increase in recall. From
almost one million PubMed abstracts related to four model organisms,
we manage to extract regulatory networks and binary phosphoryla-
tions comprising 3319 relation chunks. The accuracy is 83–90%
and 86–95% for gene expression and (de-)phosphorylation relations,
respectively. To achieve this, we made use of an organism-specific
resource of gene/protein names considerably larger than those used
in most other biology related information extraction approaches. These
names were included in the lexicon when retraining the part-of-speech
(POS) tagger on the GENIA corpus. For the domain in question, an
accuracy of 96.4% was attained on POS tags. It should be noted
that the rules were developed for yeast and successfully applied to
both abstracts and full-text articles related to other organisms with
comparable accuracy.
Availability: The revised GENIA corpus, the POS tagger, the extrac-
tion rules and the full sets of extracted relations are available from
http://www.bork.embl.de/Docu/STRING-IE
Contact: saric@eml-r.org

1 INTRODUCTION AND RELATED WORK
More and more scientific discoveries in the life sciences depend on
the ability to identify and extract large amounts of data in scientific
literature. Several groups have shown that it is possible to apply
the engineering techniques from natural language processing to the
biomedical domain, where the technical terminology is the major
hurdle (Hobbs, 2003). There are two general approaches for extract-
ing information from text: statistical and rule-based approaches. The
former have shown good results for the detection of gene names
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within the BioCreAtIvE1 or the NLPBA/BioNLP 20042 conferences.
However, relation extraction is more problematic owing to the lack
of annotated biomedical corpora. Although rule-based approaches
usually are considered labour intensive and difficult to adapt to new
domains, they are more transparent and thus semantic criteria can
more easily be enforced.

In a previous study we developed a rule set for extracting a gene-
expression network for the yeast Saccharomyces cerevisiae (Saric
et al., 2004). In the present study, subsequent changes made to the
system in order to (1) improve the recall by capturing linguistic struc-
tures previously missed, (2) extend the rule set to extract types of
relations other than regulation of gene expression and (3) allow the
system to be applied to other organisms are presented. All these
improvements are illustrated by the example ‘Lyn, but not Jak2,
phosphorylated CrkL’. Selective negation in coordinated structures
(‘A but not B’) is one of the new linguistic structures handled by
our rule set; we correctly extract that only Lyn phosphorylates the
CrkL protein. Moreover, the phrase is concerned with phosphoryla-
tion of mouse proteins, meaning that we extract a type relation not
previously detected by STRING-IE for a species the system was
not developed for. Although the rules were originally developed for
S.cervisiae, they should be applicable to other model organisms as
well, since the only organism-specific part of our system is the list of
protein/gene names. Here we show that our rule-based system indeed
performs equally well on Escherichia coli, Bacillus subtilis and Mus
musculus. Furthermore, we present preliminary results for a corpus
of full text articles, namely PubMed Central.

The goal of our work is to extract from biological abstracts,
organism-specific information on which proteins regulate the
expression (i.e. transcription or translation) of which genes as well
as which proteins modify which proteins.

A task closely related to ours, the extraction of protein–protein
interactions from abstracts, has received some attention over the past
five years but, with the notable exception of Blaschke et al. (1999),
has been mainly addressed by statistical ‘bag of words’ approaches
(Marcotte et al., 2001). Our work, however, is focused on extract-
ing a specific type of relations between biological entities, instead

1Critical assessment of information extraction systems in biology, http://
www.mitre.org/public/biocreative/
2The ‘Joint Workshop on Natural Language Processing in Biomedicine
and its Applications’ was held at the Coling 2004 conference in Geneva.
The proceedings are available through http://www.genisis.ch/%7Enatlang/
JNLPBA04/
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of just classifying those entities as the BioCreAtIvE Project3 does,
and places emphasis on the semantic role of agent and theme. This is
done with respect to the biological point of view for two main reasons:
(1) the meaning of the extracted event is strongly dependent on the
selectional restrictions of the verb and (2) the same meaning can be
expressed using a number of different verbs. Unlike some competing
approaches that are focused on extraction of events involving one par-
ticular verb, e.g. bind (Thomas et al., 2000) or inhibit (Pustejovsky
et al., 2002), and similar to Friedman et al. (2001)4, we aim at
extracting events related to a specific biological problem only, but
considering all its syntactic variations.

The variety in the biological terminology used to describe the reg-
ulation of gene expression presents a major hurdle to an IE approach;
in many cases the information is buried to such an extent that even a
human reader is unable to extract it unless having a scientific back-
ground in biology. In this paper we will show that by overcoming the
terminological barrier, high precision extraction of entity relations
can be achieved within the field of molecular biology. Furthermore,
we show that a rule-based system developed for dealing with a par-
ticular organism, in our case baker’s yeast, can be easily adapted
to other organisms with no loss of accuracy. Finally, we present
preliminary results from applying our method to full text articles.

2 CASTING THE BIOLOGICAL TASK
TO AN NLP PROBLEM

To extract relations, the named entities involved must first be recog-
nized. This is particularly difficult in molecular biology where
many forms of variation occur. Synonymy is very frequent owing
to lack of standardization of gene names; BYP1, CIF1, FDP1,
GGS1, GLC6, TPS1, TSS1 and YBR126C are all synonyms for the
same gene/protein. In addition, these names are subject to ortho-
graphic variation originating from differences in capitalization and
hyphenation as well as syntactic variation of multiword terms (e.g.
riboflavin synthetase beta chain = beta chain of riboflavin syn-
thetase). Homonymy is frequent too since a gene and its gene product
are usually named identically, causing cross-over of terms between
semantic classes. Finally, paragrammatical variations are more fre-
quent in life science publications than in common English owing
to the large number of publications by non-native speakers (Netzel
et al., 2003).

Extracting the fact that a given protein regulates a certain gene
or protein through a particular mechanism is a challenging problem.
First, there is the problem of syntactic variation, meaning that the
same fact can be expressed in a variety of ways, e.g. active versus
passive voice. Second, the same verb can be used to expressed dif-
ferent types of relations, which is usually referred to as a semantic
variation. As an example, the verb ‘activate’ can equally well refer
to regulation of gene expression (e.g. ‘A activates the expression of
B’) or to regulation of protein activity through phosphorylation or
dephosphorylation (e.g. ‘A activates B by phosphorylation’).

In order for a relation to be extracted, we thus require that the
type of regulation can be assigned and that the identity of both the

3Critical assessment of information extraction systems in biology, http://
www.mitre.org/public/biocreative/
4Although implementing a full-sentence parser they are successful in extract-
ing the events that we are interested in; a direct comparison is not possible
since results only on protein–protein interactions have been reported so far.

regulatory protein (R) and the regulated target gene or protein (X)
be determined:

(1) It must be ascertained that the sentence mentions either
(de-)phosphorylation or regulation of gene expression. ‘The
protein R activates X’ fails this requirement, as there is no
information on how R activates X. Whether the event should
be extracted or not, thus depends on the semantic types of
the agent and theme; without head nouns specifying their
types these remains ambiguous. It should be noted that two-
thirds of the gene/protein names mentioned in our corpus are
ambiguous for this reason.

(2) The identity of the regulator (R) must be known. ‘Phos-
phorylation of the X protein activates X’ fails this requirement,
as it does not give the name of the protein that causes X to
be phosphorylated and hence activated. Linguistically, this
implies that noun chunks of certain semantic types should be
disallowed as agents.

(3) The identity of the target (X) must be known. ‘The tran-
scription factor R activates R dependent expression’ fails this
requirement, as it is not known which gene’s expression is
dependent on R. The theme should thus also be restricted with
respect to its semantic type.

The two last requirements are important to avoid extraction from
non-informative sentences that, despite them containing no infor-
mation, occur quite frequently in abstracts.

The ability to genetically modify an organism brings with it an
added complication to IE: biological texts often mention what takes
place when an organism is artificially modified in a particular way.
In some cases, such modification can reverse a part of the meaning of
the verb: from the sentence ‘Deletion of R increased X expression’
one can conclude that R represses the expression of X. In other cases
the verb will lose a part of its meaning: ‘Mutation of R increased
X expression’ implies that R regulates expression X, but we cannot
infer whether R is an activator or a repressor. Finally, there are those
relations that should be completely avoided as they exist only because
they have been artificially introduced through genetic engineering,
e.g. ‘transcription of the five mutated promoters’. In our extraction
method we address all three cases.

We have opted for a rule-based approach (implemented as cas-
caded finite state automata) to extract the relations, because it allows
us to explicitly incorporate known biological constraints and to dir-
ectly ensure that the three semantic requirements stated above are
fulfilled for the extracted relations. Hence we also focus, in our eval-
uation, on the semantic correctness of our method rather than on the
grammatical correctness. As long as a grammatical error does not
result in semantic error, we do not consider it an error. Conversely,
even a grammatically correct extraction is considered an error if it is
semantically incorrect.

Compared with statistical methods, the rule-based approach has
the advantage of being able to generalize well to other corpora, as
shown here by applying the same rule-based extraction system to dif-
ferent organisms and to both abstracts and full text papers. Moreover,
we show that by using a modular architecture, where several inde-
pendent relation extraction modules build on top of a common named
entity recognition module, the rule-based approach can be made
highly scalable. New relation types can be added as separate mod-
ules, typically requiring only a few changes to be made to the named
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Table 1. Corpus statistics and evaluation of extraction results

Corpus Papers Tokens Gene/protein matches Expression Phosphorylation
Relations Accuracy (%) Relations Accuracy (%)

E.coli 195 492 28 568 983 380 362 395 85 19 89
B.subtilis 16 270 2 022 852 67 758 118 90 22 91
S.cerevisiae 58 664 9 447 237 580 654 475 83 106 95
M.musculus 688 937 106 027 447 3 599 912 1862 84 322 86
PubMed Central 5075 19 199 318 558 941 158 84

entity recognition module. A modular architecture makes the system
much easier to maintain as the system can be expanded without the
risk of interference between complex rule sets.

3 METHODS
Our IE system is organized in cascaded modules such that the output of one
module is the input of the next module. The following sections describe each
module in detail. With the notable exception of identification of gene/protein
names, none of the modules required changes in order to be applied to other
organisms.

3.1 The corpora
The PubMed resource was downloaded on January 19, 2004. A total of
58 664 abstracts related to the yeast S.cerevisiae were extracted by look-
ing for occurrences of the terms ‘Saccharomyces cerevisiae’, ‘S.cerevisiae’,
‘Baker’s yeast’, ‘Brewer’s yeast’ and ‘Budding yeast’ in the title/abstract or
as head of a MeSH term5. These abstracts were filtered to obtain the 15 777
that mention at least two names and subsequently divided into a training and
an evaluation set of 9137 and 6640 abstracts, respectively.

Analogously, corpora were created for Escherichia coli, Bacillus subtilis
and Mus musculus. These were extracted by looking for both the full and
abbreviated genus name (e.g. E.coli). In the case of M.musculus we further
checked for occurrences of the words ‘mouse’ and ‘mice’. The size of each
corpus can be found in Table 1.

In order to test our extraction rules on full text articles as well, we down-
loaded (March 16, 2004) the Open access part of PubMed Central (Table 1).
For the preliminary tests presented here, we did not separate between differ-
ent parts of a paper although the introduction of a paper tends to list many
established facts (in contrast to the Results section) (Shah et al., 2003).

3.2 Tokenization and tagging
We extracted abstracts for each of the species listed in Table 1 from PubMed,
which we supplemented with the Open access part of PubMed Central also
to test our extraction rules on full text articles.

For segmentation of the input text into a sequence of tokens and detection
of sentential boundaries, we use the tokenizer developed by Helmut Schmid,
which after training on ∼106 abstracts attained an overall precision of 99.5%
(Saric et al., 2004). Multiwords were acquired semi-automatically to ensure
that terms of interest are captured with high accuracy. Three parameter files
were tested on 24 798 held-out tokens from the GENIA corpus to optimize the
part-of-speech (POS)-tagging accuracy on PubMed abstracts. The best result
was achieved using the parameters trained on a corrected/revised GENIA
corpus, which correctly tagged 96.4% of tokens (Saric et al., 2004). This
result is comparable with the current state-of-art (Hahn and Wermter, 2004).

5Medical Subject Headings (MeSH) is a controlled vocabulary for manually
annotating PubMed articles.

After POS tagging, we recognize terms of particular interest and reannotate
them with semantic tags. This set of semantically relevant terms mainly con-
sists of nouns (e.g. gene or protein), verbs (e.g. activates or phosphorylates),
prepositions (e.g. from) and adjectives (e.g. dependent).

3.3 Recognizing gene/protein names
In order to recognize gene/protein names as such, and to associate them
with the appropriate database identifiers, a list of synonymous names
and identifiers in selected model organisms was compiled from several
sources (http://www.bork.embl.de/synonyms/). For each organism, names
and identifiers were obtained from SWISS-PROT (Boeckmann et al., 2003),
supplemented by names from Saccharomyces Genome Database (SGD)
(Dwight et al., 2002) in the case of S.cerevisiae. The name lists were expanded
to include orthographic variants of each name before matching them against
the POS-tagged corpora (Saric et al., 2004).

The orthographically expanded name lists were included in the lexica used
for multiword detection and POS tagging. Subsequently, it was matched
against the POS-tagged corpus to retag gene/protein names as such (nnpg).

3.4 Extraction of named entities
In the preceding step we described the recognition of gene/protein names.
Although some homonyms can be disambiguated through the POS tags
as previously described (Saric et al., 2004), we still meet two challenges:
(1) to disambiguate the gene/protein name when occurring as a proper part
of a noun phrase, and (2) the gene/protein names constituting the whole noun
phrase.

The first case (1) comprises ∼50% of the occurrences of gene/protein
names in the corpus where they do not occur solely but are modified through
adjectives, other nouns or attached prepositional phrases within the same
noun phrase, such as ‘the ArcB sensory kinase in Escherichia coli’. To get
hold of this problem we built a named entity recognition system to recognize
and categorize noun phrases containing gene/protein names on the basis of
syntactic information (i.e. generalizing over POS-tag information) augmented
with semantic information stemming from a manually curated lexicon.

This approach, which we call syntacto-semantic chunking, recognizes
named entities through the use of cascaded finite state automata, which we
implemented as a CASS grammar (Abney, 1996). The following simplified
example shows how we recognize and semantically categorize the gene noun
phrase from the above mentioned example:

[nx_kinase

[dt the] [nnpg ArcB] [jj sensory ] [kinase kinase] [in in]
[org Escherichia coli]]

The label nx_kinase indicates that this is a noun chunk (nx) semantically
denoting a kinase. Analogously, we detect at this early level noun chunks
denoting other biological entities like phosphatases, transcription factors,
other proteins and genes. In subsequent cascades, we recognize more complex
(i.e. nested) noun chunks on the basis of the simpler ones, such as gene
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products, promoters, upstream activating/repressing sequences (UAS/URS),
binding sites, etc.:

[nx_expr

[expr expression] [of of]
[nx_geneprod

[nx_gene

[dt the] [nnpg argF] [gene gene]]
[prod product]]]

We have implemented rules to distinguish between agent and theme forms
of noun chunks as well as a scheme for detecting artificial experimental
contexts (Saric et al., 2004), such as gene deletion:

[nx_del

[vvn targeted] [disr disruption] [of of]
[nx_gene

[dt the] [nnpg IFN-gamma] [gene gene]]]
The second challenge (2) where gene/protein names constitute the whole

noun phrase, the disambiguation between these two categories is less straight-
forward. Generally there exists the possibility, which depends on contextual
information (e.g. selectional restrictions imposed by the verb). This is imple-
mented within the following step, the extraction of relations between entities,
explained in Section 3.5. In case there is no rule applicable to disambiguate
this gene/protein name, it has to be left ambiguous, and thus, the sentence
remains unanalysed.

3.5 Extraction of relations between entities
This step of processing concerns the recognition of relations between genes
and proteins, namely regulation of gene expression and (de-)phosphorylation.
In order to extract these two types of relations we use separate grammar
modules, which work on top of the same already introduced named entity
recognition module. The gene-expression module was based on our ori-
ginal system and extended with additional linguistic structures, whereas the
(de-)phosphorylation module was developed from the scratch.

In order to extract both (de-)phosphorylation and gene-expression rela-
tions, we combine syntactic properties (subcategorization restrictions) and
semantic properties (selectional restrictions) of the relevant verbs. In order to
not write a separate set of rules for each verb, we generalize over classes of
verbs and relational nouns.

In this section, we present a series of examples to illustrate how the rules
operate and identify the desired information. The combined set of relations
extracted from these examples are shown in Figure 1. All examples show a
simplified bracketed structure illustrating the major principles of our rules;
the internal structure is highly complex and derives from a pass through a
number of cascading finite state transducers.

Within the following examples the first line always indicates the type of
relation that we extract, which is either phosphorylation, dephosphorylation,
or expression regulation. In the latter case, the subtype of expression regu-
lation is detected, i.e. activation, repression, orfc (underspecified) regulation
and specified too. Finally, we show whether the relation is verbal—and thus
phrased in active or passive voice—or as a nominal relational construct.

The first example shows a phosphorylation relation in active voice. The
participating proteins are shown in bold-faced letters. The relational word is
underlined. The selective negation is also marked by the negation bracket.
We extract that Lyn phosphorylates CrkL from the following example:

[phosphorylation_active

Lyn, [negation but not Jak2 ]
phosphorylated

CrkL ]

IL-2
IL-13

IL-18

IL-10

IL-6

Btk

SHP-1
Syk

Shc

Lyn

CrkL

Activates
expression

Represses
expression

Phosphorylates

Regulates
expression

Dephosphorylates

Activates
expression

Represses
expression

Phosphorylates

Dephosphorylates

Phosphorylates

Phospho-
rylates

Fig. 1. An example network extracted from the mouse corpus. The network
exemplifies the multiple types of relations extracted by our rule-based
approach; the text from which these relations were extracted are shown in
Section 3.5.

This active voice phosphorylation construct is detected through the rela-
tional noun phosphorylation as argument of participates. It should be
noted that the phosphorylation bracket is triggered through the key word
phosphorylation. We extract that Lyn phosphorylates syk from:

[phosphorylation_active

Lyn

also participates in

[phosphorylation the tyrosine phosphorylation

and activation of syk ]]
The following two examples illustrate nominalization for phosphorylation.

The arguments are attached through the of and by prepositional phrases,
where the latter identifies the agent role:

[phosphorylation_nominal

the phosphorylation of
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the adapter protein SHC

by the Src-related kinase Lyn ]
[phosphorylation_nominal

phosphorylation of Shc by

the hematopoietic cell-specific

tyrosine kinase Syk ]
The system is also able to identify dephosphorylation relations, as exem-

plified by the following nominalization example, from which we extract that
both Syk and Btk are dephosphorylated by SHP-1:

[dephosphorylation_nominal

Dephosphorylation of

Syk and Btk

mediated by

SHP-1 ]
The following examples shows gene-expression relations. The first of these

illustrates the ability of our system to deal with passive voice. Based on the
verb (‘induce’) and the relational noun (‘expression’) we conclude that IL-2
and IL-18 activate expression of IL-13:

[expression_activation_passive

[expression IL-13 expression ]
induced by

IL-2 + IL-18 ]
Repression of gene-expression relation be the next example, where

one protein (IL-10) represses the expression of two other genes (IL-2
and IL-6):

[expression_repression_active

IL-10

also decreased

[expression mRNA expression of

IL-2 and IL-6 cytokine receptors ]]
In the final example, the expression regulation is underspecified, i.e. we

can only extract that Btk regulates the expression of the IL-2 gene, and not
whether it activates or represses it:

[expression_regulation_active

Btk

regulates

[expression the transcription of

the IL-2 gene ]]

4 RESULTS
Using our relation extraction rules, we were able to extract 3319
relation chunks for four organisms from PubMed abstracts (Table 1).
A network of relations extracted from a small subset of the the mouse
corpus, namely the examples shown in Section 3.5, is shown in
Figure 1.

4.1 Evaluation of relation extraction
To evaluate the accuracy of the extracted relations for yeast, we
manually inspected all relations extracted from the evaluation corpus
using the TIGERSearch visualization tool (Lezius, 2002). Since the

rules written for the yeast training corpus were applied unchanged
to other corpora, these were entirely used for evaluation.

The accuracy of the relations was evaluated at the semantic level
rather than at the grammatical level. We thus carried out the eval-
uation in such a way that relations were counted as correct if they
extracted the correct biological conclusion, even if the analysis of
the sentence was not as would be desired from a linguistic point
of view. Conversely, a relation was counted as an error if the
biological conclusion was wrong. In contrast to what is normally
done in IE, this type of evaluation can only be carried out by a
biologist.

For yeast, 83% extracted from the evaluation corpus were entirely
correct, meaning that the relation corresponded to expression regula-
tion, the regulator (R) and the regulatee (X) were correctly identified,
and the direction of regulation (up or down) was correct if extrac-
ted. A further six-relation chunks extracted the wrong direction
of regulation but were otherwise correct; our accuracy increases
to 90% if allowing for this minor type of error. The accuracies
obtained for other organisms/corpora are comparable (Table 1). For
(de-)phosphorylation relations, the accuracy appears to be margin-
ally better although this is difficult to say for sure, given the smaller
number of extracted relations.

In order to estimate the coverage of our method, we looked through
250 of the 44 354 sentences that contain at least two gene/protein
names. These contained only eight-relation chunks of the desired
type, corresponding to an estimate of 1419 in total. Since 422 of
these were successfully extracted by our method, we estimate the
coverage of our method to be ∼30%. This corresponds to an F -score
in the order of 44%, which is respectable by IE standards.

Approximately half of the errors made by our method stem from
genetic modifications that are overlooked owing to long distance
(anaphoric) relationships for example. This problem is particularly
frequent for E.coli, the favoured bacterial species for experiments,
because the most commonly used reporter gene, lacZ, is itself an
E.coli gene. Because E.coli is often used as an expression system
(host) for foreign genes, E.coli is often mentioned in abstracts con-
cerned with the expression of genes from other organisms. Our
method thus in some cases correctly extracts a relation between two
gene names, but erroneously attributes this relation to the E.coli
genes with the same names.

4.2 Entity recognition
For consistency, we have also evaluated our ability to correctly
identify named entities at the level of semantic rather than gram-
matical correctness. Manual inspection of 500 named entities from
the yeast evaluation corpus revealed 14 errors, which correspond
to an estimated accuracy of just over 97%. Surprisingly, many of
these errors were committed when recognizing proteins, for which
our accuracy was only 95%. Phrases such as ‘telomerase associated
protein’ (which got confused with ‘telomerase protein’ itself) were
responsible for about half of these errors.

Among the 153 entities involved in relations no errors were detec-
ted, which is fewer than should be expected from our estimated
accuracy on entity recognition (99% confidence according to hyper-
geometric test). This suggests that the templates used for relation
extraction are unlikely to match those sentence constructs on which
the entity recognition goes wrong. False identification of named
entities is thus unlikely to have an impact on the accuracy of relation
extraction.
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5 CONCLUSIONS
We have developed a method that allows us to extract information
on gene regulation as well as (de-)phosphorylation from biomedical
text. This is a highly relevant problem, since much is known about
it although this knowledge is yet to be systematically collected in a
database. Also, knowledge on gene expression and phosphorylation
is crucial for understanding many important biological processes,
e.g. the mitotic cell cycle and signaling cascades.

Although we developed our method on abstracts related to baker’s
yeast only, we have applied our method to several other model organ-
isms with equal accuracy. The main adaptation required for this was
to replace the list of synonymous gene/protein names to reflect the
change of organism. Furthermore, application of the method to full
text journals gave promising preliminary results. Additionally, we
expanded the rules to also extract (de-)phosphorylation relations,
reusing the many rules responsible for the recognition of named
entities. The relations extracted for 180 organisms will soon be
available through the STRING database (von Mering et al., 2005,
http://string.embl.de).

ACKNOWLEDGEMENTS
J.Š. is funded by the Klaus Tschira Foundation gGmbH, Heidelberg
(http://www.kts.villa-bosch.de). This work was supported by grants
LSH6-CT-2003-503265 and LSH6-CT-2004-503567 from the
European Union.

Conflict of Interest: none declared.

REFERENCES
Abney,S. (1996) Partial parsing via finite-state cascades. In Proceedings of the

ESSLLI ’96 Robust Parsing Workshop, Prague, Czech Republic, pp. 8–15.

Blaschke,C., Andrade,M.A., Ouzounis,C. and Valencia,A. (1999) Automatic extrac-
tion of biological information from scientific text: protein–protein interactions. In
Proceedings of Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park,
CA, Vol. 7, pp. 60–67.

Boeckmann,B. et al. (2003) The SWISS-PROT protein knowledgebase and its supple-
ment TrEMBL in 2003. Nucleic Acids Res., 31, 365–370.

Dwight,S.S. et al. (2002) Saccharomyces Genome Database (SGD) provides sec-
ondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res., 30,
69–72.

Friedman,C. et al. (2001) GENIES: a natural-language processing system for the
extraction of molecular pathways from journal articles. Bioinformatics, 17(Suppl. 1),
S74–S82.

Hahn,U. and Wermter,J. (2004) Tagging medical documents with high accuracy.
In Pacific Rim International Conference on Artificial Intelligence, Auckland,
Newzealand, pp. 852–861.

Hobbs,J.R. (2003) Information extraction from biomedical text. J. Biomedical Inform-
atics, 35, 260–264.

Lezius,W. (2002) TIGERSearch—ein Suchwerkzeug für Baumbanken. In Busemann,S.
(ed.), Proceedings der 6. Konferenz zur Verarbeitung natürlicher Sprache
(KONVENS 2002), Saarbrücken, Germany.

Marcotte,E.M. et al. (2001) Mining literature for protein–protein interactions.
Bioinformatics, 17, 359–363.

Netzel,R. et al. (2003) The way we write. EMBO Rep., 4, 446–451.
Pustejovsky,J., Castaño,J., Zhang,J., Kotecki,M. and Cochran,B. (2002) Robust rela-

tional parsing over biomedical literature: extracting inhibit relations. In Proceedings
of the Seventh Pacific Symposium on Biocomputing, World Scientific, Hawaii,
pp. 362–373.

Saric,J., Jensen,L.J., Ouzounova,R., Rojas,I. and Bork,P. (2004) Extracting regulat-
ory gene expression networks from pubmed. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics, Barcelona, Spain,
pp. 191–198.

Shah,P.K. et al. (2003) Information extraction from full text scientific articles: where
are the keywords? BMC Bioinformatics, 4, 20.

Thomas,J., Milward,D., Ouzounis,C., Pulman,S. and Carroll,M. (2000) Automatic
extraction of protein interactions from scientific abstracts. In Proceedings of the
Fifth Pacific Symposium on Biocomputing, World Scientific, Hawaii, pp. 707–709.

von Mering,C. et al. (2005) STRING: known and predicted protein–protein associations,
integrated and transferred across organisms. Nucleic Acids Res., 33, D433–D437.

650

http://string.embl.de
http://www.kts.villa-bosch.de

