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Introduction





Chapter 1

Functional Genomics and
Systems Biology

Functional genomics is the field of molecular biology that attempts to describe
cell behaviour from the data produced by genome-scale experiments. Histori-
cally, genes and proteins (their functionally active form) have been defined as
the functional units in the cell. Focusing on this assumption, molecular biology
reductionist approach has given excellent advances in the basic understanding of
living organisms by the identification and description of the components respon-
sible for particular processes in their cells and tissues. Despite this success, many
fundamental biological questions remain unanswered, mainly because there are
very few processes that can be explained by the action of a single protein. On
the contrary, the units of activity involved in cellular processes seem to be mod-
ules composed by several interacting molecules (Hartwell et al., 1999; Barabasi
and Oltvai, 2004). This fact represents a limitation for the classical molecular
biology techniques based on the description of the action of one or few genes (e.g.
northern blot) or proteins (e.g. western blot) at a time. In recent years, several
high-throughput experimental methodologies has arisen with the goal of investi-
gating the action of, ideally all, but in practice thousands of genes or proteins
simultaneously. Microarray experiments (Schena et al., 1995) which can probably
be considered the milestone in this type of techniques, report the expression level
of a great proportion of the transcripts in the cell. Other techniques that may
have the same application among others are Serial Analysis of Gene Expression
(SAGE, Velculescu et al., 1995) and Expressed Sequence Tags (ESTs, Adams et
al., 1991). Very recently, next generation sequencing technologies are starting to
be applied to the study of the transcriptome. There are other high-throughput
techniques that focus on the post-translational events, two-dimensional gel elec-
trophoresis that explore protein abundance or yeast two hybrid assays that ex-
tract protein-protein interactions are two relevant examples.

The set of all transcripts (messenger RNA, mRNA) produced in a cell in
a particular condition is generally named as the transcriptome. Contrarily to
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the static property of the genome (hereditary information encoded in DNA),
the transcriptome is a dynamic entity whose elements vary their presence and
quantity depending on the cell nature and state. The motivation of this thesis
was to develop methodologies that permit to extract significant modules of action
from the transcriptome.

Hereby, the cell seems to have a complex machinery that cannot be summa-
rized as the action of their genes isolated. To understand the intricate network
of interactions among all types of cell components (genes, proteins, metabolites,
etc.) we need to know both, the features of the elements separately and the
consequences of their cooperative behaviour. This new emergent property can-
not be studied under a flat perspective but under a holistic view of the cell.
Systems biology is the field of science that is being used to undertake this new
approach, it attempts to describe cell behaviour in terms of the quantification of
the interaction among all its individual components.

Systems biology assays agree on the bases of the characterization of a cell
state in systems terms (Kitano, 2002; Bruggeman and Westerhoff, 2006), setting
as compulsory the description of four elements:

• The structure of the system, including the elements, the interaction net-
works and the pathways that conform the system as well as the mechanisms
that translate such structure into a phenotype.

• The system dynamics, that is, how the elements and their relationships
evolve over time under certain conditions.

• The control method that tries to minimize perturbations in the system.

• A design method able to model the system and predict its features under
determined conditions.

A functional profiling analysis of a high-throughput experiment is the process
of describing at molecular level the functionalities responsible for a particular
phenotype.

Systems biology can be viewed as the framework in which functional genomics
experiments are analysed via functional profiling with an integration of ”omic”
data (see next section for a definition). The aim is to get as much as possible
knowledge about the system under study to be able to build a model capable of
predicting its behaviour. The first three points of the systems biology require-
ments can be addressed by different functional genomics experiments. Thus,
the more omic data we integrate, the better performance we will obtain in the
functional profiling analysis. The last point needs the participation of mathe-
matical modelling algorithms which are beyond the scope of this thesis. This
thesis is dedicated to the part where functional genomics and functional profiling
may participate, and it is conceived from the beginning under a systems biology
perspective.



Chapter 2

Omics and its integration

The necessity of obtaining a complete knowledge of the cell elements and their
functional relationships in order to build a model that explain its behaviour has
promoted the proliferation of novel techniques that screen the population of sev-
eral types of biological molecules such us proteins, mRNAs or metabolites and the
set of actions performed by them: protein-protein interactions, the quantification
of their fluxes, etc. That kind of data is generally included under the neologisms
-omic and -ome that refers to biological studies such as proteomics, genomics and
the data they generate (proteome, genome).

Omics and omes have arisen as a revolution in biology. In the early years, the
bottleneck of molecular biology was the production of new data (gene discovery,
interactions discovery, etc.). Typically we had a lot of information from a few
genes. In this new era we are in the opposite situation, there is a huge amount
of data and little first hand knowledge about it.

The first ome term was genome, a word adapted by Hans Winkler in 1920
as a fusion of gen(e) and (chromos)ome to refer to the set of genes in all the
chromosomes. Nowadays it includes all the hereditary information, coding and
non-coding sequences. Although -ome and -omic are not known roots in any
language, they have been adopted as neologisms to define the complete compi-
lation of elements of a set and the field that study them respectively. Thus, an
explosion of omics terms have recently appeared in the literature with different
success, table 2.1 shows some of the omes that has been used.

Omics data is mostly generated by high-throughput experiments characterised
for producing a huge amount of data. The process of curation of this data is a
hot topic in modern molecular biology. There is a clear necessity of controlling
false positives and negatives. Below in this thesis we will discuss some of the
methodologies for curation of interactomics data. The storage of this data is also
a new problem for molecular biologists. The necessity of well designed relational
databases that permit an easy and quick query system to the data has been one
of the main tasks for bioinformaticians in last ten years.

To be able to transform this huge amount of data into information we need to



6 Chapter 2. Omics and its integration

fulfil at least three requirements. Two of them has been mentioned before: cura-
tion and manageability. The third one is its integration. Indeed, the information
at only a unique level (genome or proteome for example) by itself cannot fully
explain the behaviour of any particular biological system. We may cite as an
example the lack of correlation between protein and mRNA abundance in yeast
(Gygi et al., 1999) and human liver (Anderson and Seilhamer, 1997). In recent
years several post-transcriptional regulation agents such as miRNA (Lee et al.,
1993) and siRNA (Hamilton & Baulcombe, 1999) have been discovered.

This thesis came up from the beginning with the aim of developing method-
ologies capable of integrating as much sources of information as possible under
the prism of systems biology. To continue with the omics fever within the com-
putational biology environment we may say that this thesis is also intended to
contribute to integromics, yet another omic field defined as the integration of
several omics. Integromics will be a crucial step forward for the translation of
data into information.

Omic term Description Google

search

Pubmed

entries

First

year in

Pubmed

Genome
The full complement of genetic information

both coding and non coding in the organism
60,400,000 637,127 1943

Proteome The protein-coding regions of the genome 9,100,000 11,370 1995

Transcriptome
The population of mRNA transcripts in the

cell, weighted by their expression levels
2,250,000 37,601 1997

Phenome

Qualitative identification of the form and

function derived from genes, but lacking a

quantitative, integrative definition

1,720,000 96 1995

Interactome
List of interactions between all macromolecules

in a cell
142 277 1999

Metabolome

The quantitative complement of all the small

molecules present in a cell in a specific

physiological state

111 431 1998

Orfeome

The sum total of open reading frames in the

genome, without regard to whether or not they

code; a subset of this is the proteome

107 42 2002

Kinome The population of protein kinases in the genome 53,300 117 2002

Physiome
Quantitative description of the physiological

dynamics or functions of the whole organism
46,700 64 1997

Secretome
The population of gene products that are

secreted from the cell
43,200 158 2000

Glycome
The population of carbohydrate molecules in

the cell
15,500 69 1999
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Omic term Description Google

search

Pubmed

entries

First

year in

Pubmed

Fluxome
The population of proteins weighted by their

fluxes
9.,670 20 1999

Regulome Genome-wide regulatory network of the cell 9,090 13 2004

Morphome

The quantitative description of anatomical

structure, biochemical and chemical

composition of an intact organism, including its

genome, proteome, cell, tissue and organ

structures

6,560 3 1996

Lipidome Compilation of lipids in a cell 5,420 34 2006

Localizome
The localization of various proteins, both in

terms of cell type and subcellular compartments
3,260 3 2001

Translatome
The population of mRNA transcripts in the

cell, weighted by their expression levels
1,970 3 2001

Phylome
Complete collection of all gene phylogenesis in

a genome
1,660 4 2001

Cellome
The entire complement of molecules and their

interactions within a cell
1,540 28 2002

Transportome
The population of the gene products that are

transported; this includes the secretome
1,290 4 2004

Functome
The population of gene products classified by

their functions
598 1 2001

Ribonome
The population of RNA-coding regions of the

genome
309 1 2002

unknome Genes of unkown function 216 - -

Foldome
The population of gene products classified by

their tertiary structure
167 - -

Operome
The characterization of proteins with unkown

biological function
141 - -

Table 2.1: List of some of the ome terms more used in the literature. The table contains
a small definition as well as the number of entries in a google search and in a Pubmed
search as a measure of their usage. Table updated by the author on 16th of July, 2008,
the original table taken from http://bioinfo.mbb.yale.edu/what-is-it/omes/omes.html.

http://bioinfo.mbb.yale.edu/what-is-it/omes/omes.html




Chapter 3

Functional profiling

The functional profiling of high-throughput experiments requires basically of two
elements: sources of gene and protein annotation and methodologies capable
to extract the important cellular processes that define the cell behaviour in a
particular state. In the next subsections we will give a short description of the
sources of annotation used in this thesis followed by a small review on the methods
available for functional profiling.

3.1 The Biological sequences’ annotation

We need to have a definition of modules of action to be able to search for them
within the data reported by the high-throughput experiments. This definition
comes from the sources of annotation. The assumption of these methods is that
functionally related genes tend to co-express (Stuart et al., 2003; Lee et al.,
2004). They are, together with the results coming from the high-throughput
experiments, the two input parameters of the methodologies developed to perform
functional profiling. In fact, the methodologies are developed as they can extract
the maximum information from the results of the experiments taking into account
the special nature of the annotation. A good knowledge on how the different
types of annotations are structured, their degree of curation and how is the
procedure of the annotation process is a fundamental requisite before approaching
the development of a methodology for functional profiling.

Generalizing, in this thesis we have used three types of annotation:

• Discrete labels, such as Gene Ontology terms, KEGG pathways and Bio-
Carta pathways. Their association to the gene is in have it or not terms.
They may have a flat internal structure as KEGGs and BioCarta or be a
structured vocabulary as GO terms.

• Continuous labels, associated to the genes or proteins through a value. In
this thesis we will report methodologies using two different annotations in
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this category: words associated to genes extracted from scientific literature
using text-mining techniques and genes associated to different tissues and
histologies (phenotype) through an expression measurement.

• Discrete labels with a supra-structure, this is the case of protein-
protein interaction data where every protein is associated to other proteins
conforming a network where the nodes are the proteins and the edges are
the interaction events. The network itself have intrinsic features that cannot
be described as the sum of its parts.

Figure 3.1: Annotation sources coverage in human. The histogram represents the num-
ber of transcripts and genes in ensembl database (v49) and the coverage of the sources of
annotation used for the functional profiling of experiments in this thesis, GOs, KEGGs,
phenotype (Affymetrix probes) and BioCarta referenced to transcripts and bioentities
extracted from literature and phenotype (SAGE tags) referenced to genes.

The coverage of the sources of annotation in human genome and proteome is
shown in figure 3.1.

3.1.1 Discrete labels

3.1.1.1 Gene Ontology

Undoubtedly, the most used annotation source in functional genomics is the
Gene Ontology (GO), proposed by the Gene Ontology consortium (http://www.
geneontology.org). It provides a controlled vocabulary for the description of
molecular function, biological process and cellular component of gene products
(Ashburner et al., 2000). Nowadays, GO terms can be considered as the most
standard gene product annotation. GO is being used by most of the gene and
protein databases, facilitating enormously the querying to the end users and the
management of annotation through computers by computational biologists. GO

http://www.geneontology.org
http://www.geneontology.org


Section 3.1. The Biological sequences’ annotation 11

annotation is hierarchical, that means that a sequence is annotated with different
grades of specificity. Every term has a unique numerical identifier of the form
GO:xxxxxxx and a more meaningful name (e.g. GO:0045777 refers to positive
regulation of blood pressure).

Terms are structured in form of a Directed Acyclic Graph (DAG) that is
similar to a tree topology where each node is connected to other nodes in several
types of relationships:

• is_a relationship means that a child term is an instance of the parent (e.g.
chloroplast envelop GO:0009941 is a membrane GO:0016020).

• part_of relationship refers that the child is a component of the parent
(e.g. inner membrane GO:0019866 and outer membrane GO:0019867 are
components of membrane GO:0016020).

• regulates, positively_regulates and negatively_regulates are relationships that
describe interactions where a GO term modulates the occurrence or the
value of another GO term.

The difference between a DAG and a tree is that in a DAG a term may have
more than one parent. The deeper a node is in the hierarchy, the more detailed
is the description of the term.

The DAG starts with an universal root GO term named all:all located at
level 0. As children (level 1) it has three not connected terms that represent
three different ontologies:

• Molecular function (GO:0008639, MF or F), defined as the actual function-
ality of a gene product at a molecular level, in other words, its activity
within the cellular machinery.

• Biological process (GO:0008150, BP or P), that represents a collection of
molecular events with a defined beginning and end. Within this category
the gene products are annotated according to the processes in which they
are involved.

• Cellular component (GO:0005575, CC or C) refers to the part of a cell or
its extracellular environment in which a gene product is located.

3.1.1.2 KEGG pathways

The Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.
jp/kegg/) provides a variety of databases related to molecular biology and biome-
dicine. Some of them deal with genes, proteins, chemical reactions, compounds,
drugs and pathways. The KEGG Pathway Database (Kanehisa et al., 2004)
is a well known repository for curated biochemical pathways. The genes are
annotated to participate in any of the reactions belonging to a specific pathway.

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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The pathways are classified into 6 different categories: metabolism, genetic
information processing, environmental information processing, cellular processes,
human diseases and drug development. They are in turn subdivided into more
specific subcategories (e.g. genetic information processing has as subcategories:
transcription, translation, folding, sorting and degradation and replication and
repair). The coverage of KEGG pathways is not as extense as in the case of
GO terms but its definitions are more reliable because the annotation is always
manually curated.

3.1.1.3 BioCarta

BioCarta (http://www.biocarta.com) is another curated repository that anno-
tates genes in terms of their participation in molecular pathways. As KEGG, it
has a quite simple classification. The pathways subcategories are adhesion, apop-
tosis, cell activation, cell cycle regulation, cytokine/chemokines, developmental
biology, hematopoiesis, inmunology, metabolism and neuroscience.

3.1.2 Continuous labels

3.1.2.1 Bioentities extracted by text-mining techniques

Indeed, the annotation of biological sequences is the principal input component
for functional profiling methodologies. Although there are a lot more initiatives
than the mentioned above that try to achieve a curated and complete annotation
of genes in different fields of the scientific knowledge, we are still far away from
the goal of a complete coverage of the genomes. Thus, there is a clear necessity for
standard and curated annotation that provides bioinformatics tools with reliable
annotations to be able to generate other kind of knowledge. Nevertheless, the
scientific community has been generating high quality information over hundreds
of years. In fact, the biggest encyclopaedia about functional genomics is not in the
databases but in scientific journals and books as free text (also in tables, pictures
and graphics). The extraction of this information and its storage in the new
developed databases and functional genomics resources is of crucial importance,
although not a trivial task.

The increasing interest in developing computational methods to extract high
quality and manageable information from free text is a common goal in many
fields from marketing to security. In the case of biomedicine, a large collection
of abstracts and articles are electronically available through the Medical Liter-
ature Analysis and Retrieval System Online (MEDLINE), a literature database
compiled by the National Library of Medicine (NLM) from 1964. MEDLINE is
freely available on the internet through the service PubMed, part of the Entrez
retrieval system for biological knowledge (Schuler et al., 1996). This constitutes
an excellent raw material for the application of the called natural language pro-
cessing (NLP) techniques that deal with natural language and free text analysis.
NPL has two main applications that are worth to be mentioned:

http://www.biocarta.com
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• The information retrieval (IR) techniques, that focus on extracting textual
information from a collection of documents. This is what PubMed does to
MEDLINE database and Google to the internet.

• The information extraction (IE) techniques, that tries to automatically ex-
tract structured information such as patterns or relationships among words
from free text.

IE methodologies are being used extensively for the automatically annotation of
genes and proteins. In this thesis, we have used annotation data generated by the
AlmaKnowledgeServer software (http://www.bioalma.com/aks2/), a successful
instance of this kind of approaches, to the functional profiling of genome scale
experiments.

3.1.2.2 Gene expression in different tissues (phenotype data)

The genes can also be characterized by their transcriptomic information, that
is, the type of cells, developmental stage and histology status in which they are
transcribed and at what level. In the case of a transcriptome analysis, for in-
stance a microarray experiment exploring the differences between a cancer and a
normal tissue, we might want to know whether the genes over-expressed in the
cancer sample are specific to that phenotype, appear in many types of cancer,
are housekeeping genes or are associated to other kind of dysfunction or develop-
mental stage not related to the cancer at all. This can be done by reporting the
levels of expression of the genes over different conditions and cell types making
use of the wide collection of transcriptomic experiments available in the public
databases.

In this thesis we have used two types of transcriptomic experiments to anno-
tate genes and proteins, Serial Analysis of Gene Expression (SAGE) and DNA
microarrays.

3.1.2.2.1 Serial Analysis of Gene Expression (SAGE) SAGE is a well
known transcriptome exploration technique that set up its basics in two princi-
ples:

• A few nucleotides may theoretically identify uniquely a transcript. Indeed,
if we consider 4 bases and 9 nucleotides, the number of possible combi-
nations are 49 = 262,144, which are more than enough to identify the
transcripts produces by the human genome.

• There are restriction enzymes that have the capability of cutting off a se-
quence in a determined position, e.g. NlaII cut in the pattern 5’-CATG-3’
closer to the polyA chain.

The generation of a SAGE library has the following steps:

http://www.bioalma.com/aks2/
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• Isolate mRNA from an input sample (e.g. a tumour).

• Extract a small chunk of sequence from a defined position of each mRNA
molecule (restriction enzyme).

• Link these small pieces of sequence together to form a long chain (concate-
mer).

• Clone these chains into a vector which can be taken up by a bacteria.

• Sequence these chains using high-throughput DNA sequencers.

• Process this data with a computer to count the small sequence tags.

3.1.2.2.2 DNA Microarrays Without any doubt, microarrays are the most
extensively used high-throughput technique to determine the transcriptome of a
cell nowadays. There are mainly two categories of microarrays depending on the
type of probes they use to detect gene expression: cDNA or oligonucleotides.

In cDNA microarrays the probes are molecules of cDNA. Their length vary
between 500 and 5,000 bases and are also called two colours microarrays because
the expression is measured as a ratio of the expression of two samples labelled with
different fluorophores (e.g. Cy3 and Cy5) that have competitive hybridization for
the probes. The second type of microarrays has probes made of oligonucleotides
of variable length, typically from 25 to 70 bases. Possibly the major producer of
this type of chips is Affymetrix. Affymetrix chips have pairs of probes to detect
gene expression, every pair of probes has a perfect match probe and a mismatch
probe which controls the unspecific hybridization so no control sample is needed.
They are generally called one colour arrays.

3.1.3 Discrete labels with a supra-structure

3.1.3.1 Protein-protein interactions

Protein-protein interactions (ppis) play a central role at almost every level of cell
activity: they are involved in the structure of organelles (structural proteins),
transport machinery (nuclear pore importins), response to stimulus (signalling
cascades), regulation of gene expression (transcription factors), protein modifi-
cation (kinases) among many other processes. The production and the proper
use of this type of information is of crucial importance in order to understand
cell behaviour. The available ppi data has increased enormously in the last few
years with the emergence of high-throughput techniques that can report thou-
sands of ppis in a short time span. The most used techniques in this field are:
yeast two hybrid (y2h), tandem affinity purification (TAP) and high-throughput
mass spectrometry techniques (MS). Reviews on these and related methodologies
can be found in Drewes and Bouwmeester (2003), Cho et al. (2003), Falk et al.
(2007) and Berggard et al. (2007).
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The reliability of this data is not exempt of controversy. Studies comparing
resulting data from several experiments demonstrate that the overlap between
them is not as extensive as desirable. This can be because the methods do
not reach the saturation point (Bader & Hogue, 2002) or due to the lack of
accuracy and coverage on some of them (von Mering et al., 2002). In spite of
this, there are arguments in favour; each experiment may cover only 3-9% of the
total interactome, so limited overlap should be expected (Han et al., 2005). False
positives are also a problem: in y2h these represent up to 50% of the total data
(Ito et al., 2001; Mrowka et al., 2001). Moreover, there is a bias in the functional
categories of the ppis each technique detects, e.g. y2h fails in detecting proteins
involved in translation (von Mering et al., 2002).

The ultimate objective of all these techniques is to generate a complete map
of all possible ppis that can potentially occur in the cell, this map is commonly
known as the interactome. And, beyond discussions about accuracy and coverage
of this kind of experiments, the relevance of ppis in the cellular machinery has
fostered an unprecedented interest in the exploration of the interactome of model
organisms such as Saccharomyces cerevisiae (Uetz et al., 2000; Ito et al., 2001),
Drosophila melanogaster (Gio et al., 2003; Formstecher et al., 2005), Caenorhab-
ditis elegans (Li et al., 2004) or human (Stelzl et al., 2005, Rual et al., 2005), just
to cite a few examples.

In yeast, a high-quality literature curated set of ppis free from false positives
and representing probably the complete interactome (Reguly et al., 2006) is avail-
able. However, in the case of human, the situation is far away from this degree of
detail. The estimated size of the human interactome is of 650,000 ppis (Stumpf
et al., 2008). None of the public databases contain more than 10% of this number
of ppis, and a compilation of all the known ppis would only cover about 10% of
the interactions.

The interactome so obtained is an abstract scaffold that does not provide
information about particular conditions, cell developmental stage or cell type in
which a particular ppi occurs (if any). To infer a case-specific interactome it is
necessary to integrate other types of data that provide information that allows
inferring the active ppis at a particular condition.

3.1.3.2 Bases for detecting ppis and its annotation

In this new era of massive production of biological data, an important challenge
is its storage in a standardised format with appropriate annotation that facil-
itates performing queries as simple as possible to extract relevant information.
Several datasets coming from high-throughput technologies such as biological se-
quences or microarray experiments have developed structured formats to submit
the data to the databases with ontology based vocabulary. Learning from those
experiences, the Proteomic Standards Initiative (PSI) of the Human Proteome
Organization (HUPO) has established a Molecular Interaction (MI) group to de-
velop a standard format to interchange information called PSI-MI (Hermjakob
et al., 2004). In here we report on the main categories MI has to classify the
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experimental detection methods:

• biophysical: The application of physical principles and methods to biological
experiments.

• protein complementary assay: The function of numerous proteins (enzymes,
transcription factors, and others) can be rationally dissected into two frag-
ments that fold autonomously but cannot complement to reconstitute the
complex function, unless they are located in close proximity. In a two hy-
brid experiment, restoration of the activity by complementation of the two
fragments when expressed as fusion with two polypeptides is taken as an
evidence that the two polypeptides interact together.

• genetic interference: This term refers to methods that aim at interfering
with the activity of a specific gene by altering the gene regulatory or coding
sequences. This goal can be achieved either by a classical genetic approach
(random mutagenesis followed by phenotype characterization and genetic
mapping) or by a reverse genetics approach where a gene of interest is
modified by directed mutagenesis.

• post translational interference: This term refers to methods designed to
interfere with gene expression at post-transcriptional level rather than with
the gene itself.

• biochemical: The application of chemical principles and methods to biolog-
ical experiments.

• imaging techniques: Methods that provide images of molecules at various
resolution depending on the technology used.

3.1.3.3 Ppi data resources (Databases)

At the time of writing this thesis, there is not a common repository that stores
all the ppis. Contrarily to other genomic data such as sequences, microarrays,
protein structures, etc., ppi data are spread through several databases, among
which a small overlap exists. Moreover, there are differences in the type and
depth of ppi annotations among the databases. The major repositories are the
Human Protein Reference Database (HPRD, Peri et al., 2003), IntAct (Kerrien
et al., 2006), the Bimolecular Interaction Network Database (BIND, Bader et
al., 2003), the Database of Interacting Proteins (DIP, Salwinski et al., 2004),
BioGRID (Breitkreutz et al., 2008) and the Molecular INTeractions database
(MINT, Chatr-aryamontri et al., 2006). Therefore, it is not a trivial task for
the end user to obtain a reasonably complete and curated set of ppis to work
with. Several methodologies have been proposed to solve this problem (see next
section for a small revision on them). In the Materials and Methods section 14.2
we propose a novel method for this purpose.

Reviews on the resources dedicated to store and annotate ppis can be found
in Xenarios and Eisenberg (2001) and Mathivanan et al. (2006).
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Figure 3.2: From ppis to the interactome. Several pairwise protein-protein interactions
can be represented as an undirected graph.

3.1.3.4 Ppis as networks (The supra-structure)

Ppis are defined as pairwise relationships between two proteins. Taken all to-
gether, they represent a network where the nodes are the proteins and the edges
the interaction events (see figure 3.2). Apart from the elements of the network
(nodes and edges), the topology of the networks is also of crucial importance
when trying to understand their role in a cellular process (Yeger-Lotem et al.,
2004).

Graph theory has helped biology to study these networks and has established
the basis for their description. The first discovery was that biological networks
are scale-free networks (Barabasi & Albert, 1999; Barabasi & Bonabeu, 2003)
instead of random networks. Scale-free networks are defined by a connections
degree, number of connections of a node, distribution that approximates to a
power law P (k) = k−γ , being γ < 3. This indicates that the network has a
low number of highly connected nodes, called hubs. In other words, there are
a few proteins (the hubs) which connect much of the whole network. Indeed,
identifying hubs is a hot topic in functional analyses (Batada et al., 2006; He &
Zhang, 2006; Sporns et al., 2007).

Apart from connections degree, which identifies the presence of hubs, there
are other network parameters that help to describe properties of these systems
(Barabasi & Oltvai, 2004). In the Materials and Methods section 6.4.1 we report
all the network features used in this thesis to describe complete interactomes,
sub-networks as well as other kind of networks.

3.2 Methodologies for functional profiling

3.2.1 Functional enrichment methods

A conventional approach to the interpretation of genome-scale data is usually
performed in two steps: in a first step genes of interest are selected (because they
co-express in a cluster or they are significantly over- or under-expressed when
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two classes of experiments are compared, etc.) and then the enrichment of any
type of biologically relevant label in these genes is compared to the correspond-
ing distribution of the label in the background (typically the rest of genes in
the genome or in the experiment). There are different available tools, such as
FatiGO (Al-Shahrour et al., 2004) and others (Zeeberg et al., 2003; Khatri and
Draghici, 2005), that use different functionally relevant labels such as GO terms
(Ashburner et al., 2000), KEGG pathways (Kanehisa et al., 2004), etc. A revision
of functional enrichment methods can be found in Dopazo (2006).

In this thesis we have developed methods that follow this approach for non-
conventional annotation sources like ppi data, bioentities extracted from the lit-
erature and expression levels in tissues.

3.2.1.1 The multiple testing problem

Much caution should be adopted when dealing with a large set of data because
of the high occurrence of spurious associations (Ge et al. 2003). Addressing
multiple testing properly is a rather complex problem. Many of the conventional
correction methods (e.g. Bonferroni or Sidak) are based on the consideration that
a p value should be adjusted by multiplying a reasonable significant threshold
(e.g. p< 0.05) for the number of tests performed to obtain a new threshold.
Whenever many thousands of tests are performed the original assumption risks to
be too conservative. A better strategy to estimate p values is provided by another
family of methods that allow less conservative adjustments are the family wise
error rate (FWER), that controls the probability that one or more of the rejected
hypotheses (GO terms whose differences cannot be attributed to chance) is true
(that is, a false positive). The minP step-down method (Westfall and Young,
1993), a permutation-based algorithm, provides a strong control (e.g. under any
mix of false and true null hypothesis) of the FWER. Approaches that control
the FWER can be used in this context although they are dependent on the
number of hypotheses tested and tend to be too conservative for a high number
of simultaneous tests. Aside from a few cases in which FWER control could be
necessary, the multiple testing problem in functional assignation does not require
protection against even a single false positive. In this case, the drastic loss of
power involved in such protection is not justified. It would be more appropriate to
control the proportion of errors among the identified GO terms whose differences
among groups of genes cannot be attributed to chance instead. The expectation
of this proportion is the False Discovery Rate (FDR). Different procedures offer
strong control of the FDR under independence and some specific types of positive
dependence of the tests statistics (Benjamini and Hochberg, 1995), or under
arbitrary dependency of test statistics (Westfall and Young, 1993).

3.2.2 Gene set enrichment analyses (Threshold-free meth-
ods)

Although widely accepted and with considerably good results in its application,
the functional enrichment methods present some inconveniences associated to the
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imposition of a threshold in the case of differential expression analyses. In this
kind of studies, the “important” genes are selected using exclusively the expres-
sion data by applying a threshold in the p-values. The biological information
is introduced a posteriori and it is then not used for the selection of the genes.
Besides, high-throughput techniques are still particularly noisy, thus the imposed
threshold must leave out a big number of false negatives to keep a low rate of
false positives, ending with an incomplete list of genes to be analysed.

Under a systems biology perspective, this way of understanding the molecu-
lar basis of a genome-scale experiment is far away from being efficient. Methods
inspired in systems biology focus on collective properties of genes. Function-
ally related genes need to carry out their roles simultaneously in the cell and,
consequently, it is expectable from them to display a coordinated expression.
Actually, it is a long recognized fact that genes with similar overall expression
share often similar functions (Lee et al., 2004; Eisen et al., 1998; Wolfe et al.,
2005). This observation is consistent with the hypothesis of modularly-behaving
gene programs, where sets of genes are activated in a coordinated way to carry
out functions. Under this scenario, a different class of hypothesis, not based on
genes but on blocks of functionally related genes, can be tested. Thus, lists of
genes ranked by any biological criteria (e.g. differential expression when com-
paring cases and healthy controls, etc.) can be used to directly search for the
distribution of blocks of functionally related genes across the list without im-
posing any arbitrary threshold. Any macroscopic observation that causes this
ranked list of genes will be the consequence of cooperative action of genes that
are part of functional classes, pathways, etc. Each functional class “responsible”
for the macroscopic observation will, consequently, be found in the extremes of
the ranking with highest probability.

There are different methods which have been proposed for this purpose such as
the GSEA (Mootha et al., 2003; Subramanian et al., 2005) or the SAFE (Barry et
al., 2005) method that use a non-parametrical version of a Kolmogorov-Smirnov
test. Other strategies are also possible, such as the direct analysis of functional
terms weighted with experimental data (Smid et al., 2004) or model-based meth-
ods (Goeman et al., 2004). With similar accuracy although conceptually simpler
and quicker methods have also been proposed such as the parametrical counter-
part of the GSEA, the PAGE (Kim et al., 2005) or the segmentation test, Fatiscan
(Al-Shahrour et al., 2005). Revisions on Gene Set methods can be found in Goe-
man and Bühlmann (2007) and Dopazo (2008).

FatiScan can deal with any kind of discrete labels, GO terms, KEGG path-
ways, etc. As seen before there are other kind of annotations that associate the
labels to genes through a value. In this thesis we have developed a gene set en-
richment method based on FatiScan that can deal with continuous labels, its first
application has been to perform functional profiling using bioentities extracted
from the literature by text mining techniques. It has been implemented with the
name of MarmiteScan as a module in the Babelomics suite.
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3.2.3 Functional enrichment methods using ppi data

The development of the methodologies for functional profiling is directly guided
by the nature of the annotation that it is going to be used. We will show in
Materials and Methods section 6.2 how same approaches vary in their basis when
changing the annotation from discrete to continuous labels. In this section we
will review the boinformatics tools to manage and visualize ppi data to finally
explain the available methodologies for the analysis of genome-scale experiments
using protein-protein interactions as annotation source.

The introduction of ppi data into functional genomics requires of new algo-
rithms due to the particular nature of this kind of annotation. The way in which
ppis are defined do not conform discrete classes (as GOs, KEGGs, etc.) but they
are internally structured as networks where proteins have different roles according
to their position in the network and its global shape. Therefore different methods
are necessary to build these classes from expression and interactomic data.

A module in a network is a sub-network with an internal connectivity higher
than its connectivity to other modules. Many attempts have been made to ex-
plore the interactome seeking for modules of action, most of them based on
the application of clustering methods to weighted matrices, Pereira-Leal et al.
(2004) proposed the number of experiments that support the interaction as in-
dex to fill the matrix, Rives and Galitski (2003) used the shortest paths among
pairs of nodes to measure de relationship between nodes. There are also other
approaches based, for instance, on the topological features of the network such as
the betweenness (Girvan and Newman, 2002; Wilkinson and Huberman, 2004).
Central nodes, with a high betweenness, may define the boundaries of the sub-
networks because that means that many shortest paths pass through them and
the action of removing them from the network would lead to the disconnection
of some sub-networks.

Modules obtained by this methodologies may be enriched in proteins with
related biological functionalities, shown by its significant enrichment in GO terms
(Luo et al., 2007) or by its co-occurrence within the literature (Wilkinson and
Huberman, 2004). Indeed, it has also been shown that there are sub-networks
associated to diseases (Badano and Katsanis, 2002; Brunner and van Driel, 2004;
Gandhi et al., 2006). Gandhi et al. (2006) found in the analysis of the human
interactome that proteins encoded by genes mutated in inherited genetic disorders
are likely to interact with proteins known to cause similar disorders.

When seeking for modules of action (sub-networks) within lists of genes or
proteins, the typical functional genomics input, the list has not to be considered
any longer as a mere collection of more or less important nodes but as a potential
unit of functionality in cell activity, just as Gene Ontology terms or KEGG
pathways are defined. It is not enough to just obtain the interactions associated
to each of them and explore the function of the interacting proteins. Thereby,
we need to build system specific functional modules within the set of proteins in
order to assign a common functionality to the list, in other words, it is essential
for the biological interpretation of a gene or protein set using ppi data to seek
for the sub-network that they might form, this is, the module that has been
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activated.

A common approach to figure out this sub-network is to calculate the called
Minimal Connected Network (MCN). The MCN is the minimal network that
connects a set of nodes. See Materials and Methods section 6.4.3 for a detailed
explanation.





Chapter 4

The working environment

The methodologies presented in this thesis have been implemented as web tools
and are part of two interconnected suite of programs, GEPAS (Tarraga et al.,
2008) for analysis of microarray experiments and Babelomics (Al-Shahrour et al.,
2008) for functional profiling of transcriptomics, proteomics and genomics experi-
ments. This fact makes the resources freely available for the scientific community.
Nowadays, many studies in molecular biology include a microarray experiment
to set up the scenario in which the particular phenotype is occurring. In silico
experiments are becoming a common practice in molecular biology and scientists
do not stop in the analysis of their important genes but they try to see the case
under study from a systems biology perspective. The goal of both GEPAS and
Babelomics is to help biologists to use appropriate contrasted methods to give
biological meaning to the messy data coming from high-throughput experiments.
In figure 4.1 a road map of the GEPAS and Babelomics possibilities is shown.

The introduction in GEPAS and Babelomics of the methods presented in
this thesis represent an effort for integrating new sources of annotation into the
functional profiling of high-throughput experiments.
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Figure 4.1: GEPAS and Babelomics roadmap.
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Objetives
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This thesis came up with the general challenge of developing methodologies
for the functional profiling of genome-scale experiments. More specifically we
aimed to introduce new sources of information that increase the scope of the
analyses complementing the already in-use methods in both the coverage of the
annotation and the biological knowledge parcels that are explored.

This goal required the achievement of several objectives that are enumerated
next:

• The introduction of new sources of annotation into the functional profiling
analyses of genome-scale experiments. The sources of annotation we aimed
to introduce were:

– Biologically meaningful words associated to genes by their co-occurrence
in the scientific literature.

– Phenotype information associated to the genes by the level of expres-
sion.

– Protein-protein interaction data.

• The development of new methodologies for functional enrichment analyses
that take into consideration both the structure of the biological sequence
annotation and the previous experiment design. Specifically, we wanted to
generate methods that could deal with:

– Continuous labels, that is, labels associated to the genes through a
value.

– Discrete labels with a network supra-structure.
– Time series experiments.
– Different experiment designs such as supervised and unsupervised prob-

lems.

• The implementation of the methods as web-based tools that could be in-
tegrated into the Babelomics and GEPAS packages for functional profiling
of genome-scale experiments and analysis of microarray data respectively.

• The exploration of the possibilities of the methods developed by:

– Performing functional profiling analysis using them.
– Exploring the role of the protein-protein interactions into other func-

tional classes.
– The integration of several annotation sources to explore the variation

of functional modules in cancer stages.





Part III

Materials and Methods





Chapter 5

Sources of gene/protein
annotation for functional
genomics

According to GOLD (http://www.genomesonline.org), the Genomes OnLine
Database updated on the 14th of July of 2008 there are 833 published completed
genomes and 3887 ongoing projects. With such amount of data to deal with,
biology cannot continue with the old practices for managing data based on its
inclusion in books and journals. The new challenges of this new era, sometimes
called post-genomics, are to build appropriate storage systems for the data and
to annotate sequences following standards that facilitate an effective information
retrieval system. Many attempts are now running to annotate genomes in a
standardized, classified and accurate way. In the next sections we report the
particularities of the annotation sources we have used during this thesis. The
criteria we followed to choose them was always based on its contribution for
accurate and reliable information, its coverage and its manageability.

In the introduction we already made a review of the features of the annotation
sources, in here we will report how we managed this data and the technical issues
we consider important to understand how the methodologies work.

5.1 Babelomics database

The project Babelomics (http://www.babelomics.org) has been conceived from
the beginning as an integrated suite of programs with different scope but with
the same internal architecture. This permits adding new modules easily and
to reduce complexity improving the developers manageability of data. All the
sources of annotation used are stored under a common relational database, the
software used for this purpose was mysql 5.0.

http://www.genomesonline.org
http://www.babelomics.org
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A non trivial problem in molecular biology is that there is not a unique or
standard name (id) for gene and protein sequences, that is, the same amino acid
or nucleotide sequence is named under dozens of names depending on the institu-
tion that annotate them. The challenge in here is to know that two different ids
are referred to the same sequence and cross-references are not very extended in
the annotation databases. As Babelomics has as general goal of providing an easy
and friendly usage to the end-user, we decided to adopt an universal index that
could serve as link-node between user’s reference and the annotations. We chose
ensembl id for this purpose. Ensembl (Hubbard et al., 2007) is a joint project
between the European Bioinformatics Institute (EBI) and the Sanger Institute
that came up in 1999 to develop a software system for producing, maintaining
and visualising automatic annotation on selected eukaryotic genomes. Ensembl
incorporates external sources of gene and protein annotation as well as the ma-
jority of the cross-references available. We make use of this facility to avoid that
Babelomics users get lost under such variety of ids. Thus, users may submit
any id they have and Babelomics will translated into ensembl id that is directly
linked to the annotation. For the annotation sources that are not linked to en-
sembl ids we perform the mapping from the id provided to the ensembl gene
and transcript id. This is the case of Serial Analysis of Gene Expression data,
provided in HUGO Gene Name Committee (HGNC) and unigene ids, bioentities
extracted form the literature, linked to HNGC ids and ppi data which is provided
by several databases so several ids are used.

Although the use of an universal cross-reference has many advantages this
is not free of problems. Any gene not annotated in Ensembl will be lost in the
analysis. This, obviously will affect to a very small number of genes and should
not affect to any general functional conclusion obtained by analysing a large and
significant number of genes.

As said in the introduction, in this thesis we have used three types of anno-
tation: discrete labels (GOs, KEGGs and BioCarta pathways), continuous labels
(bioentities extracted from literature, expression levels in different tissues) and
discrete labels with a supra-structure (ppis). In the next subsection we will report
on the ones with special features.

5.2 Gene Ontology and Nested Inclusive Analy-
sis

In the studies developed in this thesis where GO is the annotation source, we have
applied the called Nested Inclusive Analysis (NIE) (Al-Shahrour et al., 2004) in
which a level in the DAG hierarchy is chosen and the genes annotated with terms
that are descendant of the parent term corresponding to the level selected are
annotated with such term. This increments the efficiency of the test because
there are less terms to test and more genes per term.
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5.3 Bioentities extracted by text-mining techniques

We have implemented two different methodologies that use bioentities associated
to human genes to perform functional profiling of high-throughput experiments.
These methods resulted in two web tools, Marmite and MarmiteScan, integrated
within Babelomics. We will review about methods and web tools facilities in the
methods subsection and in the results section respectively.

This kind of annotation was extracted using a software called AlmaKnowl-
edgeServer which looks into the abstracts stored in Medline for gene-bioentity
co-occurrences. It looks for single words but also for bi-grams (two adjacent
words). This kind of terms could contain more information than both words
separately, e.g. “cell cycle” gives a different kind of information than the sum of
the meanings of “cell” and “cycle”.

The bioentities belong to two categories, chemical compounds and disease
related words. A gene is associated to a word through a score, the Z score,
(Andrade and Valencia, 1998). It is calculated by the formula:

Zia = Xia−M ia
σia Z score for a term i in a collection of documents a

being,
N a, the number of documents in set a
N doc, the number of documents in the entire collection
X i, the number of documents where term i appears in Ndoc
X ia, the number of documents where term i appears in Na
M ia = Na× ( Xi

Ndoc
) the mean value for term i in collection N a

σia=
√
M ia× (1− Xia

Ndoc
)× (1− Na

Ndoc
) the standard deviation of the distri-

bution
The scores are based on the analysis of co-occurrences of bioentity and gene

in Medline abstracts. The observed number of documents where both elements
appear together and the number of documents where both appear independently
are compared to an expected value based on a hypergeometric distribution. The
more co-occurrences are observed in relation to the number expected the more
unlikely it is that this happen by chance and the higher will be the value. Un-
fortunately, the absolute numbers have no meaning by themselves but can only
provide an order of importance.

Table 5.1 shows a comparison between the annotation coverage of bioentities
and two of the most used annotation sources (GO and KEGG). In it, we can see
that although the coverage is smaller than for instance GO coverage, the number
of entries, pairs of gene-label annotated, is much bigger.

The gene-label association through a score is the main difference between this
kind of annotation and the more classical ones mentioned above (GOs, KEGGs
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Genes Labels Entries

Chemical compounds 5,832 19,605 236,466
Disease related words 5,556 6,140 204,988

Word roots 4,012 34,741 218,008
Associated genes 6,479 6,479 764,364

GO 16,423 6,193 112,634
KEGG 3,904 189 8,653

Table 5.1: Comparison of annotation coverage in human genes between bioentities (di-
vided into chemical products, disease related words, word roots and associated genes) and
two of the most used annotation sources, GO and KEGG. In columns we represent the
number of genes annotated with at least one of the labels belonging to the the annotation
database (Genes), the number of labels in the database (Labels) and the total number of
gene-label annotations (Entries).

and BioCarta). Due to this new feature, novel methodologies for its introduction
into functional genomics analysis had to be developed. As said before, the tools
Marmite and MarmiteScan, part of the Babelomics suite, deal with this kind of
data.

5.4 Tissue expression

In this section we will report on the datasets we have used for the annotation
of high-throughput experiments results using transcriptomic data as annotation
source. Their use, together with the methodology is available through the Tissues
Mining Tool (TMT) module of the Babelomics suite. We wanted to introduce
curated datasets that represent a broad collection of normal and cancer tissues
coming from several platforms to provide a wide spectrum of exploration capa-
bilities to the analyses. With this purpose we selected the following datasets.

5.4.1 Serial Analysis of Gene Expression (SAGE)

For our analyses we downloaded a collection of SAGE libraries from the Cancer
Genome Anatomy Project (CGAP, http://cgap.nci.nhi.gov/SAGE) that con-
sists of 279 human and 190 mouse high quality libraries representing a total of
29 and 26 tissues respectively and a wide range of histologies: different types of
cancer, tumour associated and normal tissues. The libraries can be classified in
short and long tags libraries depending if they are generated using tags of 10 or
17 bases. They already provide the tag-gene assignments.

http://cgap.nci.nhi.gov/SAGE
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5.4.2 Microarrays

The data we used for the integration in TMT module was generated by the
Genomics Institute of the Novartis Research Foundation (GNF) and downloaded
from http://wombat.gnf.org. Features of the dataset: Affymetrix microarray
chip U133A extended with more probes.

• 79 human and 61 mouse tissues with mainly normal histology.

• Two types of normalization: MAS5 (Affymetrix method), gcRMA (Biocon-
ductor method).

5.5 Protein-protein interactions

Finally, the last source of annotation we are going to mention in this section are
the protein-protein interactions (ppis). We developed methodologies for func-
tional profiling that use them as annotation. The methods were also implemented
as a web tool integrated within Babelomics called SNOW.

5.5.1 Methodologies for ppi curation (Human interactome
generation)

Our experience in compiling data to build an accurate set of human ppis showed
us that the annotation in the different databases is sometimes not comparable.
The approach proposed in this thesis is a modification of the one proposed by
von Mering et al., 2002 (see section 14.2) based in the selection of ppis detected
with two different techniques.

To build a filtered interactome we took the six top categories of experimental
methods described in the Molecular Interaction (MI) Ontology (Hermjakob et al.,
2004) plus the categories in vivo and in vitro from HPRD as reference. HPRD
seems to be essential when approaching a human interactome (Mathivanan et al.,
2006). Every ppi in each of the datasets was annotated with these categories.
Ppis verified by at least two of these methods were introduced in the filtered
interactome. By using lower levels of depth in the ontology of techniques annota-
tion we ensure that ppis extracted with experiments with similar basics that may
have same biases in the detection process are not selected. 5.1 shows an schema
of the application of the re-annotation process.

5.5.2 Human interactome

For generating a human interactome, we downloaded human ppi datasets from
the five main public databases, HRPD (release 010107), IntAct (release 2007-04-
20), BIND (release 2007-05-10), DIP (release Hsapi20070707), and MINT (release

http://wombat.gnf.org
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Figure 5.1: Re-annotation of ppis process schema. On the left the Molecular Interactions
(MI) Ontology tree and underlined in red, the 6 top categories chosen as reference. On
the right a more detailed view of the tree and a re-annotation instance, a ppi annotated
with two hybrid array is re-annotated with protein complementary assay.
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Non-filtered interactome Filtered interactome
Transcripts Genes Transcripts Genes

Nodes 16,799 10,027 11,107 7,405
Edges 109,709 46,799 42,136 21,127

Table 5.2: Non-filtered and filtered interactomes. Number of nodes and edges in both
interactomes and in genes and transcripts interactomes.

2007-04-05). Entries in databases were mapped to ensembl transcripts and en-
sembl genes using ensembl release 44 with the aim of avoiding duplication of same
proteins with different ids.

We used this collection of ppi data to generate two different types of inter-
actomes for both transcripts and genes: a non-filtered interactome which hold
all available ppis, and a filtered interactome built using the method proposed
above (section 5.5.1). Both interactomes are available in the SNOW module of
the Babelomics suite, however our analyses have been performed with the fil-
tered one only. The idea is to have an exploratory and a curated collection of
ppis to be able to perform different kind of analysis. Moreover, per each type, a
transcripts (proteins and transcripts have a one to one relationship) and a genes
interactomes are generated because, although an artefact, typical lists of high-
throughput experiments may be formed of genes. Genes have a one-to-many
relationship with proteins, therefore, the topology of the network changes dras-
tically in proteins and “genes” interactomes and mapping genes into a proteins
interactome may give confused results. Table 5.2 shows the differences in number
of nodes and edges between non-filtered and filtered interactomes and between
genes and transcripts interactomes.

Network parameters such as connections degree, relative betweenness central-
ity and clustering coefficient were computed per each interactome generated and
stored in a relation database (mysql 5.0).





Chapter 6

Methodologies for
functional profiling

Functional Genomics and in particular functional profiling of high-throughput
experiments are in a quite early stage of development. The methodologies avail-
able for this kind of analysis have been published during the last 5 years and
although certainly it is one of the hot topics in computational biology, there is
still a lack of novel methods that could deal with new types of annotations. Due
to this fact, this thesis has a high methodological content. All the developments
have been approached from a systems biology and an integrative point of view.
The goal was to introduce new parcels of knowledge into the functional profiling
methods as well as to develop algorithms that can be applied in a new scenario
with new sources of annotation and different experiments designs.

6.1 Tissues/phenotype based profiling

The methodology presented in this section deals with gene expression measures
in different tissues and histologies as annotation. Basically, it compares the dis-
tribution of the expression values of two lists of genes in different tissues and
histologies and extracts the tissues in which any of the lists have significant dif-
ferences.

For the analysis, we build a matrix of expression values where the genes are
represented in columns and the tissues in rows. It uses an implementation of
the Student test made in C programming language that finds the differences in
the distribution in the two classes (lists) for every row in the matrix. It gives a
p-value to every comparison that is corrected by the False Discovery Rate (FDR)
method using a program written in the R programming language (see section
3.2.1.1 for an explanation on the multiple test problem) . The output of the
method are the tissues in which any of the lists has a corrected p-value less than
0.05, meaning that any of the lists is significantly more expressed in the reported
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conditions (tissues and histologies). The program has the option of generating
the background, instead of submitting two lists, the second one (background) is
generated by using the rest of the genes with expression data in the conditions
selected.

The method is implemented in form of a cgi program (web program) called
Tissues Mining Tool using the programming languages Perl, JavaScript and R.

6.2 Functional enrichment test using text-mining
derived gene modules

This method deals with the annotation data extracted by text mining techniques
explained in section 5.3. Basically, it extracts the bioentities that have a sig-
nificantly higher association to a list of genes when compared to a background.
The functional enrichment test carried out by this method is in many ways con-
ceptually similar to the tests used for classical repositories such as GO, KEGG,
etc. (Al-Shahrour et al., 2004; Dopazo, 2006). The difference in this case is
that the functional category to be tested, the bioentity, is considered to be a
continuous class. Membership of a gene to a bioentity is therefore defined by
a score value, which reflects the strength of the real relationship gene-bioentity.
Therefore, instead of the usual Fisher’s or hypergeometric (or similar) tests, we
use a Kolmogorov–Smirnov test to compare the distributions of the scores of
the co-occurrences between genes and bioentities for each bioentity studied to
the background distribution of scores. Since all the bioentities are tested, the
p-values assigned to them are adjusted by False Discovery Rate (Benjamini and
Hochberg, 1995). The method returns the bioentities with a corrected p-value
less than 0.05 assigned to any of the lists submitted.

The method is implemented as a cgi program called Marmite, also a module
of the Babelomics suite, it is written in Perl, JavaScript and R.

6.3 Gene set enrichment analyses (Threshold-free
methods)

This type of methods are more suitable for supervised analyses (analyses with
previous information of class structure) such as differential expression analysis
between different samples. In this type of analysis the typical two steps approach
force to select a list of important genes based in a comparative parameter such as
fold-change or p-value assigned to a statistic, even though the cut-off in this pa-
rameter has a statistical significance it is never directly associated to the biology,
being always an artefact. Thus, as commented in the introduction, a new type of
methods generally called threshold-free methods have recently appeared to avoid
this problem. A representative method of this family is FatiScan (Al-Shahrour
et al., 2005). In this thesis we have taken FatiScan method as the model to anal-
yse more complex experiments such a time series experiment and to be able to
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Figure 6.1: FatiScan method. On the left, a representation of the constraints of the
two steps method for extracting enrichment of functional classes like GO terms. Genes
in a microarray experiment with two classes (A and B) are sorted by their differential
expression, from more expressed in A to more expressed in B. Two GO classes are shown.
Black dots represent genes with that GO term annotated and grey dots represent genes
with that GO no annotated. If we do a selection of the key genes by their p-value given by
a statistical test both GOs are represented by the same number of genes in both, the list
of selected genes and in the background. However the picture show that the distribution
of the annotations are not the same, being GO1 genes mainly concentrated at the top and
GO2 showing a quasi-homogeneous distribution. On the right we show how FatiScan can
extract the GO terms with interesting distributions, the ones concentrated at the top or
at the bottom, that is, the ones that have correlation with the parameter used to sort the
genes, in this case the differential expression between two classes. A set of partitions is
applied (p1, p2, p3 ...) and for each of them and for every GO term a two step method is
performed between top and bottom genes.

use different types of annotation such as weighted associations between gene and
label, see sections 6.3.2 and 6.3.3.

6.3.1 FatiScan: a segmentation test

FatiScan consists on the sequential application of the FatiGO (Al-Shahrour et
al., 2004) test to different partitions of an ordered list of genes. The FatiGO test
uses a Fisher’s exact test over a contingency table for finding significantly over or
under represented biological terms when comparing the upper side to the lower
side of the list, as defined by any partition. The test assigns a p-value for each
functional label evaluated in every partition, the p-values are corrected due to
the multiple test problem by the FDR method and finally the method extracts
the functional labels with more significant p-values associated to a determined
partition. See figure 6.1 for an explanation.
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Figure 6.2: MarmiteScan method. As in figure 6.1, a differential expression analysis
of a microarray experiment is shown and the genes sorted by the statistic, from more
expressed in class B to more expressed in class A. The distribution of three bioentities are
shown. White dots represent the genes not associated to the bioentity and coloured dots
represent the genes associated to the bioentity. The scale from grey to black represent
the weight of the association. For extracting the bioentities correlated to the parameter
used to sort the genes, a series of partitions is applied (p1, p2, p3 ...), for each partition
and each bioentity, a kolmogorov-Smirnov test is applied to test the differences in the
distribution between top and bottom genes.

6.3.2 MarmiteScan

MarmiteScan is a gene set enrichment analysis to study the behaviour of blocks
of genes defined by bioentities. It is carried out by means of a segmentation test
similar to the one used in FatiScan (Al-Shahrour et al., 2005). A pre-selection
of genes is not necessary, only a ranked list is used in this test. Thus, given a
list of genes arranged by any biological characteristic of the experiment (e.g. by
differential expression between two types of experiments), a segmentation test
is used to detect significant asymmetrical distributions of bioentities across it.
Again, given the continuous nature of the bioentities, a Kolmogorov–Smirnov
test is used to detect blocks of genes constitutively skewed to the extremes of the
ranking and, consequently related to the biological criteria used for producing
the ranking. See figure 6.2 for an explanation.

MarmiteScan is a module of the Babelomics suite and is implemented in form
of a cgi program written in Perl, JavaScript and R.
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6.3.3 Time Series analysis using FatiScan

6.3.3.1 Microarray Data Preparation

The data used is a microarray time series experiment of Plasmodium falciparum
during the 48 hours of the intraerythrocytic developmental cycle (IDC) with
samples taken every hour (Bozdech et al., 2003). The dataset consists of 7,462
probes (70mer oligonucleotides), representing 4,488 of the 5,409 ORFs of the
Plasmodium falciparum strain 3D7. A total of 46 time points (covering 48 hours,
sampling time points in intervals of one hour; time points 23 and 29 had no data
in the original dataset) were used in the study.

Microarray data used were the log-ratios of the normalized values of expression
(Bozdech et al., 2003). The data were arranged into a matrix of gene expression
values where columns represent time points and rows represent genes. Here, time
point 1 (first column) was taken as reference for the analysis. Genes with no
information in this column were removed from the analysis. Then, a transformed
matrix containing as many columns as time points minus one (the initial time
point) was obtained by subtracting each time point from the reference time point
(both are log ratios). Each column so obtained accounts for the relative differ-
ences in expression of each gene with respect to its original expression value at
time 1 (or in other words, the log ratios of the gene expression values with respect
to their respective value in the initial time).

6.3.3.2 Functional Analysis Using the FatiScan

The aim of the analysis is to find biological roles (according to GO annotations)
that are activated or deactivated across the time series. To this end, all the
columns were analyzed to detect blocks of functionally-related genes constitu-
tively over- or under-expressed with respect to the initial condition.

The FatiScan method is applied to a list representing the differences in gene
expression observed in time t with respect to the initial time, a GO term found
to be significantly over-represented in top part of the list can be considered to
be constitutively and significantly activated at time t. The significance of this
asymmetry is obtained through a Fisher’s exact test (one-tailed in this case)
applied over a contingency table. The number of partitions used was of 50, which
was previously shown that produces optimal results in terms of sensitivity and
results recovered (Al-Shahrour et al., 2005). Multiple testing effect due to the
massive testing and assignation of biological terms was corrected by the widely
accepted FDR. In this study FatiScan was used to search for significant GO
terms from to the three main categories (biological process, molecular function
and cellular component) at different levels of the GO hierarchy (levels 3, 4, 5, 6
and 7).
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Figure 6.3: Procedure for the functional annotation of a time series. See text for an
explanation.

6.3.3.3 Functional Analysis of the Time Series

Each column, corresponding to any time point beyond the initial time, was inde-
pendently ordered from higher to lower values of relative expression (log ratios
of the expression with respect to time 1). The positions occupied by the genes
in the ranking previously obtained for each column are related to their relative
contribution to the biological processes operating in this particular time point. A
FatiScan analysis of each time point will render the GO terms whose correspond-
ing genes displayed a significant coordinated high expression. These GO terms
provide a detailed view on the biological roles active at the time points at which
they have been detected. The dynamics of these functional roles within the cell
can be analysed by plotting the GO terms significantly over-expressed along the
time axis. Figure 6.3 illustrates the procedure followed. Genes at each time point
are ranked from highest (top) to lowest (bottom) relative expression with respect
to time 1 (Figure 6.3A). Then, for each list of ranked genes generated in any
time point, the significant over-represented GO terms in the tail corresponding
to the highest expression values are recorded. Figure 6.3B shows a GO term
not related to high expression at this time point. Conversely, the GO term in
Figure 6.3C is significantly overrepresented in high expression values. The par-
titions used to decide that a given term is significantly over-represented in the
upper tail of the list with respect to the lower part are used for the graphical
representation. The proportion of genes annotated with a significant GO term in
the most significant partition is finally plotted in the graphical representation of
the GO dynamics. In the example in Figure 6.3D, the most significant partition,
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with p=0.001, captures the maximum divergence according to the test (with 4
out of a total of 6 terms), which would correspond to a value of 66.67%. The way
in which the lists are ordered determines the hypothesis to be tested. In this case
we are testing over-expressions with respect to a initial situation (point t=1), but
other arrangements are possible (e.g. any point with respect to the previous one
which would represent ”speed” of change in functionality, etc.).

6.4 Functional enrichment using ppi data

In this section we will report on the methodologies implemented for the functional
enrichment analysis using ppi data, all part of the development of a web tool
called SNOW (Studying Networks in the Omic World) part of the Babelomics
suite.

6.4.1 Ppis as networks

As mentioned in the introduction, ppis have the particularity of being embedded
in a supra-structure. Thus, several ppis form a network. This provides the
network with properties, called emergent features, that cannot be described as
the sum of every ppi. The study of the topology of the network may give us clues
about the role of the module in a cellular process (Yeger-Lotem et al., 2004).
The parameters that describe the networks can be studied using graph theory.
Probably the more intuitive parameter is called connections degree and refers
to the number of edges (interactions) that are connected to a node (protein).
Although there are dozens of parameters that may be used, we have chosen the
ones that better fit a biological meaning. The Betweenness Centrality of a node
ν (CB (ν)) is a parameter that accounts for the centrality of the node ν within
the graph. It is obtained from the expression:

CB(ν) =
∑
s 6=ν 6=tεV

σst(ν)
σst

being σst(ν), the number of shortest paths through a node and σst(υ), the
total number of shortest paths in the graph. Relative betweenness centrality
(rCB (ν)) is calculated as:

rCB(ν) = 2× CB(ν)
n2 − (3n− 2)

being n the total number of nodes in the graph.

A node with high betweenness centrality is a protein which has many shortest
paths between any two other nodes passing through it. Shortest paths were
calculated using the Dĳkstra algorithm (Dĳkstra, 1959). The action of removing
that particular node from the network would cause a strong disconnection of
the network. By this description, central nodes seem to be crucial in the global
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compactness of the network and in the definitions of boundaries of sub-networks
seen as modules of action (Girvan and Newman, 2002; Wilkinson and Huberman,
2004; Joy et al., 2005). Betweenness has also been shown to be bigger in modules
formed by proteins associated with cancer (Hernandez et al., 2007).

Clustering coefficient of a node ν (C(ν)) is a measure of connectivity that
evaluates how connected is the node’s neighbourhood. This parameter helps to
distinguish among highly connected proteins that form star-shaped sub-networks
(classical hub configuration) and proteins in a more connected area, e.g. com-
plexes. The clustering coefficient is calculated as follows:

C(ν) = 2en
nν(nν − 1)

where en is the number of edges among the nodes connected to node ν, and
nν is the number of neighbours of node ν.

Other interesting features in the structure of a network are the concepts of
components and bicomponents. A component is a group of nodes connected
among them and a bicomponent is a group of nodes connected to another group
of nodes by a single edge, which is called the articulation point (see figure 6.4).
When analysing network parameters of a set of proteins with effects in the phe-
notype (such as gene/protein signatures of diseases or differentially expressed
genes in a two conditions comparison in microarray experiments) components
and bicomponents can be considered extreme examples of gene/protein modules
if they can be defined as sub-networks with a higher internal connectivity than
its connectivity to other modules.

We used Boost c++ graph libraries (http://www.boost.org/libs/graph/
doc/index.html) as the software core for performing graph parameters calcula-
tion.

6.4.2 Network features evaluation

A classical experiment in Functional Genomics consists in the assessment of a
functional profile to the results of a genome-scale experiment such as microarray
analysis. Typically, the outcome of such experiments are lists of genes or proteins
potentially relevant to the case of study because they have a common behaviour
in their expression (for instance, they are over or under expressed in a disease or
they have a similar pattern of expression through time when a disease is treated
with a drug).

Making use of the ppi data capabilities, an interesting analysis to apply to
a list of genes or proteins is to see whether it is enriched in any particular type
of nodes; that is, whether it has significantly more hubs, central proteins or pro-
teins in a very connected area compared to the complete interactome. This can
be done by comparing the distribution of the connections degree, betweenness
centrality and clustering coefficient respectively versus the distribution of these
parameters in the set of ppis assigned as background (a curated set of the ppis

http://www.boost.org/libs/graph/doc/index.html
http://www.boost.org/libs/graph/doc/index.html
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Figure 6.4: Components and bicomponents. The picture shows a network with three
different components (A, B and C) coloured in green, yellow and blue respectively. Compo-
nent B has in turn two bicomponents (B1 and B2) connected by only one edge highlighted
with a red star.

publicly available should be representative of the complete interactome). Quite
useful information about the set of proteins might be extracted by this proce-
dure, it has been reported that cancer related proteins exhibit a higher degree of
connections and centrality than the nodes in complete interactome not associated
to the disease (Johsson et al., 2006; Hernandez et al., 2007). Nevertheless, the
final aim in this kind of experiments is to seek for modules of proteins with a
cooperative activity, therefore, a more holistic approach is needed. See figure 6.5
for a comparison of two very different cases when mapping proteins of a list in
the interactome.

6.4.3 Methodologies to infer a sub-network

A common approach to figure out this sub-network is to calculate the called
Minimal Connected Network (MCN). The MCN is the minimal network that
connects a set of nodes. It is generated by the calculation of the shortest path
between any two proteins in the list. When generating the MCN for functional
profiling of experiments, the resulting network should be representative of the
list, therefore not all the paths should be integrated in the final graph but only
the ones that connect directly two of the proteins in the list plus those which
connect two listed proteins through a determined number of non-listed proteins.
This number of non-listed proteins that connects two of the pre-selected proteins
should be small enough to keep an equilibrium between the promotion of the
exploratory capabilities of this methodology and the maintenance of the accuracy
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Figure 6.5: Mapping of proteins from a list in the complete interactome. Both pictures
represent the interactome with proteins as dots and ppis as the edges joining the dots, the
red circles highlight the nodes listed as key proteins. On the left, the mapped proteins
lay into several types of nodes from external, hubs can be external as showed in A, to
very central nodes (B). On the right interactome, the nodes are mainly external, which
a priori could seem to be a less interesting situation. However, as shown in C most of
the listed proteins are very close in the interactome, that indicates a possible cooperative
behaviour of these proteins.

of the assignment of a network to the list.

Indeed, non pre-selected proteins by expression profiling has been reported to
be related to disease due to its inclusion into a network of ppis (Xu and Li, 2006;
Liu et al., 2007; Chuang et al., 2007). In microarray analysis it is a common
practice to apply a threshold in the p-value (normally 0.05) to the selection of
differentially expressed genes. This could be a constraint in the selection of
important genes because many corrections have to be applied to the p-values due
to the multiple testing nature of the analysis, that is, some important genes could
not be reported as differentially expressed when they actually are. Moreover,
there are observations that point out that important proteins in the networks
such as hubs and superhubs may not be differentially expressed (Camargo &
Azuaje, 2007).

6.4.4 Methodologies to evaluate a sub-network

For the evaluation of a sub-network we propose to take into account the spe-
cial topological features of the biological networks. Our hypothesis is that sub-
networks associated to a specific cellular activity should have a compact topology.
This can be shown by having a greater distribution of connections degree and
significantly less components than a sub-network integrated by random proteins
that do not share functionality. We also evaluate the distribution of two other pa-
rameters, clustering coefficient and betweenness centrality, that are more related
to the special features of each functional type of active networks. Thus, find-
ing statistical significance in the different parameters points to different possible
topologies of the network and the combined study of some of them may reflect
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Table 6.1: MCNs generated breakdown. We calculated a total of 1,920,000 MCNs divided
in 2 interactomes differently curated, transcripts and genes interactomes, 6 list size ranges
and 4 options in terms of non-listed nodes allowed.

the actual shape of the net. Getting significance in connections degree but not
in clustering coefficient indicates a star-shaped network. The number of compo-
nents and connections degree significance reflects a compact network. What is
more, biological meaning of the network topology is not excluded, getting just
connections degree positive results may show a set of small protein complexes
and significance for betweenness centrality but not for connections degree could
indicate the presence of a cascade signalling network.

This methodology use as input lists of proteins selected from a genome scale
experiment for a particular reason (e.g. they co-express or they are differentially
expressed under certain conditions). The aim is to find the active networks
inside these lists and evaluate whether they have importance in the cooperative
behaviour of the list. In other words, the methodology proposed intends to
highlight the sub-networks activated in response to new stimuli and to evaluate
their importance within the entity selected as the unit of study, which is the list
of proteins.

We first calculate the MCN of the pre-selected proteins or genes and then
we test, using the Kolmogorov-Smirnov test, each of the distributions of the
MCN node parameters (connections degree, betweenness centrality and clustering
coefficient) against a reference distribution.

We generated reference distributions for both filtered and non-filtered inter-
actomes in their genes and transcripts versions. To do that we sampled ramdonly
10,000 lists of proteins and genes for each interactome and for a set of size ranges.
The generation of the MCNs was done allowing 0, 1, 2 and 3 non-listed nodes.
Table 6.1 summarizes the total of combinations we did to get the reference dis-
tributions.

We calculated connections degree, betweenness, clustering coefficient and
number of components for every MCN generated and from each of their cate-
gories we took a random node and saved its parameters, this numbers form the
reference distributions. The number of components of the MCN is compared
versus a 95% confidence interval generated from the random datasets.
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This novel methodology is implemented and available in the SNOW module
of Babelomics suite for functional profiling of genome-wide experiments.

6.4.5 Network enrichment and networks comparison through
an heuristic approach

We take the connections degree and the number of components in the MCN as
indicative of a compact network. Thus, the two requisites we impose for a list to
be considered as enriched in a ppi network are that the MCN that resumes it,
has:

• A distribution of connections degree significantly greater (p-value < 0.05)
than the connections degree distribution of the set of MCNs generated from
same sized random lists.

• Less components than the 95% of the set of MCNs generated from same
sized random lists.



Chapter 7

Deciphering the role of
protein-protein interaction
networks in the functional
profiling of high-throughput
experiments.

We studied the role of ppi networks as active modules in different sets of human
proteins and genes either defined through transcriptome experiments or exten-
sively used in functional profiling as definitions of functional modules.

7.1 Ppi network enrichment in Gene Ontology
terms and other modules of action defini-
tions.

A set of 8,462 lists of transcripts sharing a particular Gene Ontology term were
generated using Nested Inclusive Analysis (NIA), see section 5.2 for an explana-
tion. From those, 4,284 had less than 3 transcripts and 274 had more than 200
transcripts. Both sets were excluded from the analysis due to the difficulty of
obtaining random distributions for those list sizes. The final analysis was per-
formed with 3,904 lists (GO terms). The MCN was computed for every GO term
and its node and network parameters were tested using ppi network enrichment
method using the transcripts-filtered interactome. Per each GO we calculated
two MCNs as the result of introducing none and one non-listed. We performed
the same analysis for 146 human KEGG pathways (after excluding 41 with less
than 3 transcripts and 1 with more than 200 transcripts). For a total of 313
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functional profiling of high-throughput experiments.

BioCarta pathways we excluded 50 of them with less than 3 ensembl transcripts
generating 263 MCNs.

7.2 Ppi network enrichment in high-throughput
experiments results

A total of 665 human microarray experiment results (225 cancer, 413 no can-
cer, 314 up-regulated, 250 down-regulated) and 507 modules of co-expression in
cancer were downloaded from L2L (Newman and Weiner, 2005). A ppi network
enrichment analysis was performed for each of the sets using filtered interactome
and 1 no-list node introduced.

7.3 Comparison between ppi and GO enrichment
analyses

Functional enrichment analysis, using GO terms as labels, was performed ap-
plying FatiGO method (Al-Shahrour et al., 2004) from Babelomics suite v2 (Al-
Shahrour et al., 2006) to the microarray experiments results lists and to the
co-expression modules.



Chapter 8

Exploring KEGG pathways
physical inter-connectivity
in normal and cancer cells.

8.1 KEGGs network

To generate the KEGGs networks, both the complete KEGGs network and the
phenotype specific KEGGs networks, we used as raw data the home-curated ppi
interactome, details in section 5.5.1.

For the complete KEGGs network, all the ensembl transcripts within this
interactome were mapped into the biochemical pathways from the KEGG path-
way database. For the specific phenotype KEGGs networks we firstly generated
specific ppis networks with the transcripts of each library (see next section for
library details). After that we mapped the phenotype-specific ppis networks to
the same KEGG pathways dataset.

In total, we generated 316 phenotype specific KEGGs networks annotated by
their tissue and histology plus a complete KEGGs network. For all them we cal-
culated their networks parameters: connections degree, betweenness centrality,
clustering coefficient, number of components and bicomponents using Boost c++
graph libraries (http://www.boost.org/libs/graph/doc/index.html). The
pairwise interactions as well as the values of the networks features were stored in
xml documents.

http://www.boost.org/libs/graph/doc/index.html
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and cancer cells.

Figure 8.1: Description of how KEGGs networks collection was generated.

8.2 Transcriptomic data used to filter KEGGs
networks

We used 316 human SAGE libraries (short tags) from the Cancer Genome Anatomy
Project corresponding to 21 tissues with at least one normal and one cancer
library. The raw data was downloaded from the CGAP web page (http://
cgap.nci.nih.gov/SAGE) the 27th of August of 2007 and inserted in a relational
database based in mysql 5.0. The correspondence between tags and genes was
provided by CGAP tables, the tags are mapped to unigene and HGNC ids, we
converted into ensembl transcripts using ensembl version 46. Figure 8.1 repre-
sents an schema of the generation of the KEGGs networks collection.

8.3 Connectivity Index (CI)

To measure the differences between edges weights over two sets of libraries, cancer
and normal, we developed an index, the Connectivity Index (CI). Being,

ew, the weight of and edge, that is the number of ppis between proteins of a
pair of nodes,

n, the number of transcripts of a library,

n*(n-1), the maximum number of edges in a network and

http://cgap.nci.nih.gov/SAGE
http://cgap.nci.nih.gov/SAGE
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N the number of libraries.

the CI of the KEGGs pair (K1-K2) is defined by the formula:

CI(K1−K2) =
∑
libraries

ew(K1−K2)normal
n×(n−1)

Nnormal
−
∑
libraries

ew(K1−K2)cancer
n×(n−1)

Ncancer

To show the global trend of every tissue to gain or lose inter-connectivity in
each KEGG meta-category in cancer, we summarised every CI into a categorical
index, 1 for lost in cancer (CI > 0), -1 for gained in cancer (CI < 0) and 0 for no
differences (CI = 0). After assigning one of these three values to every KEGG
pair in each of the scenarios defined by the tissue and the KEGG meta-category,
we extracted a global index for each of them by adding up all the categorical CIs
and dividing the result by the number of KEGGs involve. Thus, we have a global
index for each of the tissues and each of the meta-categories.
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Results





Chapter 9

Tools for functional
profiling. The Babelomics
suite

The high-throughput experiments such as DNA microarrays are snapshots of the
cell stage in a particular instant. They measure global genome activity in terms
of transcription. The number of probes of a typical microarray experiment is
about 50,000. This size is definitely prohibitive for the traditional methodologies
for data analysis in molecular biology. Therefore, their emergence has been fol-
lowed by the development of databases that could deal with the management of
this huge amount of data and bioinformatics tools for the extraction of relevant
biological information. This thesis aims to contribute to the second aspect. We
have implemented several methodologies integrated in Babelomics, a web-based
suite of programs for functional profiling of genome-scale experiments.

Babelomics first release was in 2005 and since then it has been continuously
evolving. New modules have been added with the aim of providing more sources
of annotation and novel methodologies. Babelomics has been conceived as an
integrated suite of programs directly connected to GEPAS, one of the most com-
plete integrated packages of tools for microarray data analysis available over the
web. Therefore, using GEPAS together with Babelomics, a complete analysis of
a microarray experiment can be performed, from normalization to the most ad-
vanced methods for functional profiling. However, Babelomics is not restricted to
microarray data. Apart from being totally platform independent, the programs
are designed to accept any kind of list of genes or genes associated to a value.
The criteria of the selection does not affect the methodology although it must be
considered in the interpretation of the results.

A brief description on the modules and their classification available in last
Babelomics release (v3.0) is given next:

• Tools for functional enrichment analysis:
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– FatiGO: performs functional enrichment analysis by comparing two
lists of genes by means of a Fisher’s exact test. Gene modules tested
include functional criteria (GO, KEGG, BioCarta, etc.), regulatory
criteria (transcription factor targets, miRNA, etc.) and chromosomal
location.

– Marmite: allows performing functional enrichment tests using text-
mining derived gene modules. Three types of definitions are used:
generic functional terms (word roots), genes associated to diseases or
symptoms and genes associated to chemical compounds.

• Tools for gene set enrichment analysis:

– FatiScan: FatiScan implements a segmentation test which checks
for asymmetrical distributions of biological labels associated to genes
ranked in a list. This test only needs the list of ordered genes and not
the original data which generated the ranked lists. This means that
can be applied to the study of the relationship of biological labels to
any type of experiment whose outcome is a sorted list of genes.

– MarmiteScan: extracts relevant information from a list of sorted hu-
man genes analysing precomputed gene-bioentity co-occurrences ob-
tained by a text-mining technique. This tool finds blocks of genes more
related to meaningful bioentities than what it is expected by chance.

• Tool for tissue/phenotype-based profiling:

– Tissues Mining Tool: compares expression profiles of two lists of
genes in a set of tissues. The aim of the tool is to extract different
patterns of expression between two groups of genes in different tissues
and histologies. In order to improve the possibilities of the analysis
and to cover most of the scope of the possible experiments users are
interested in, we provide data from two type of platforms, SAGE Tags
and Microarray (Affymetrix) expression data.

• Tool for functional annotation:

– Blast2GO: Blast2GO is the web counterpart of an already running
Java application (Conesa et al., 2005) for high-throughput functional
annotation of (novel) DNA or protein sequences.

• Other utilities:

– Rosetta: cross-reference of gene and protein ids. Rosetta includes
most of gene and protein ids available.

– GOGraphViewer: a viewer tool that generates joined gene ontology
graphs (DAGs) to create overviews of the functional context of groups
of sequences. Interactive graph visualization allows the navigation of
large and unwieldy graphs often generated when trying to biologically
explore large sets of sequence annotations.
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In the following sections we will give a more detailed explanation of the web
applications developed during this thesis, all of them integrated in Babelomics:
Marmite, MarmiteScan, Tissues Mining Tool and SNOW that, although not in
version 3.0, it will be available in next release.

9.1 Marmite

Marmite (Minguez et al., 2007) stands for ”My Accurate Resource for Mining
Text” and it is placed among the modules in Babelomics that perform a two
steps approach-based functional profiling of genome-scale experiments. Thus, a
previous step to select the ”key” genes of the analysis should be done by the user
(GEPAS can be used for this purpose).

Marmite aims to characterise lists of genes by means of their co-occurrence
in the scientific literature with meaningful words (bioentities) related to different
biomedical aspects like drugs, chemicals or diseases. The co-occurrence between
a word and a gene in a scientific paper is assumed to be indicative of some kind
of association that in principle cannot be established as positive or negative. The
co-occurrences among bioentities and genes are extracted from the biomedical
literature by a text-mining software. Such software provides a score that evaluates
the strength of the association comparing their common and solely appearances
in PubMed abstracts, see Materials and Methods section 5.3 for more details.

As mentioned in the introduction, this kind of approaches are still necessary
because the annotation of the genomes and proteomes is far away from being
complete by means of standard terminology like GO terms, Mesh words or others.
Moreover, the information that can be extracted through the bioentities cover
particular aspects of the research achievements that are far out of the scope of
common annotation sources like GOs or KEGGs.

However, there are also weak aspects in the extraction of meaningful associ-
ation between genes and bioentities. The first one would be the lack of standard
nomenclature when referring to the gene’s or protein’s name. Apart from the
variety of ids used by the databases to annotate a sequence, the gene name may
also have synonyms that have been carried out historically, but they are not rec-
ognized by any sequence database as main ids. The gene names and synonyms
may also be common English words that can be misinterpreted as pointing to a
gene when they are not (some examples are genes called archipelago, capicua or
ebony). The writing style and word usage are also a constraint to the power of
text-mining techniques because the same concept may be expressed by several
words and they should be evaluated in common, not separately.

A Marmite analysis starts with the selection of a set of ”important” genes.
This depends obviously on the experiment design and should be done with enough
statistical confidence. The list of genes selected is compared to a second list that
is normally the background (rest of the genes in the genome or at least in the
experiment). Users may select the type of bioentity they want for the analysis:
disease associated words if they want to find out modules of genes acting in the
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Figure 9.1: Marmite results example. Two lists of genes were submitted, these are
the results for the hypothesis that score distributions of gene-bioentity co-occurrences of
list 1 is greater than score distribution in list 2. Each row represent a bioentity found
significantly over-represented in list 1, the boxplot with both distributions and a p-value
corrected by FDR are shown.

same disease, chemical products for modules of genes associated for their common
relation to a particular drug or compound, or word roots, a more speculative
definition of module where the genes have association to words with the same
root, e.g. catabol, apoptosi. The Marmite input web form also provides three
more options to select:

• Minimum number of genes with a score: gives the possibility to
restrict the bioentities tested to those with a certain number of annotation
within the list. The speed of the method will increase and the adjustment
of the p-values will be lower if we just test those bioentities with a good
coverage of annotation of the list submitted.

• Number of bioentities in the results: controls the number of bioentities
shown in the results page. The significant bioentities will always be shown
but user may control to get also the ones with not significant differences.

• Click if HUGO, HGNC, gene names: controls how Marmite performs
the mapping of the list elements. The link in the Babelomics database
between genes and bioentities is made through the HUGO id (also called
HGNC or gene name) because the data was provided in this way by the text-
mining software. If user submits the same id as it is stored in Babelomics,
the mapping is direct but if other id is provided there is a conversion step.

The results provide a list of bioentities with a significant association to any of the
lists submitted, a plot of the distributions of the lists scores for each bioentity as



Section 9.2. MarmiteScan 63

well as the list of the genes with their score that are associated to the bioentities
in list 1 and list 2 (background). Figure 9.1 shows an example of the results of a
Marmite analysis.

9.2 MarmiteScan

MarmiteScan (Minguez et al., 2007) is the gene set version of Marmite. It uses
the same source of annotation and usage philosophy but avoids a previous step
of selection of key genes (see Materials and Methods section 6.3.2 for a detailed
explanation of the methodology).

The input data for MarmiteScan is similar to the one for the FatiScan module:
a list of genes with a parameter associated. The program will sort the genes using
this value from greater to smaller or vice versa and extracts the bioentities that
have scores distributions with a significant correlation with the ranking. Other
input parameters of the application are:

• Type of entity: as in Marmite, users can evaluate their genes using three
categories of bioentities (disease associated words, chemical products and
word roots).

• Filtering entities to test: Parameter to select minimum number of genes
with a score for an entity. Entities with less than this number in both lists
will be excluded from the analysis. Default and minimum is 5.

• Number of partitions: Parameter to select the number of partitions that
the algorithm makes to the sorted list of genes. Partitions are made based
on the values associated to the genes. Users may choose values between 20
and 100.

• Threshold p-value: Threshold for the p-value to classify a bioentity as
significant. Users can choose between 0 and 0.2 (default: 0.05).

• Number of entities to present in the results: Controls the number of
bioentities presented in results page. Entities with significant p-values will
be always shown anyway, so this restriction will never produce a lack of
relevant information. Setting it to 0 means that only significant bioentities
are shown.

• Submit gene lists: User should click this checkbox if the lists have only
gene names (HGNC ids, HUGO ids, common names). The annotations are
done using HUGO ids, so what MarmiteScan does is to convert any gene
id to HUGO id through an ensembl id. If user provides gene names, the
conversion process will be omitted, otherwise some genes might be excluded
from the analysis because they match with two ensembl ids or the ensembl
id match with two HUGO names.
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Figure 9.2: Representation of MarmiteScan results. See text for explanation.

Figure 9.3: More details of bioentities characterization in MarmiteScan results. See text
for an explanation.
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• Do you want us to sort genes/values for you? Indicate direction:
Users may choose to sort the genes according to the value in both directions.
This option may also be used to change the hypothesis to test.

The results show the bioentities with a score distribution that have any kind
of correlation with the distribution of the parameter used to sort the genes.
In figure 9.2 we represent the four possibilities of the correlation. The graph
may be divided into four quadrants labelled as OT (Over-represented in Top),
UB (Under-represented in Bottom), UT (Under-represented in Bottom) and OB
(Over-represented in Top). To understand what ”top” and ”bottom” mean, we
have to consider that MarmiteScan is a segmentation test where a set of partitions
are applied to the ranked list of genes. Each partition divides the list in two and
then a comparison is performed between the genes at the top part and those at the
bottom part. Bioentities placed in OT quadrant are those which have a higher
score distribution in top genes and the partition in which the most significant
p-value has been found is over the middle partition. If the partition is under the
middle partition, we cannot say that the bioentity is over-represented at the top
of the list because the middle partition establishes the borderline between top
and bottom but we can certainly say that the bioentity is under-represented in
bottom genes (UB quadrant). The same situation is applied when bottom genes
have a higher score distribution, in OB quadrant we place the ones in which the
significant partition is under middle partition and in UT quadrant those with
significant partition over middle partition.

Apart from the quadrant in which a bioentity is placed, there are other details
that characterise each bioentity (figure 9.3):

• P-value: lower p-value found in the comparisons performed. There are
as many comparisons as partitions are made. The p-value is adjusted by
FDR.

• Colour: red if top genes have a higher score distribution than bottom and
blue if bottom have it. The colour grade indicates in which partition the
lowest p-value have been found from more to less coloured.

• Genes/bioentity scores importance: This indicates the importance of
the scores of the set of genes in which a lower p-value have been found
regarding the total values of the scores in the complete list. The formula
applied is shown in figure 9.3.

9.2.1 A case of study of AML

A recent study (Stegmaier et al., 2004) described a high-throughput screening
methodology to test whether the action of a number of compounds in the tran-
scriptome of cells with Acute Myeloid Leukemia (AML) reproduces the gene
signature characteristic of AML differentiation to normal cells.

The gene expression data of each AML cells treated with a compound was
compared to i) the expression data of the negative controls, ii) AML cells or iii)
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AML cells treated with compounds that do not alter gene expression. For the
comparison we applied a Student t-test to each pair of classes: AML+compound
versus the corresponding control using the T-Rex tool from GEPAS (Herrero
et al., 2003; Montaner et al., 2006, Tarraga et al., 2008) to build up a list of
genes ranked according their differential expression between both classes. Then,
the output of this step was a set of lists of genes sorted by the t statistic and
therefore by their importance in the difference between the compound action
versus the AML status. MarmiteScan method was used as framework to imple-
ment a specific test to extract statistically significant chemical products related
to the genes of the set of ordered genes. A Kolmogorov-Smirnov was applied to
compare the distributions of the scores of the co-occurrences between genes and
chemical products across the list in order to detect significant asymmetries. The
p-values assigned to the bioentities were adjusted by False Discovery Rate (FDR)
(Benjamini et al., 1995) considering all the tests performed in the analysis.

The result of the application of the MarmiteScan algorithm to the list of genes
ranked by the T-Rex program are the bioentities (chemical products) significantly
associated to high gene expression in the AML+compound condition with respect
to the untreated AML cells. We have found five experiments (AML+ compound)
in which bioentities with a significant differential association could be detected
(Table 9.1). Two out of the five compounds [Erythro-9-(2-hydroxy-3-nonyl) ade-
nine HCl and 5-fluorouridine] were found to have a gene signature similar to
those that effectively differentiate AML cells to normal according to Steigmer et
al. (2004).

In this example, the results should be understood as co-activations of blocks
of genes, which have been related with chemical products through the biomedical
literature, when two experimental conditions are compared (treated AML cells
versus different controls). The nature of the chemical products found can give a
better understanding of the biochemical processes acting in AML cells with the
different treatments received. Although a detailed study of the actions of the
genes annotated with the significant bioentities is out of the scope of this paper,
some relevant pointers to the most interesting findings follows.

Interestingly, phosphatidylinositol has been found significant in three different
experiments. It constitutes the substrate for the Phosphatidylinositol 3-kinase
(PI3), a key enzyme reported of being activated in AML cells mediated by the
gene Akt (Xu et al., 2003) implicated in cell proliferation, cell growth and cell
survival. The study of this pathway could give good clues on the processes
operating in the background of these experiments. The compound fluorouridine
acts by stopping DNA synthesis and thus inhibiting cell proliferation (Stegmaier
et al., 2004). Bioentities found for this compound may also reflect this action. It is
known that glutathione has an important role in DNA synthesis, cell proliferation
and apoptosis as well as in protecting cells from toxics (Wu et al., 2004) such
as hydrogen peroxide, which are also among the significant terms found in the
fluorouridine experiment. Cyclic AMP (cAMP) promotes myeloid differentiation
(Maddox et al., 1988) and it has been found significant within an experiment that
could not be assigned to the pro-differentiation compounds class by Stegmaier et
al. (2004)
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Compound Bioentity (chemical product) FDR-adjusted p-value

Erythro-9-(2-hydroxy-3-nonyl)

adenine HCl

calcium 0.0349

16-ketoestradiol calcium 0.0108

hydrocortisone 0.0371

cAMP 0.0121

5-fluorouridine Sodium salicylate 0.0107

oxygen 0.0317

Hydrogen peroxide 0.0192

Phorbol 12 myristate 13

acetate

0.032

thioester 0.0328

spingosine 0.032

phosphatidylinositol 0.0014

glutatione 0.0012

a-methyl-L-p-tyrosine acetylcholine 0.0019

noradrenaline 0.0487

cAMP 4e-04

dihydrotestosterone 0.034

proteoglycan 0.0298

calcium 0.0378

sulmazole choline 0.0144

cAMP 0.0204

Table 9.1: List of bioentities found to be significantly over-represented in the treatment
of AML cells with an specific compound. In bold, the compounds found to have a gene
signature similar to those that effectively differentiate AML cells to normal according to
Steigmer et al., 2004.
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9.3 Tissues Mining Tool (TMT)

This module aims to give additional information about the general phenotype
transcriptional profiling of the genes selected for a two steps functional enrichment
analysis. Cancer and healthy tissue expression data from two different platforms
(SAGE and Affymetrix) are integrated in the module to draw a general picture of
the expression pattern of the list of genes as a whole (see Materials and Methods
section 6.1 for more details on data and methodology).

The tool may have two different usages:

• The validation of the “gene selection” step in a functional enrichment anal-
ysis whenever the original genomic experiment has a correspondence with
any of the tissues and histologies (phenotypes) provided by the tool.

• As a exploratory additional profile generator of the set of genes in different
tissues and cancer states.

There are also two more ways of usage in terms of the experiment design:

• Compare two lists of genes, e.g. two lists of genes with different pattern of
expression (clusters).

• Compare a list of genes versus the rest of the genes (background).

The second approach can be considered a Gene Set Enrichment (GSE)-like method-
ology because the list of genes is interpreted as an annotation set (functional
module), just like a GO term or a KEGG pathway define a set of genes. This
set of genes’ expression data is mapped into the whole distribution of expression
values in each phenotype (tissue + histology) to see whether it is at the heighest
or lowest values of the global expression profile.

Considering all these possibilities in the analyses that can be performed with
TMT, some of the typical questions that can be addressed include: the charac-
terization of the profile of activation of the pre-selected genes in different tissues
and histologies, their characterization as housekeeping genes or their association
to specific types of cancer.

Some configuration possibilities can be set up to refine the analysis, they
depend on the dataset chosen.

Input parameters for SAGE Tags:

• Type of tags: Refers to the type of tags used to infer gene expression,
short (14 bases) or long (17 bases).

• Tissues: The set of tissues that can be selected. Each one has a set of
libraries with expression values of tags that are mapped to genes.
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• Histology: The combination of histologies that can be selected. Each
library is characterized by a tissue and a histology and one phenotype may
be represented by several libraries.

• Exclude cell lines: The libraries generated from cell lines may be excluded
from the analysis.

• Minimum number in the libraries: This is a way to select the quality
of the libraries that are going to be included in the analysis.

• Percentage for null values accepted in libraries: A matrix is gener-
ated with the expression values where the columns represent the genes and
the rows are the libraries selected. This parameter removes from the ma-
trix (passed to the t-test) the columns (genes) with more than the specify
percentage of null values.

• Percentage for null values accepted in genes: Remove rows (libraries)
from the matrix with more than the specify percentage of null values.

Input parameters for Microarray data:

• Kind of normalization: TMT provides expression values normalized
by two methods: MAS5 (Affymetrix method) and gcRMA (Bioconductors
method).

• Set expression value measure for multiple probes mapping same
gene: The expression value for the genes with more than one probe mapped
to them may be set up as the mean, median, greatest, lowest, percentile 25
or 75 of the expression values of the probes.

• Tissues: The set of tissues that can be selected.

The results provide a list of phenotypes (tissues + histology) with a p-value
associated showing the differences in the expression profiles. A plot of the distri-
butions of the lists’ expression values for each phenotype as well as the list of the
genes with their expression value that are associated to the phenotypes in list 1
and list 2 (background). Figure 9.4 shows an example of a TMT result.

9.4 SNOW

SNOW stands for "Studying Networks in the Omic World" and comes into Babe-
lomics as a complement of tools as FatiGO and Marmite, introducing the power of
function prediction and network structured data of ppis in the functional profiling
of high-throughput experiments’ results.

SNOW performs two different and complementary types of analysis to the list
of proteins/genes submitted:
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Figure 9.4: TMT results example. Two lists of genes were submitted using Affymetrix
part. Each row represents a phenotype (tissue) found significantly over-represented in
any of the lists. The boxplots with both distributions and a corrected p-value by several
methods are shown.

• Evaluates the role of the list within the interactome. SNOW eval-
uates the global degree of connections, centrality and neighbourhood ag-
gregation of the list by comparing the distributions of nodes connections
degree, betweenness centrality and clustering coefficient respectively versus
the complete distribution of these parameters into the interactome.

• Evaluates the list’s cooperative behaviour as a functional mod-
ule. SNOW calculates the MCN, the minimum network that connects the
proteins/genes in the list using a user-fixed number of non-listed proteins
to connect nodes in the list. The topology of this network is evaluated by
comparing distributions of node, edge and graph parameters of this network
against pre-calculated distributions of a set of random lists with same size
range. By this, SNOW extracts information about whether the network
represented in the list has more hubs, is more connected or has a more
regular connections distribution than a random network. To summarise,
SNOW firstly generates the functional module (MCN) and then compares
it versus a background (the set of random lists). This approach is similar
to other’s tools for functional enrichment analysis such as FatiGO or Mar-
mite with the difference of not having pre-annotated functional modules to
evaluate, instead SNOW have to build it.

See Materials and Methods sections 6.4.2, 6.4.3 and 6.4.4 for a detailed explana-
tion on the methods used to perform both analyses.

The input parameters for the SNOW tool are:
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• Select interactome: The type of interactome user wants to use for the
analysis, there are three options: filtered, non-filtered and own interactions,
see Materials and Methods section 5.5.2 for a detailed description.

• Submit your own interactions: Users may perform the analysis using
their own list of interactions. These should be submitted in tabulated
or .sif format (compatible with other network visualization tools such as
Cytoscape). If users choose this option, the evaluation of the MCN using
the random lists set as background is not performed because it is a very
costly computational task.

• Proteins in interactions and list in same id?: Only if user submits
their own interactions, we ask whether SNOW needs to convert ids to be
able to match your interactions with the ids in the list or they have already
the same id type.

• Maximum number of external proteins introduced: Choose the
number of non-listed proteins/genes that SNOW may introduce between
two nodes to find a path. This is like choosing the maximum length of the
shortest path to be able to introduce it into the MCN. The options are from
0 to 3.

• Do you submit genes or proteins?: SNOW will use in consequence ei-
ther proteins interactome or the "genes interactome". Obviously the “genes
interactome” is an artefact, see Materials and Methods section 5.5.2 for a
justification.

The results of SNOW can be divided into three main parts. Two for each of
the types of analysis explained before and a third one that provides a visualization
facility and functional information about the MCN. Results consist of:

• Statistical evaluation of the role of the list within the interac-
tome: Boxplots of the list’s distributions for the genes/proteins parame-
ters mapped into the interactome versus the whole parameters distributions
in the interactome. The p-value for the Kolmogorov-Smirnov test is also
provided.

• Statistical evaluation of the MCN: Boxplots of the list’s and ran-
dom’s distributions for the MCNs generated from lists. The p-value for
the Kolmogorov-Smirnov test is also provided.

• Visualization and functional information about the MCN: SNOW
also provides an interactive visualization of the MCN (figure 9.5) from where
users may explore the nodes and edges in the network as well as getting
functional and network information of the MCN elements. A not less im-
portant part of the results is the functional information provided by means
of GO terms and description of the elements of the MCN divided into com-
ponents, bicomponents, listed and non-listed nodes. Moreover, the shortest
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Figure 9.5: Interactive visualization of a functional module generated by SNOW.
Rounded nodes are the user input proteins and the rectangles are the non-listed proteins
introduced by the program. This java applet permits to zoom, move network elements,
collapse edges and obtain topological and functional information about the network.

paths and the articulation points in the MCN are reported. This infor-
mation will guide the user to identify the important nodes within, or even
outside, the list as well as evaluate the modular functionality of the list as
an entity.

A two list comparison scenario is also implemented. For it both, list nodes inter-
actome parameters and MCN node parameters are compared using kolmogorov-
Smirnov test.



Chapter 10

A function-centric approach
to the biological
interpretation of microarray
time-series.

10.1 Time series microarrays (Plasmodium fal-
ciparum Intraerythrocytic developmental cy-
cle)

DNA microarray technology has been extensively used to obtain snapshots of
the expression of genes in different samples, tissues, experimental conditions,
etc. While typical microarray assays are designed to study static experimental
conditions, there is a class of experiments, time series, in which a temporal process
is measured. Time series offer the possibility of identifying the dynamics of gene
activation, which allows to infer causal relationships. Such relationships can
be used to infer models of regulatory networks (Bar-Joseph et al., 2003) either
directly (Herrero et al., 2003) or through the identification of activators and
repressors (Luscombe et al., 2004).

An important difference between these two types of experiments is that while
static data sampled from a population (e.g. disease cases, healthy controls, etc.)
are assumed to be independent, time series data are characterized by display-
ing a strong autocorrelation between successive points (Bar-Joseph et al., 2004).
Initially, time series were analysed using methods originally developed for inde-
pendent data points (Friedman et al., 2000; Spellman et al., 1998; Zhu et al.,
2000). More recently, algorithms were developed to specifically address this type
of data. Data analysis now address issues such as the alignment of temporal data
sets (Aach et al., 2001; Liu et al., 2003) and the identification of differentially ex-
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Figure 10.1: Plasmodium falciparum Intraerythrocytic cycle. Taken from http://www.
pasteur.fr

pressed genes (Bar-Joseph et al., 2003). Also different clustering methods specific
for time series have been recently proposed. Among these, clustering based on
the dynamics of the expression patterns (Ramoni et al., 2002), clustering using a
hidden Markov model (Schliep et al., 2004) or clustering specifically devised for
short time series (Ernst et al., 2005).

The final aim of a typical microarray experiment is to find a molecular ex-
planation for a given macroscopic observation, which in the case of time series
is the dynamic behaviour of a system such as a cell cycle (Bozdech et al., 2003;
Spellman et al., 1998), responses to temperature changes or stresses (Gasch et
al., 2000), immune response (Nau et al., 2002), etc. Commonly, functional en-
richment methods are used for the biological interpretation of such experiments.
However, we already have seeing that these kind of methodologies it is recently
being replaced in the case of supervised experiments (e.g. differential expression)
by a family of methods generally called gene set methods. In this chapter, we
present an application of one of this methods, FatiScan (Al-Shahrour et al., 2005)
to a time series obtained for the intraerythrocytic developmental cycle of the par-
asite Plasmodium falciparum (Bozdech et al., 2003). The results obtained are not
simple lists of genes, but the pattern of temporal activations and deactivations of
the different biological roles that shape the developmental cycle of the parasite.

The asexual blood stage of the parasite Plasmodium falciparum (figure 10.1)
causes the pathogenesis of the parasite in human, therefore understanding its gene
expression profile is crucial for drug discovery and vaccine design. In blood, the
parasite undergoes a 48 hours cycle characterized by three developmental forms,
Ring (1-17 time points, being 1 time point equals to 1 hour), Trophozite (18-29
time points) and Schizont (30-48 time points). The mature Schizont suffers an
asexual division to form up to 32 merozoites that are released to blood to invade
new erythrocytes, this produces a crisis known as malaria fever. Plasmodium

http://www.pasteur.fr
http://www.pasteur.fr
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falciparum life cycle is highly complex, involving two different hosts (mosquito,
human), different tissues (liver, blood and mosquito), intra and extra cellular
location and three developmental stages. Many attempts have been made to
explain the gene expression profile of the intraerythrocytic developmental cycle
of the parasite due to its implication in human health (Ben Mamoun et al., 2001;
Bozdech et al., 2003).

Here we take a new approach based on the direct analysis of the dynamics
of the biological roles fulfilled by the genes, as described by the GO categories.
More than 40 GO terms over-represented at high expression values were obtained
for some GO categories and levels, which constitute an unprecedented wealth of
information on the functional behaviour at molecular level of P. falciparum blood
cycle across time. Results for each ontology class may give different type of
information. Thus, plots of GO cellular component terms show how the parasite
activity moves from some cellular compartments to others (for example from
nucleus in the initial stages of the cycle to membrane and host in the final stage)
while molecular function and biological processes GO categories are related to
biological roles of different nature coordinately played by the genes in the cell.

Here we provided only a summarized discussion of several aspects of the dy-
namics of the biological roles and subcellular locations at which the genes are
carrying out their activities. A more detailed discussion is beyond the scope of
this thesis.

10.2 Dynamics of the Biological Roles along the
Cell Cycle

The plots of the different GO terms found as significantly over-represented at
different times clearly illustrates the dynamics of the different roles and how
the cell carries out a sequence of functional steps during its life cycle. Figure
10.2 illustrates how different biological roles switch on and off along the time
points. These biological processes account for the molecular events that govern
the transitions between the developmental stages of the intraerythrocytic cycle
of the parasite. Just to cite a few examples, GO terms related to metabolism are
found in early staged of the cycle, whereas GO terms related to signalling occur
preferentially at the end, in the schizont stage.

Figure 10.3 gives information on the location, at subcellular level, where the
above mentioned biological roles are taking place. It is very illustrative the fact
that during the initial stages much activity occurs around locations related to
replication (RNA polymerase complex, nucleus, ribonucleoprotein complex), while
in the later stages terms related to invasion and with the interaction with the
host cells are found (host cell cytoplasm, host cell plasma membrane).

In the next section a more detailed explanation of some terms in relation to
the stage of the cycle in which they appear is provided. Also, in the additional
information web page the three GO categories at different levels can be found.
More precise terms, descendant in the GO hierarchy of the terms shown in the
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Figure 10.2: Dynamics of the biological process GO category at level 3 along the in-
traerythrocytic developmental cycle of the parasite. The blue vertical lines mark the
transition between ring to thropozyte and from this stage to schizont, respectively.

Figure 10.3: Dynamics of the subcellular location GO category at level 4 along the
intraerythrocytic developmental cycle of the parasite. The blue vertical lines mark the
transition between ring to thropozyte and from this stage to schizont, respectively.
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Figure 10.4: Representation of the genes activated at time points 3 and 4 annotated with
the GO term RNA polymerase complex. Two new genes highlighted in blue are activated
in time point 4.

figures, account with more precision for the biology of the parasite and can be
found in the web page of additional information in http://bioinfo.cipf.es/
data/plasmodium. Additionally, this page contains links to the genes in the GO
categories found as significantly over-expressed. Figure 10.4 shows the type of
information that can be found at http://bioinfo.cipf.es/data/plasmodium,
for every GO category and level graph each time point is linked to the list of
induced genes annotated with that GO term. Thus, if we look at two consecutive
time points and the same GO term, we may see which genes are induced and
repressed in such a small transition.

10.3 Biological Roles in the Different Develop-
mental Stages

A summary of the GO terms (not all but the ones that are in consonance with
previous findings as well as other relevant in this context) over-represented during
the Plasmodium Intraerythrocytic Cycle follows. A complete list of the GO terms
found is available in http://bioinfo.cipf.es/data/plasmodium.

10.3.1 Ring and Early-Trophozoite

Basic metabolism is on the top of the cell activities during this part of the cycle
in which the parasite is starting the maturation process. This is reflected by a
high gene activity, firstly related to transcription and then to translation, see fig-
ures 10.5 and 10.6 for details. Some GO terms found as over-represented at this

http://bioinfo.cipf.es/data/plasmodium
http://bioinfo.cipf.es/data/plasmodium
http://bioinfo.cipf.es/data/plasmodium
http://bioinfo.cipf.es/data/plasmodium
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Figure 10.5: Biological process level 4. Highlighted in blue the more representative GO
terms activated in Ring and early Trophozoite.

stage that support these evidences are: transcription, DNA-dependent, mRNA
splicing, RNA metabolism, transcription, RNA modification, RNA metabolism,
nucleotide metabolism, nucleus, translation, biosynthesis, protein biosynthesis,
amino acid activation, amino acid metabolism, tRNA metabolism, regulation
of protein biosynthesis, regulation of translation, regulation of metabolism, or-
ganic acid metabolism, RNA polymerase complex and tRNA and amino acid
metabolism.

There is also an over-representation of terms that express the increase of the
ribonucleotide biosynthesis such as: pyrimidine base metabolism and pyridine
nucleotide metabolism. The presence of a high metabolic activity can be de-
duced from the over-representation of metabolism and other related terms like
macromolecule biosynthesis and protein biosynthesis, all with a high number of
genes involved. The high representation of protein biosynthesis could explain the
over-representation of the proteasome complex term at this stage (proteosome as a
quality control system). Interestingly, we found in time point 15 over-represented
the terms host and host cell cytoplasm. The major stage of interaction with host
comes later on in the cycle.

10.3.2 Trophozoite and Early-Schizont

We have found terms associated to DNAmetabolism significantly over-represented
in this developmental stage: DNA metabolism, DNA replication, DNA replica-
tion factor, replisome, replication fork and chromosome. See figures 10.7 and
10.8 for details. Although, the initial analysis of the microarray data suggested
that DNA metabolism was active from the beginning of the cycle until the early
schizont stage, our results seems to extend the importance of this process along
almost all the schizont stage (evidences in term DNA replication -Biological pro-
cess category- and replisome -Cellular component category-). Metabolism seems
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Figure 10.6: Cellular component level 4. Highlighted in blue the more representative
GO terms activated in Ring and early Trophozoite.

Figure 10.7: Biological process level 7. Highlighted in green the more representative GO
terms in Trophozoite and early schizont.

to be also very important in this developmental stage as shown by terms such as:
carboxylic acid metabolism, protein biosynthesis and macromolecular metabolism.
Regarding subcellular location terms, cell activity has an important location in
mitochondria, as shown by the terms: mitochondrion, mitochondrial membrane,
mitochondrial inner membrane, ion transport and respiratory chain complex III.
This, together with the over-representation of the terms plastid and apicoplast,
supports the theory that in this period translation activity moves from nucleus
to plastid and mitochondria.
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Figure 10.8: Cellular component level 6. Highlighted in green the more representative
GO terms in Trophozoite and early schizont.

Figure 10.9: Biological process level 6. Highlighted in red the more representative GO
terms in Schizont.
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Figure 10.10: Cellular component level 4. Highlighted in red the more representative
GO terms in Schizont.

10.3.3 Schizont

GO terms associated to protein catabolism become significant: protein catabolism,
proteolysis and peptidolysis, proteasome complex and macromolecule catabolism.
See figures 10.9 and 10.10 for more details. Other terms as DNA replication and
cell proliferation, indicate that cells are in a high division activity stage. At the
end of this period the main intracellular activities of the parasite are located
close to membrane (as indicated by terms such as membrane, host cell mem-
brane and infected host cell surface knob) and much more plasmodium specific
terms associated to invasion and interaction with host become important (cell
communication, cell-cell adhesion, response to stimulus, response to biotic stim-
ulus, response to external stimulus, heterophilic cell adhesion, defense response,
evasion of host defense response, host pathogen interaction and cytoadherence to
microvasculature). More specific terms are in consonance to previous analysis in-
dicating that proteases, kinases and actin-myosin motors play an important role
in invasion (kinase activity, myosin, actin cytoskeleton and peptidase activity)
The activity also increases in the plastid genome.

10.3.4 Early Ring

Invasion-specific biological activities still remain significant in the earliest hours
of Ring stage as shown by GO terms such as: evasion of host cell response and
host cell plasma membrane. In the original paper (Bozdech et al., 2003) the
authors alert on the possibility of some contamination from the previous stages
affecting to the ring stage, so the results obtained for this stage must be taken
carefully. Terms such as cell communication, cell invasion, response to stimulus,
cell adhesion and other similar become visible already in the very first time points
of the analysis.





Chapter 11

Deciphering the role of
protein-protein interaction
networks in the functional
profiling of high-throughput
experiments

This thesis focus on the search of functional modules in a transcriptomic con-
text. We have developed methodologies available through bioinformatics tools
and performed analysis using them to find functional classes that are induced
or repressed as a block under certain conditions as deduced from transcriptomic
analyses. Classically, the functional modules are sets of proteins or genes pre-
defined by their belonging to common annotation classes like GO terms or KEGG
pathways. One of the challenges for introducing ppi data into functional profiling
of high-throughput experiments is that such functional modules are not defined
as discrete entities but as part of a global network of pairwise interactions (in-
teractome).

To extract the active modules from the interactome we have to consider each
particular cell stage mainly because, contrarily to the nature of the genome, the
proteome is not a static entity. It depends firstly on the transcriptome but also on
the post-transcriptional and post-translational regulatory events. Although the
regulation at transcript and proteins level is very important (post-transcriptional
and post-translational regulation) the transcriptome in combination with the
interactome has been used as an aproximation of the proteome to infer gene
function (Ideker et al., 2001), to extract signatures to predict disease phenotypes
(Camargo & Azuaje, 2007; Lee et al., 2007; Liu et al., 2007; Chuang et al.,
2007) as well as to detect possible drug targets by inferring topological features
of particular classes of genes (Wachi et al., 2005; Johsson and Bates, 2006).
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The SNOW tool (section 9.4) and its methodologies concentrate on searching
ppi networks as functional modules in transcriptomic experiments. As a com-
plement of that, we wanted to explore the role of ppi data firstly within more
classical functional classes like GO terms, KEGG pathways or BioCarta pathways
as well as in co-expression modules in cancer studies and secondly within lists of
induced and repressed genes taken from microarray experiments.

11.1 Ppi networks in Gene Ontology terms

GO terms are typically used as a standard set of pre-defined classes to perform
functional enrichment analysis. Here we wanted to check how ppi networks con-
tribute to the formation of functional classes like GO terms. With this aim, we
applied the methodology implemented in SNOW for testing the cooperative be-
haviour of a list of genes or proteins in ppi terms (see Materials and Methods
section 6.4.4 for details) to the collection of lists of genes sharing a GO term as
described in Material and Methods section 7.1. We focused on human data.

The analysis was performed using our home-made filtered interactome in two
conditions: allowing none and one non-listed transcripts. So two MCNs were
generated and evaluated for each GO term. The distribution of the connections
degree (degree), betweenness centrality (betweenness) and clustering coefficient
of the nodes in each of the MCNs generated was compared using a Kolmogorov-
Smirnov test versus the distribution of the same parameter in a set of 10,000
MCNs generated from a same size range set of lists populated with random
proteins/genes. For each of the parameters comparisons, two possible situations
were reported:

• Positive results. The distribution of the parameter in the MCN found
within the GO term is significantly higher than the distribution of the
parameter in the random set of lists of genes with a p-value less than 0.05.
For the evaluation of the components we considered a positive result when
the number of components of the MCN is below than the lower value of
the 95% confidence interval calculated from the MCNs extracted from the
random lists.

• Negative results. The distribution of the parameter in the MCN found
within the GO term is significantly lower than the distribution of the pa-
rameter in the random set of lists of genes with a p-value less than 0.05.
For the evaluation of the components we considered a negative result when
the number of components of the MCN is greater than the higher value of
the 95% confidence interval calculated from the MCNs extracted from the
random lists.

The percentage of the positive and negative results was calculated for each net-
work parameter, complete results are shown in table 11.1. Two main conclusion
can be extracted at first sight:
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% of lists with p-value < 0.05

network parameter(s) direction of
comparison
with random

0 non-listed
genes allowed

1 non-listed
gene allowed

betweenness greater 10.12 36.53
less 0 0.26

degree (connections) greater 36.92 71.52
less 0 0

clustering coefficient greater 16.01 22.21
less 0.03 0

bet + degree + cl. coef. greater 6.1 15.11
less 0 0

components greater 0.03 0
less 25.44 51.92

components (less) + degree
(greater)

21.11 47.72

Table 11.1: Percentage of lists of genes that sharing a Gene Ontology term that have
a positive result in the comparison of their parameters distributions versus random lists
distributions.

• All the network parameters’ comparisons give a higher percentage of pos-
itive results, that is, GO terms have better network features than random
lists of proteins while the contrary rarely happens. All the percentages of
negative results are zero or nearly zero. From this, we could say that ppis
play a special role within functional classes defined by GO terms.

• The introduction of a non-listed node in the MCN results a better perfor-
mance in the evaluation of all the network parameters of MCNs. Basically
the results show that approximately the positive results increase to the
double when allowing a single non-listed node.

In a more detailed observation of the results we can see that there is a differ-
ent performance of the network parameters evaluated, being connections degree
and number of components the two parameters with higher distribution differ-
ences followed by clustering coefficient and betweenness (when a non-listed node
is allowed, betweenness show a greater distribution difference than clustering
coefficient). Both, connections degree and number of components indicate big-
sized networks (in relation to number of genes in the set) while betweenness and
clustering coefficient are more related to the topology of the network. There-
fore, although betweenness and clustering coefficient have a lower percentage of
positive results, this does not reflect a lack of an active network but a network
with a special topology, e.g. a signalling cascade network is a network with a
low clustering coefficient distribution because its nodes are not in very connected
areas.
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The jointly observation of the three node related features (betweenness, con-
nections degree and clustering coefficient) results in a decrease of the percentage
of positive results. The percentage of GO terms with those three parameters
distributions significantly higher than the distribution taken from the random
lists of proteins is almost half than the lower percentage for a single parameter,
betweenness, showing that there is not much overlapping among some of these
three comparisons. Nevertheless, the percentage of positive results of number of
components and connections degree almost remain the same as the lower per-
centage presented by the number of components, that gives the lower percentage
of these two parameters, showing a great overlapping between them.

11.2 Ppi networks in other functional classes and
differentially expressed lists of genes

To extend the conclusions of the study of the role of ppi networks in GO terms
to other pre-defined functional classes we performed a massive analysis of lists
of human genes and proteins taken from microarray experiments, co-expression
modules in cancer, GO terms, KEGG pathways and BioCarta classes. The aim
was studying how ppi networks are spread in different types of lists and in some
classical sources of annotation normally used for functional profiling. Table 11.2
shows the percentages of the lists in each category that presented a positive
result in each of the analysis performed. As explained in the Materials and
Methods section 7.1 the procedure was to get every list and calculate its MCN
allowing the inclusion of a non-listed node into the network. We used our home-
curated human interactome. The distribution of the connections degree (degree),
betweenness centrality (betweenness) and clustering coefficient of the nodes in
each of the MCNs generated was evaluated in same terms as we did with GO
terms, explained in previous section.

The lists of genes taken from microarrays experiments were lists of genes
over and under expressed in a wide variety of phenotypes. We subdivided them
into cancer, no cancer and up-regulated, down-regulated to test whether there
was an association of any of the network parameters evaluated with some of
these subclasses. The modules of co-expression in cancer were also taken from
microarrays experiments, see Materials and Methods section 7.2 for details.

Figure 11.1 shows the complete results for the analysis. The first observation
that can be done to the results is that KEGG pathways have the highest per-
centages of positive results in all the comparisons except in connections degree
where GO terms present a much higher rate of positive results than any of the
other classes. GO terms is the second functional class in the ranking of positive
results percentages followed by BioCarta pathways and modules of co-expression
in cancer, these two with very similar levels. Surprisingly, KEGG pathways and
BioCarta, although performing both quite well, do not have similar percentages
as expected by their definition (both represent biological pathways). Always
BioCarta have lower rates. Lists of differentially expressed genes in microarray
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Figure 11.1: Percentages of lists in every category with a significant p-value compared to
random distributions. The comparisons performed are: bdcG (betweenness, connections
degree and clustering coefficient greater than random), bG (betweenness greater than
random), dG (connections degree greater than random), compL (number of components
less than random), compL+dG (number of components less than random plus connections
degree than random).
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Gene

Ontol-

ogy

Modules Cancer

Lists

Non-

Cancer

Lists

Up-

regulated

Lists

Down-

Regulated

Lists

Biocarta KEGGs

bdcG 15.11 10.5 6.67 1.9 1.91 5.6 9.27 26.9

bG 36.53 34.9 20.44 19.85 21.02 20 32.59 48.97

dG 71.52 52.1 29.33 31.23 30.57 30 55.91 59.31

cG 22.21 13.4 7.56 2.91 2.87 6.4 12.46 31.03

compL 51.92 38 18.22 18.4 15.61 19.2 33.87 52.41

compL + dG 47.72 34.9 14.67 14.29 13.38 14 32.91 48.28

Table 11.2: Network parameters evaluation in different types of sets of genes. Lists of
genes taken from differential expression analysis of microarray experiments (cancer lists,
non-cancer lists, up-regulated lists and down-regulated lists), modules of co-expression
in cancer also taken from microarray experiments and genes belonging to the same an-
notation class (GO terms, KEGG pathways and Biocarta pathways). In rows we show
the network topological parameters evaluated, bdcG (betweenness, degree and clustering
coefficient have a significantly higher value than random sets), bG (betweenness signifi-
cantly higher than random), dG (degree significantly higher than random), cG (clustering
coefficient significantly higher than random), compL (number of components below the
95% confidence interval of random sets) and compL + dG (number of components below
the 95% confidence interval of random sets plus degree significantly higher than random)
. The value in the cells is the percentage of the set of lists with a p-value less than 0.05
compared to networks generated using same size random lists.

experiments are at the bottom of the ranking, showing much lower rates of posi-
tives results in all the comparisons. The classification of differentially expressed
lists into four categories does not show differences among them but in the cluster-
ing coefficient comparison where cancer and down-regulated lists show a higher
percentage indicating that their networks must have a higher interconnectivity.

Comparing the performance of the different network features evaluated, con-
nections degree is the parameter that showed more positive results, as observed
previously, followed by number of components, betweenness and clustering coeffi-
cient. The same conclusions as in GO terms analysis for the results of combination
of evaluated parameters can be made.

11.3 Comparison between ppi and GO enrich-
ment analyses

From the previous studies we may conclude that ppi networks do have an im-
portant role in the conformation of functionally related blocks of genes. Even in
genes detected to be differentially expressed in a transcriptomic experiment, that
may not be involved in a single activity but in more than one, we could detect
modules of action using ppi data.

After this, we wanted to compare the performance of this novel methodol-
ogy with a more classical approach for functional profiling of high-throughput
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Figure 11.2: Comparison of enrichment analysis methods performance. Percentages of
lists with: net (SNOW positive results), GO (FatiGO positive results), net+GO (SNOW
+ FatiGO positive results), net (no GO) (SNOW positive results and FatiGO negative
results), GO (no net) (SNOW negative results and FatiGO positive results).

experiments. The method selected was FatiGO (Al-Shahrour et al., 2004) as one
of the leading representatives of Gene Ontology enrichment analysis. The input
data was the set of differentially expressed genes resulting from microarray ex-
periments and the co-expression modules in cancer used in previous section, see
details in Materials and Methods section 7.3.

To be able to compare them we had to define what was a positive results
for each methodology. In the case of FatiGO, a positive result was taken as the
retrieval of at least one GO term significantly over-represented. For SNOW the
challenge was to decide when there is an enrichment in terms of a ppi network.
As explained in the Materials and Methods, section 6.4.5, we propose a heuristic
criteria consisting on taking the connections degree and the number of compo-
nents in the MCN as indicative of a compact network. Therefore, to be able to
determine whether we have a ppi network enrichment we require positives results
(as defined in section 11.1) in both connections degree and number of components
evaluations.

The results of the comparison of both analyses are shown in figure 11.2. As
pointed before, modules of co-expression present more positive results using both
FatiGO and SNOW methods. Generally, FatiGO finds more functional modules
than SNOW indicating that GO terms still define more functional classes in
transcriptomic experiments. We found that nearly 5% of the performed analyses
gave SNOW positive results and FatiGO negative results, that is, the functional
modules acting in those situations are defined by ppi networks but not by GO
terms. Interestingly, in this case both (differentially expressed lists of genes and
modules of co-expression in cancer) presented same percentages.
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Exploring KEGG pathways
physical inter-connectivity
in normal and cancer cells

This study continues with the goal of learning how ppis are spread through func-
tional classes, contributing to their definition as modules of action. The aim is
to integrate several sources of annotation in order to refine the biological infor-
mation extracted from transcriptomic analyses. With this purpose we designed
an experiment to explore how the relationships between biological pathways, as
defined by the KEGG pathways database, evolve from normal tissues to their
cancer stages.

In the Introduction we already introduced KEGG pathways as one of the lead-
ing collections of biochemical pathways available. In this study we mapped the
ppi data from our curated human interactome (see Materials and Methods section
5.5.1 for details on its generation) into the human KEGG pathways. The result
is a network of KEGGs where the nodes are the pathways and the edges repre-
sent the interactions events between proteins belonging to the nodes (KEGGs).
An edge between two KEGG pathways (e.g. KEGG1 and KEGG2) represents
at least one physical interaction between a protein belonging to KEGG1 and a
protein belonging to KEGG2. Thus, this two KEGGs have as many connections
(weight of the edge) as interactions events occur between any protein within
KEGG1 and any protein within KEGG2.

The entire collection of pairwise edges between KEGGs is called KEGGs net-
work. This novel entity is a valuable representation of the cell functionality
in terms of the integration of two very different types of information: the bio-
chemical pathways acting in the cell and the physical interactions between their
constituent proteins. In this study we have addressed both, the description of this
general picture and the exploration of the changes it suffers in several scenarios
represented by different phenotypes.
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12.1 KEGGs network description

A KEGGs network can be represented as an undirected graph. The features we
use to describe such a network are:

• Number of nodes. Number of KEGG pathways represented in the net-
work.

• Number of proteins in a node. The number of proteins annotated with
a particular KEGG pathways (node).

• Node internal ppi network. The set of proteins annotated with a KEGG
form also a network (undirected graph) where the nodes are the proteins
and the edges are the physical interaction events between those proteins.

• Auto-interactions degree of a node. The number of interactions be-
tween the node and itself, that is, the number of edges in the node internal
ppi network or the number of ppis that occur within the set of proteins
annotated with a particular KEGG.

• Connections degree. Number of edges of a node. An edge is defined
as one or more ppi occurring between the proteins of two nodes (KEGGs).
Even if there are more than one ppi between the two proteins sets, the
edge is summarised as a single event, this extra information is given in the
weight of an edge.

• Weight of an edge. An edge is defined by two nodes (KEGG1 and
KEGG2), its weight is the number of ppis that occur between any protein
that belongs to that KEGG1 and any other protein that belong to KEGG2.

• General graph features. The KEGGs networks may also be described
as an undirected graph using parameters referred to their nodes such as
betweenness centrality or clustering coefficient and parameters referred to
the whole graph structure such as number of components or number of
bicomponents. See Materials and Methods section 6.4.1 for definitions.

12.1.1 Characterization of KEGGs network

By this analysis we are re-organizing the original ppi network into a reduced
network with less nodes and less edges and with new features such as the edges’
weights. In other words, we are introducing a new level of abstraction or di-
mension: the KEGGs as nodes of a network of physical interactions. Thus, we
still have the same data as in the interactome but with a new structure. The
first question we addressed was whether this new structure maintained the same
global features of the original ppi network.

The degree distribution P (k) gives the probability that a particular node
has k edges. The scale-free networks, also called small world networks, are nets
where a few nodes act as “highly connected hubs” (high connection degree) and
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Figure 12.1: ppis interactome P(k) distribution

Figure 12.2: KEGGs network P(k) distribution



94
Chapter 12. Exploring KEGG pathways physical inter-connectivity in normal

and cancer cells

Figure 12.3: ppi interactome C(k) distribution

Figure 12.4: KEGGs network C(k) distribution
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the rest of nodes are of low degree. Their most important characteristic is that
their degree distribution follows a power law distribution defined by P (k) ∼ k−γ
where the probability (P (k)) that a node in the network connects with k other
nodes is roughly proportional to k−γ (~ means proportional). The value of γ
determines many properties of the network. The smaller this value, the more
important is the role of the hubs. For γ > 3, hubs have not relevance. In general,
the properties of the scale-free networks are valid for γ < 3 (Barabasi and Oltvai,
2004).

The values calculated for γ for our curated interactome and for the KEGGs
network were 1.532 and 1.166 respectively, meaning that both interactomes may
be defined as scale-free networks. This was already reported for ppi networks
(Barabasi & Albert, 1999) but it was important to corroborate that KEGGs
networks behave also as the majority of the biological networks studied (Barabasi
& Albert, 1999). Figure 12.1 and 12.2 show the graphical representation of this
distribution in both networks.

Another feature used to describe networks is the average clustering coefficient
<C> that characterises the tendency of the nodes in a network to form clusters.
As <k>, average of number of edges of a node, <C> depends on the size of the
network, that is, on the number of nodes and edges of the network. C(k) is the
function that defines the average clustering coefficient of all nodes with k edges.
C(k) as P(k) are size independent so they are used to do the network classifica-
tions. Figures 12.3 and 12.4 show the graphical representation of function C(k)
for interactome and KEGGs network, both having similar regression curves.

12.1.2 Role of KEGGs within the network

Once we have categorized the KEGGs network as a scale-free network with the
implications that this have in its topology properties, we wanted to extract
the nodes (KEGGs) with special features within the network. To assess this,
we calculated connections degree, betweenness centrality, clustering coefficient
and number of auto-interactions for each node in the network. Apart from the
rankings of KEGG pathways according to their network parameters that shows
which ones have more connections or are more central, etc. (data not shown)
we considered that a more interesting analysis would be to use the annotation
of KEGG pathways into meta-classes as more general classes to summarise the
net in terms of its biological activity. The meta-classes are the general categories
in which the KEGG database classify the pathways (e.g. the KEGG pathway
Inositol metabolism belongs to the meta-classes Carbohydrate Metabolism and
Metabolism).

We applied FatiScan method (see Materials and Methods section 6.3.1 for
explanation) to seek into the lists of KEGG pathways, ranked according to each
of the networks parameters calculated, for the functional meta-classes that are
not randomly distributed along the list, that is, their distribution is correlated
to the parameter distribution.

Figure 12.5 shows the FatiScan result for the lists of KEGGs pathways sorted
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Figure 12.5: FatiScan results, connections degree.

Figure 12.6: FatiScan results, betweenness centrality.

by their number of connections, from more connected (top) to less connected
(bottom). The meta-classes significantly over-represented at the top of the list
are Infectious Diseases, Endocrine System, Cell Growth and Death, Cell Commu-
nication, Cancers and Cellular Processes. They summarise the hubs functionality
in the network together with a second set of meta-classes that, although not asso-
ciated to high values of connections, they are under-represented in the lower part
of the list (with less connections) that are: Signal Transduction, Neurodegerative
Disorders, Immune System, Human Diseases and Environmental Information
Processing. We can see clearly two main groups in the more connected nodes,
those associated to signalling (Cell Growth and Death, Cell Communication, Sig-
nal Transduction, Environmental Information Processing) and those associated to
diseases (Neurodegerative Disorders, Immune System, Human Diseases) in which
many of the proteins involved in signalling are participating.

On the other hand, the classes associated to low values of connections are
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Figure 12.7: FatiScan results, clustering coefficient.

Amino Acid Metabolism,Metabolism, Xenobiotics Biodegradation and Metabolism,
Metabolism of Cofactors and Vitamins, Glycan Biosynthesis and Metabolism and
Genetic Information Processing. In this category, we observe that all terms are
associated to several types of metabolism and production of proteins, both es-
sential parts of the housekeeping tasks of the cell.

The results for betweenness centrality (Figure 12.6) are very similar to the
ones obtained for connections degree. It seems that there are not classes associ-
ated to very central nodes, we have classes under-represented in external nodes
though. They are Endocrine system, Cell Communication and Cellular Processes.
Furthermore, we find one class over-represented in external nodes, Metabolism.
Again, communication is associated to high levels of the network parameter, in
this case centrality, and metabolism to low levels.

This observation is reverted when we consider the clustering coefficient (fig-
ure 12.7). Yet again there are no classes over-represented for the nodes with high
level of the parameter but under-represented in the bottom of the lists (KEGGs
in less connected areas). They are Metabolism of Other Amino Acids, Metabolism
of Cofactors and Vitamins and Metabolism. The classes associated to the nodes
in less connected areas are Human Diseases, Environmental Information Process-
ing, Endocrine System, Cellular Processes and Cell Communication. From these
observations we can say that, although there are neither hubs nor central KEGGs
related to metabolism, these nodes seem to be in quite well interconnected areas
where all the nodes play similar roles. Conversely, signalling related KEGGs have
a completely different role in the network, they are very connected and very cen-
tral nodes but the areas in which they are located do not have an interconnected
neighbourhood as it is characteristic of hubs.

The analysis of the FatiScan results for the ranked list of KEGGs according
to their auto-interactions, from more to less auto-connected, are similar to the
results for connections degree and betweenness. The classes associated to high
levels of the parameter are those related to signalling, while metabolism related
classes are over-represented in low levels of the parameter (figure 12.8). This fact
suggests a similar situation in KEGGs network and in the ppi network where the
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Figure 12.8: FatiScan results, auto-interactions.

more connected nodes would be proteins associated to signalling, obviously this
result is biologically meaningful.

12.2 KEGGs networks in normal and cancer cel-
lular stages

Previous sections refers to the KEGGs network generated with the complete set
of ppis in the curated interactome. Even though we certainly may extract impor-
tant clues about the global organization of the KEGG pathways in the cellular
machinery from this analysis, it is crucial to bear in mind that the complete net-
work never happen in the cell at the same time, principally because not all the
proteins are present in all the cell types and stages.

The aim of this study was to explore the functional changes in cell phenotypes
of normal and cancer stages by exploring their differences in the corresponding
KEGGs networks organization. We include inter and intra nodes (KEGGs) anal-
yses. We used a collection of SAGE libraries representing a wide spectrum of
transcriptomic experiments to filter the data of the complete human interactome
and generate tissue and histology specific ppi interactomes. The KEGG path-
ways were superimposed into this set of ppi networks to obtain a final set of 316
different KEGGs networks annotated with their tissue and histology (cancer or
normal), see Materials and Methods section 8.1 for more information about this
collection. See figure 8.1 for an schema of the generation of the KEGGs networks
collection.

12.2.1 Normal and cancer libraries quality comparison

The first issue to address was to compare normal and cancer libraries in terms
of number of tags and transcripts in order to discard that differences we report
are due to differences in size or quality between normal and cancer libraries.
Figure 12.9 shows the number of transcripts versus number of tags of each set of
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Figure 12.9: Libraries quality control.

libraries, normal and cancer, separately and a joint plot of both sets. We applied
a kolmogorov-Smirnov test to compare the tags and transcripts distributions for
normal and cancer sets of libraries. The p-values associated to the tests were no
significant (see figure 12.9) meaning that there are no differences between normal
and cancer libraries in terms of number of tags and number of transcripts.

12.2.2 Inter-KEGGs interactions variation in normal and
cancer tissues

We have conceived a systematic analysis to explore the changes in the number
of interactions (ppis) that connect every pair of nodes when comparing normal
versus cancer KEGGs networks of the same tissue. We use the KEGGs networks
inferred from the transcriptomics experiments that account for gene activity in
different tissues and histologies, previously described. The changes in the number
of connections in the ppi network represented within every KEGG were also
considered as they are auto-connections. To measure the differences between
edges’ weights over two sets of libraries (cancer and normal) we developed an
index: the Connectivity Index (CI), see Materials and Methods section 8.3 for
details.

The CIs were calculated for every pair of KEGGs in a total of 21 tissues.
Each tissue had at least one normal and one cancer KEGGs network. We gener-
ated five matrices per every tissue corresponding to the meta-categories in which
KEGGs are generally classified: Metabolism, Genetic Information Processing,
Environmental Information Processing, Cellular Processes and Human Diseases.
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Figure 12.10: Global trend of KEGGs inter-connectivity variation from normal to can-
cer in different tissues. Results are broken down into general cell activities defined by
KEGG database meta-categories represented in rows.Human Diseases KEGG metacate-
gory has been removed from the graph because it does not represent general cell activities
potentially altered by cancer.

Each matrix represents the differences in inter-connectivity for pairs of KEGGs
given by their CI.

We generated a global picture that includes all the information from the col-
lection of matrices about the variation in activity from normal to cancer stages in
the general cell activities described by the KEGG meta-categories (figure 12.10).
This graph shows how every tissue gain or lose physical connections in each of the
cell activities in a categorical way (see Materials and methods section 8.3 for a
detailed explanation on its generation). Bluish colors mean a global gain of con-
nections from normal to cancer stages while reddish indicate a loss of connections.
The higher the intensities, the bigger the global change in connections. Summa-
rizing, our results indicate that Genetic Information Processing KEGG pathways
do not suffer general changes in their inter-connectivity. Then, in increasing
trend of change in the number of connections we have Metabolism, Environmen-
tal Information Processing and Cellular Processes. Interestingly, we observe that
tissues show same trend in all the cell activities although with different level of
variation. Skin does not suffer general changes in any KEGG meta-category as
described by the categorical Connectivity Index. In the same terms, peritoneum,
lung, kidney, bone marrow, muscle, vascular and retina show a general loss of con-
nections in cancer. On the contrary, cerebellum, mammary gland, brain, colon,
gall bladder, ovary, prostate, liver, thyroid, pancreas, lymph node, esophagus
and stomach present a global gain of connections. However, these results repre-
sent global trends. A closer look into the details of each KEGG meta-category
shows a less homogeneous behaviour in the set of KEGG pairs conforming the
meta-categories in several tissues so a global index close to zero does not necces-
sary means absence of changes but it could also indicate very little changes in
comparison with the rest of the analyses or even an equal variation in both sides.
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Figure 12.11: Variation of physical connections from normal to cancer stages in KEGGs
pairs belonging to Cellular Processes meta-category in several tissues as measure by the
Connectivity Index.

Having a more detailed observation to the KEGG pairs’ CIs in tissues and
KEGG meta-categories located in the extremes of the figure 12.10 we find some
interesting patterns that highlight the more important pathways in the transi-
tion from normal to cancer cell stages. In the case of Cellular Processes related
pathways, concerning the tissues that generally gain connections in cancer (cere-
bellum, brain, colon, gall bladder, mammary gland and prostate) the most impor-
tant KEGG pairs seem to be: auto-connections in Cell cycle, Cell cycle - Tight
junction, Gap junction - Insulin signaling pathway, Gap junction - Fc epsilon
RI signaling pathway, Toll like receptor signaling pathway auto-connections, Toll
like receptor signaling pathway - B cell receptor signaling pathway and Insulin
signaling pathway - Melanogenesis, see figure 12.11 for more details. The reverse
pattern appear in the tissues that generally loss connections in cancer, see figure
12.11.

The second global process that appears to be more affected is the Environ-
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Figure 12.12: Variation of physical connections from normal to cancer stages in KEGGs
pairs belonging to Environmental Information Processing meta-category in several tissues
as measure by the Connectivity Index.

mental Information Processing. As figure 12.10 shows, the tissues follow the
same pattern as in Cellular Processes being vascular and retina the ones that
lose more connections in cancer and cerebellum, mammary gland, brain, colon,
gall bladder and prostate, the ones that gain more connections. Figure 12.12
shows the KEGG pairs relations in terms of their Connectivity Indexes. Clearly
the MAPK signaling pathway auto-connectivity is the most affected pair in both
set of tissues followed by the pairs: MAPK signaling pathway - Calcium signal-
ing pathway, MAPK signaling pathway - Wnt signaling pathway, MAPK signaling
pathway - VEGF signaling pathway, Wnt signaling pathway auto-connections and
Cell adhesion molecules CAMs auto-connections.
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12.2.3 Global patterns of network features in cell pheno-
types

In addition to the analysis of individual tissues and cancers, a not less interesting
subject is the study of the KEGGs networks in terms of the characterization of
their topology features to finally extract global patterns in the cell phenotypes
introduced in the analysis.

We calculated some network features of the 316 KEGGs networks including:

• number of nodes

• number of edges

• total of edges’ weights

• the sum of all the ppis in the network

• clustering coefficient mean

• number of components

• number of bicomponents

These features may characterize globally a biological network in terms of: size
(number of nodes), connectivity (number of edges), activity (total edges weights),
inter-connectivity meaning globally connected instead of being just a few nodes
which make the connections (clustering coefficient mean) and unity (number of
components and bicomponents).

We have information about several cell phenotypes including several SAGE
libraries per each tissue and histology (cancer or normal) representing an excellent
and diverse raw material to categorize both tissues and cancers accordingly to
the relationships among the biochemical pathways acting in terms of physical
interactions between their components (proteins).

We sorted all the SAGE libraries based on each of the graph parameters
calculated. To avoid that the size of the library affects to the KEGGs network
in its graph parameters, we divided every parameter measure by the number of
transcripts in each library. The ranked lists of libraries were used as input for
the FatiScan algorithm to test whether there are meta-classes associated to the
distribution of the parameter (see Materials and Methods section 6.3.1 for method
explanation). The meta-classes used to annotate the libraries were: tissue (e.g.
brain), histology (e.g. cancer) and tissue plus histology (e.g. brain_cancer).
Thus, we are going to be able to extract global patterns of network features in
the set of cell phenotypes. Only a selection of FatiScan results is shown.

Figures 12.13 and 12.14 show the FatiScan results for the sorted lists of
KEGGs networks according to the number of nodes and edges respectively. Num-
ber of nodes represents the size of the network while number of edges represents its
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Figure 12.13: FatiScan results for lists of KEGGs networks sorted by the number of
nodes (normalized).

Figure 12.14: FatiScan results for lists of KEGGs networks sorted by the number of
edges (normalized).
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Figure 12.15: FatiScan results for lists of KEGGs networks sorted by the clustering
coefficient mean (normalized).

degree of connectivity. We can see that the biggest networks are associated to pan-
creas_normal, skin and skin_cancer,. Additionally there are other set of terms
that are under-represented in the bottom of the list, so still associated although
more weakly to big networks, they are pancreas_cancer, pancreas, prostate, mam-
mary_gland_cancer, cancer, mammary_gland and prostate_cancer. Apart from
pancreas_normal, skin, skin_cancer and cancer, the rest of the terms also ap-
pear associated to networks very connected (figure 12.14). The terms associated
to smallest networks are normal, brain, brain_cancer, retina, retina_normal,
stem_cell, stem_cell_normal and thyroid. All of them but thyroid are associated
to less connected networks. The joint study of both graphs show a high corre-
lation between size (number of nodes) and connectivity (number of edges), an
interesting case is pancreas, whereas pancreas_normal annotated libraries have
big size, more than its cancer counterpart, it seems to be less connected than
pancreas_cancer.

Figure 12.15 shows the FatiScan results for the lists of KEGGs networks
ranked by their clustering coefficient mean. A higher clustering coefficient’s mean
indicates a more robust network in terms of inter-connectivity, that is, networks
in which a high proportion of nodes are very connected among them. The figure
12.15 shows that there are no terms associated to highly inter-connected net-
works but there certainly are some terms under-represented in networks with low
inter-connectivity. Therefore, although with a weaker support, we may consider
the terms pancreas_cancer, pancreas, skin_cancer, skin, mammary_gland and
mammary_gland_cancer as annotating high inter-connected KEGGs networks.
In the other hand the terms directly associated to not inter-connected networks
are brain, brain_cancer, stem_cell and stem_cell_normal.

Summarising, pancreas_cancer, skin_cancer and mammary_gland_cancer
represent the patterns for biggest (with more connections and at the same time
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most inter-connected) libraries in terms of the networks that their biochemi-
cal pathways form considering the links as the physical interactions between
their proteins. Pancreas_normal represents a rare example of a big network
not specially well connected. The libraries annotated with brain_cancer and
stem_cell_normal represent the smallest, less connected and less robust KEGG
networks.
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Chapter 13

Resources for functional
profiling

13.1 Tools for functional profiling

Although some of the components of Babelomics have been working since 2003,
e.g. the FatiGO algorithm was first published in 2004 (Al-Shahrour et al., 2004)
the idea of assembling different methods (functional enrichment and gene set
enrichment methods) with a large number of functional module definitions crys-
tallized as the Babelomics project, which was first published in 2005 (Al-Shahrour
et al., 2005).

The availability of different flavours of functional enrichment and gene set en-
richment methods that use gene modules of different nature makes of Babelomics
a unique tool among other available resources of similar characteristics. Babe-
lomics is among the most widely used web tools for functional profiling. Table
13.1 shows the number of Google Scholar entries for the top ones, as a measure
of the impact of each tool in scientific community. Only four tools surpass the
threshold of 500 citations and Babelomics is placed in third position of the over-
all ranking being the only one among those four that provides both functional
enrichment and gene set analysis. If we consider the whole list, there are just
another tool that provides both types of analyses, FuncAssociate. The list was
generated the 25th of August of 2008, obviously, any citation index is affected by
the date in which the paper was pubished. Consequently, GSA methods, which
are newer, are affected by this fact. During 2007 Babelomics has registered an
average of 200 experiments analysed per day.
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Tool URL Analysis
typea

References Citationsb

GSEA http:/www.broud.mit.edu/gsea/ GSA Mootha et al.,
2003;
Subramanian
et al., 2005

1391

DAVID http://www.DAVID.niaid.nih.gov FE Dennis et al.,
2003

715

Babelomics http://www.babelomics.org FE,
GSA

Al-Shahrour
et al., 2004,
2005, 2006,
2007, 2008

575

GOMiner http://discover.nci.nih.gov/gominer/ FE Zeeberg et al.,
2003, 2005

527

MAPPFinder http://www.GenMAPP.org FE Doniger et al.,
2003

442

Ontotools http://vortex.cs.wayne.edu/ontoexpress/ FE Draghici et al.,
2003b; Khatri
et al., 2004,
2005, 2006,
2007

297

GOStat http://gostat.wehi.edu.au/ FE Beissbarth et
al., 2004

274

GOTM http://genereg.ornl.gov/gotm/ FE Zhang et al.,
2004

196

FunSpec http://funspec.med.utoronto.ca FE Robinson et
al., 2002

120

FuncAssociate http://llama.med.harvard.edu/Software.html FE,
GSA

Berriz et al.,
2003

111

GeneMerge http://www.oeb.harvard.edu/hartl/lab/
publications/GeneMerge.html

FE Castillo-Davis
and Hartl,
2003

110

GOToolBox http://gin.univ-mrs.fr/GOToolBox FE Martin et al.,
2004

85

WebGestalt http://bioinfo.vanderbilt.edu/webgestalt/ FE Zhang et al.,
2005

71

GFINDer http://www.medinfopoli.polimi.it/GFINDer/ FE Masseroli et
al., 2004, 2005

58

PLAGE http://dulci.biostat.duke.edu/pathways/ GSA Tomfohr et al.,
2005

31

PathwayExplorer https://pathwayexplorer.genome.tugraz.at/ FE Mlecnik et al.,
2005

29

GOAL http://microarrays.unife.it GSA Volinia et al.,
2004

29

Table 13.1: Functional profiling data analysis web tools. aType of analysis: FE, func-
tional enrichment, GSA, gene set analysis. bCitations are taken from Scholar Google as
of 25th of August 2008.

http:/www.broud.mit.edu/gsea/
http://www.DAVID.niaid.nih.gov
http://www.babelomics.org
http://discover.nci.nih.gov/gominer/
http://www.GenMAPP.org
http://vortex.cs.wayne.edu/ontoexpress/
http://gostat.wehi.edu.au/
http://genereg.ornl.gov/gotm/
http://funspec.med.utoronto.ca
http://llama.med.harvard.edu/Software.html
http://www.oeb.harvard.edu/hartl/lab/publications/GeneMerge.html
http://www.oeb.harvard.edu/hartl/lab/publications/GeneMerge.html
http://gin.univ-mrs.fr/GOToolBox
http://bioinfo.vanderbilt.edu/webgestalt/
http://www.medinfopoli.polimi.it/GFINDer/
http://dulci.biostat.duke.edu/pathways/
https://pathwayexplorer.genome.tugraz.at/
http://microarrays.unife.it
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13.2 Resources to apply ppi data into Functional
Genomics

Historically, in the field of ppis, the majority of the resources available have been
mainly focused on visualization aspects rather than in the proper analytical steps.
Most of the databases have their own visualization tools that exceptionally pro-
vide some applications to carry out very simple analyses. DIP through its satellite
project LiveDIP has a tool for finding the path between two proteins. This tool
also performs a simple mapping of the proteins selected in microarray experi-
ments onto the interactome. BIND can export directly to Cytoscape (Shannon
et al., 2003), a popular visualization tool, and may perform some simple anal-
ysis of enrichment in GO clusters called OntoGlyphs. HPRD does not provide
visualization although it does offer transcriptome information. MINT estimates
the Minimal Connected Network (MCN, see Materials and Methods section 6.4.3
for complete explanation) and has a java environment available for visualization
purposes. The IntAct database includes an application called MINE that can
calculate and represent the MCN. BioGRID does not provide any visualization
yet although the application Osprey (Breitkreutz et al., 2003) uses it as underly-
ing support database and consequently can be used as an interface to BioGRID.
The database STRING (von Mering et al., 2007) includes an static visualization
tool with a complete set of options including generating the MCN.

Besides the facilities provided by the databases there are programs, such as
Osprey (Breitkreutz et al., 2003), Cytoscape (Shannon et al., 2003), VisANT
(Hu et al., 2007) and PATIKA (Dogrusoz et al., 2006), that aim to provide a
general framework for ppi data management. Cytoscape and VisANT allows the
development of plug-ins that can be integrated into them to perform more specific
tasks. Cytoscape is probably the most successful application in this field and it
has an ample community of users and developers. At the time of writing this
thesis there were 48 plug-ins available. A good review about visualization and
network management packages can be found in Suderman et al. (2007).

Other applications like the Agile Protein Interaction DataAnalyzer (APID)
(Prieto et al., 2006), Genes2Networks (Berger et al., 2007) and PIANA (Aragues
et al., 2006) were developed with the aim of become a common repository for dif-
ferent ppi datasets. APID and Genes2Networks are web-based tools that make
the datasets available. PIANA is more orientated to computer scientists as a
working framework for ppi data management. It also may predict novel interac-
tions and calculate network topological parameters.

In a more general functional profiling context, ppi data has quite recently
been introduced into suites of programs like Babelomics (Al-Shahrour et al.,
2006, 2007, 2008) and DAVID (Dennis et al., 2003) although with different grade
of sophistication. DAVID simply reports the interactions associated to the genes
of a list and performs a classical enrichment analysis for each of the interactions.
Babelomics includes a new module called SNOW (introduced in this thesis in
Results 9.4) that calculates the MCN and evaluates the significance of its robust-
ness as functional class comparing its topological parameters versus distributions
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of same sized lists of random genes or proteins. It also evaluates the presence
of hubs, central nodes and highly connected areas in the pre-selected genes or
proteins versus a curated interactome.

Thus, we have seen how ppi data has been used mostly as exploratory re-
source, however SNOW goes one step beyond than the rest of available tools
reported before, apart from building the module of action using the ppi data,
this is evaluated by comparing its structure with a background, the result is ac-
companied by a p-value showing the statistical significance of the comparison.
Just as in a typical functional enrichment analysis dealing with discrete and flat
annotation labels (GO terms, KEGG pathways, etc.), the comparison with the
background is essential to demonstrate the relevance of the discovery. This, to-
gether with the functional informations that SNOW reports about the MCN and
the interactive visualization applet make SNOW as a very valuable functional
profiling tool that used under GEPAS and Babelomics environment could lead
to novel discoveries in functional modules of protein.

The introduction of more structured data as the network concept in functional
analysis is more and more required. Analysis of regulatory (Yeger-Lotem et al.,
2004), co-expression (Ghazalpou et al., 2006) and genetic (Kelley & Ideker, 2005)
networks are some examples of the applicability of graph theory to biological data.
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Gene/protein annotation for
functional genomics

14.1 New sources of annotation

To perform a functional profiling analysis of a genome-scale experiment we need
to pre-define the functional modules that we are going to look for, or at least, the
raw data that is going to be used to build them, as in the case of ppi data. At this
point we do not have a complete collection of functional modules acting in every
cell type in each cell stage. In fact, that seems to be an objective far from being
reachable due to the variability of cell types and possible internal and external
disturbances. There are several resources that collect gene signatures able to clas-
sify cell stages by themselves. A successful instance is Oncomine (Rhodes et al.,
2007), where a broad set of cancer experiments are functionally analysed. L2L
(Newman and Weiner, 2005) and LOLA (Cahan et al., 2005) are other examples.
But despite these and other efforts made in the field, it is strictly necessary to use
approximations to this functional modules if we want to extract the best from
the functional profiling methods. This approximations are the called functional
classes and are usually defined by the functional annotation of the biological se-
quences. The hypothesis assumed when performing a functional profiling analysis
using GO terms, KEGG pathways, etc. is that they co-express (Lee et al., 2004)
although early attempts to deduce gene functionality (that is, functional category
membership) from gene co-expression revealed that many functional categories
did not even show a detectable degree of internal co-expression (Brown et al.,
2000; Mateos et al., 2002).

Classical functional profiling analysis usually use standard annotation to cir-
cumvent this lack of gene signatures. The most popular functional labels are
probably GO terms, KEGG or BioCarta pathways and MeSH words. However,
the coverage of the annotation provided by these standard functional labels is
far from being complete. Moreover, genes may have multiple annotations due to
both multiple function and different scope of the annotation. In this thesis we
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have introduced new sources of annotation into the functional profiling analysis
that may cover some percentage of unannotated genes and that supplies a com-
plementary source of knowledge to the information already given by the more
standard functional labels.

14.2 Curation of protein-protein interactions data

Obtaining a curated set of ppis as complete as possible to work with is not a
trivial task. The databases’ coverage, the depth and type of annotation and the
lack of accuracy of some of the techniques are a limitation that have to be solved.
Reguly et al. (2006) established a milestone in this field generating a possibly
complete yeast interactome free from false positives via manual curation. For
the rest of the species we are far from having this kind of detail because there is
still a low coverage of the complete interactome basically due to its size. While
there is not a big difference in the genome size between not very related species,
it seems that in terms of ppis the differences increase drastically, suggesting that
the complexity in the organisms must have a strong post-transcriptional compo-
nent. For instance, human has 21,541 protein coding genes and 650,000 predicted
interactions while Caenorhabditis elegans has 20,140 genes and three times less
predicted interactions (genes count taken from ensembl genome browser release
49 and interactome size predictions taken from Stumpf et al., 2007).

There is a clear necessity of methodologies to filter ppis given that manual
curation is not always a feasible task. Therefore, several approaches have been
proposed (review on Badet et al., 2004). We will point out some of them:

• Promiscuity (Uetz et al., 2000; Ito et al., 2001; Gavin et al., 2002; Ho et al.,
2002), that consists in removing proteins having many interaction partners,
the called sticky proteins.

• Topological criteria (Bader & Hogue, 2002), it is specific to Co-IP exper-
iments, retaining the bait-hit (spoke) rather than the bait-hit and hit-hit
(matrix) interactions.

• Intersection of multiple high-throughput datasets (von Mering et al., 2002;
Deane et al., 2002).

• Selecting ppis detected with two different techniques (von Mering et al.,
2002), combination of two methods increase coverage and accuracy.

• Intersection with other type of data, e.g. interacting proteins whose tran-
scripts co-express are more likely to be real (Ge et al., 2001; Deane et al.,
2002; Jansen et al., 2002) or inferences of ppis across species due to protein
homology (Deane et al., 2002).

• Logistic regression approach (Bader et al., 2004), that uses statistical and
topological descriptors to predict the biological relevance of protein-protein
interactions obtained from high-throughput screens.
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In this thesis we have introduced a simple methodology (details in Materials
and Methods 5.5.1) for ppi data curation that was applied to build our curated
home-made interactome that has been used as raw data in all our analyses that
use ppi data. It can be seen as a modification of the method proposed in von
Mering et al. (2002) explained in point 3. Our method makes use of the standard
annotation of the ppi data through MI ontology re-annotating the interactions
to a less specific level. After that we extract the ppi annotated with at least two
different annotations. By using lower levels of depth in the ontology of techniques
we ensure that ppis extracted with experiments with similar basics that may have
same biases in the detection process are not selected. Due to the low reliability
of ppi data extracted with high-throughput techniques we consider that a good
approach is to apply high restricted method for its curation.





Chapter 15

Methodologies for
functional profiling

15.1 New dimensions in Functional profiling

The classical functional labels used in the field (GO terms, KEGG pathways,
MeSH words) have a ”flat” structure in the gene annotation. Their relationship
with the biological sequences is in a have it/don’t have it terms. In this thesis
we have introduced new sources of annotation with the aim of complementing
the incomplete genome annotation and to provide to the analysis different points
of view that could amplify the scope of the knowledge we can extract from the
analyses. However, these functional labels come with a more complex structure,
which implies the development of methodologies that could deal with the partic-
ularity of each type of label. This was an essential challenge in the development
of this thesis.

A requirement for this kind of methods is that they should provide a strong
statistical support. A mapping of the labels into the set of genes is not enough. It
must be a proper comparison with a background that assures that the enrichment
is a real fact and not a common and general property of the genome.

Summarizing, in this thesis we have introduced two types of annotation. One
of them are labels associated to the genes through a value (weight); this is the
case of gene-bioentity co-occurrences in scientific literature and associations of
gene-phenotype through a transcriptional measurement. The second type of an-
notation introduced are the protein-protein interactions, that are discrete labels
with a supra-structure.

For each of these types of annotation, a methodology to find out the enrich-
ment in a set of genes was developed. The set of genes to analise have the form
of a list of key previously genes selected by a special feature or a ranked list of all
the genes in the experiment according to a given property. Ranks or pre-selection
of genes depend on the experiment design and lead to different types of algorithm
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as explained in the Introduction, section 3.2.

The methods developed have been implemented also as web-tools and are
part of Babelomics and GEPAS. The availability of these methodologies through
these two platforms certainly assures two very important issues:

• The complete environment formed by Babelomics and GEPAS augments
the capabilities of each of the modules isolated as the analysis can be per-
formed and planned from the beginning as an easy pipeline and the results
from one module can be complemented by the others.

• Babelomics and GEPAS are widely used tools with a secure prospect of
maintenance.

15.2 Functional profiling applied to time-series
experiments

As we learn more on the functional basis of the cooperative behaviours of groups
of genes, systems biology approaches gain more importance in our attempt to
decipher cell biology relevant questions. Following this, the interpretation of
genome-scale experiments is starting to focus more in groups of functionally-
related genes than on the properties of individual genes. Recently, different
procedures that make use of functional annotations for the direct selection of
functionally-related groups of genes have recently been proposed in the context
of microarray data (Al-Shahrour et al., 2005; Gasch et al., 2000; Kim and Volsky,
2005; Mootha et al., 2003; Subramanian et al., 2005). These procedures use a list
of genes ranked by differential gene expression and, without imposing any thresh-
old based on the experimental values, study global over- or under-expression of
blocks of functionally related genes. Nevertheless, its application has been re-
stricted to static experimental designs. In this thesis we have shown how to
expand this concept to the functional analysis of a time series. This analysis
gives dynamic information on continuous behaviours occurring across the series
of experiments analysed. By means of the procedure presented in this paper it
is easy to understand the sequence of functional events taking place in particu-
lar moments of the period studied. It is important to remark that, for the first
time, we have directly addressed the temporal evolution of the biological roles
fulfilled by the genes, and not the behaviour of individual genes, which might
(and actually do) contribute to more than one functional category.

As previously mentioned, the use of different GO categories (or other func-
tional terms) allow explaining different aspects of the biology of the cell (e.g. the
biological roles fulfilled by the genes by using the biological process GO category,
or where these roles took place, by using the subcellular location GO category,
etc.). The proposed methodology addresses systems biology-inspired questions
on the behaviour of groups of functionally-related genes. The method provides
results with a statistical support. The so obtained significance p-values make ref-
erence to the functional blocks of genes, but not necessarily to individual genes.
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The method can be applied using any kind of gene annotation beyond the GO
terms here used, such as KEGG pathways, Interpro domains, etc.

Summarizing, we have presented a method for the functional analysis of mi-
croarrays series with some dependence of autocorrelation (time series, dosage
series, etc.) The method allows to recover the dynamics of the significantly over-
represented functional terms along the series. A proper understanding of the
biology of the cell from the perspective of systems biology need of approaches
like the presented here, which tackle global functional properties cooperatively
carried out by groups of genes.

15.3 Evaluate a subnetwork (module of action)

When trying to assign a functional profile to a list of genes using classical anno-
tation such as GO terms or KEGG pathways a simple search on the annotation
does not give a significant information, it has to be compared with a background
to see whether the functionality found is different from the expected. There are
several methodologies and resources available (reviews in Khatri and Draghici,
2005; Dopazo, 2006) that make this task quite methodical and accessible to the
end user. The application of ppi data to this field is quite recent so there are not
standard methodologies to be applied to the evaluation of the modules found yet.

A common approach taken is to check whether the proteins in the network
are enriched in any functional category (Wilkinson and Huberman, 2004; Luo et
al., 2006). There are even specific tools for doing this task, BINGO (Maere et al.,
2005) is a java applet integrable into Cytoscape visualization tool (Shannon et al.,
2003) that performs GO enrichment analysis to the nodes integrating networks.
Although informative this test does not guarantee in the case of negative results
that the network is not a module of action due to the lack of annotation or
simply because they do not share a functional category but they are indeed
doing something cooperatively. In fact, functional analysis using ppis do not
always overlap with label based analysis (Liu et al., 2007).

Liu et al. (2007) proposed a systems biology orientated approach called
Gene Network Enrichment Analysis (GNEA). It evaluates the association of sub-
networks to a determined disease. A limitation of this method is that it must
start with a set of pre-established gene signatures already associated to the dis-
ease, each of them has to have a particular annotation. The gene signatures are
assembled, then the relative expression in a microarray analysis, exploring the
case of study, is mapped to a global network of ppis. From the interactomic
and transcriptomic information a High Scoring Matrix (HSM) is extracted as
a sub-network that is highly transcriptionally affected in the disease. Finally,
they evaluate the hypothesis that a particular gene signature is enriched into the
sub-network. Basically, ppis in this methodology substitutes the classical differ-
entially expression analysis but it is not taking advantage of the structured data
of the biological networks.

In contrast, our approach (see Materials and Methods section 6.4.4) does
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focus on the study of the network features of the modules. Indeed the topology
of the biological networks has been found of crucial importance when trying to
understand the role of the modules in a cellular process (Yeger-Lotem et al., 2004).
The methodology developed during this thesis looks for networks significantly
more robust than networks generated by random lists of proteins assuring that
the module evaluated is in fact a real entity acting cooperatively and not a group
of proteins as any randomly selected.

15.4 Networks comparison through an heuristic
approach

As described in Przulj (2006), it is very important to be able to compare two
networks. From these comparisons we may extract very useful information for
example about differences between healthy and disease related networks or mod-
ifications in network structure through different species to elucidate evolutionary
events in the ppis graphs.

A straight forward way to address the networks comparison problem could
be the full description of the networks and its direct comparison. When the net-
works are big this can be infeasible in computational terms (requires solving the
subgraph isomorphism problem, which is an NP-complete problem). Therefore,
analogous to the BLAST heuristic (Altschul et al., 1990) for biological sequence
comparison, we need an heuristic approach to be applied to the comparison of
two networks. According to Przulj (2006) there are two different heuristic ap-
proximations to the problem:

• Global heuristics, compare the distribution of network topological param-
eters of two networks such as connections degree and clustering coefficient
or measure the diameter of the network (average length of shortest paths).

• Local heuristics, evaluates the presence of network motifs. Several cate-
gories of motifs have been proposed (Milo et al., 2002; Shen-Orr et al.,
2002; Milo et al., 2004). The more efficient are the called graphlets, small
subgraphs with topological features that occur in a network with a higher
frequency than expected by random.

For large networks, a local heuristic approach seems to be more accurate (Przulj,
2006). The global approach assumes we know all the network elements and that
the distributions are not influenced by external parameters. We are indeed far
away from this ideal situation. For the majority of the species we do not have
a complete and accurate interactome, and the techniques that have been used
to their generation have several bias in the type of the ppis they detect. Thus,
a direct comparison of global topological parameters may be influenced by the
nature of the techniques used for the ppi detection.

Similarly to the problem of in finding an enrichment in structured network
features within lists of genes/proteins, a full description of the MCN and its com-
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parison with full topological features of a set of networks generated from random
lists can also determine whether the list is enriched in a ppi network. Again, this
approach is computationally infeasible, so we propose our own heuristic approx-
imation to solve the problem.

Our solution was to apply a global heuristic approximation as the problems
described for it in the two networks comparison does not apply to our analysis.
First, we are not managing such a big networks because we are not treating with
whole interactomes but with subnetworks that are activated under determined
conditions. The applied methodology to generate an accurate interactome should
be enough to have a high degree of confidence in the data we manage. Besides,
it is important to underline the fact that the sets of lists of random nodes are
generated using the same interactome as to generate the MCN, so even if a bias
persists after filtering, it be would present at same level in both sides of the
comparison.

So, as explained in Materials and Methods section 6.4.5 we propose to take the
connections degree and the number of components in the MCN as indicative of a
compact network. Thus, the two requisites we impose for a list to be considered
as enriched in a ppi network are that the MCN that resumes it, has:

• A distribution of connections degree significantly greater (p-value < 0.05)
than the connections degree distribution of the set of MCNs generated from
same sized random lists.

• Less components than the 95% of the set of MCNs generated from same
sized random lists.

The other two network features that we calculate within the MCNs but are not
included in this index, betweenness and clustering coefficient, seem to be param-
eters more related to the shape of the network that may point out its activity,
e.g. a signalling cascade network is a network with a low clustering coefficient
distribution because its nodes are not in very connected areas. Nevertheless,
it should indeed have more connections and fewer components than a network
coming from a random list.

15.5 Network enrichment in functional classes

From the analysis of network enrichment in functional classes (Results chapter
11) we could say that ppi networks do have an important role in functionally
related genes. In all the classes we found a great percentage of positive results,
as described in previous section. Even in genes detected to be differentially
expressed in an experiment that may not be involved in a single activity but in
more than one, we could detect modules of action using ppi data. Therefore the
applicability of interactomics as a source of annotation in functional profiling is
more than justifiable.
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An important observation is that the introduction of a non-listed node in
the MCN results into a better performance in the evaluation of all the network
parameters of MCNs. It is quite predictable that when introducing non-listed
nodes, more shortest paths are found and consequently the resulting network
will have more nodes and edges, so it will become more robust. Nevertheless,
this situation should have affected in the same grade to lists of proteins sharing a
GO term and to the random lists, being not the case, this indicates that the fact
of introducing non-listed nodes to the paths increase dramatically the robustness
of functional modules defined by ppi data pointing to the relevance of this type
of proteins. Indeed, not in GO terms but in transcriptomics studies, proteins no
pre-selected by expression profiling has been reported to be related to disease due
to its inclusion into a network of ppis (Xu and Li, 2006; Liu et al., 2007; Chuang
et al., 2007).

15.6 Integromics. The KEGGs networks exam-
ple

In the introduction we framed this thesis within an ethereal discipline called
integromics. In fact, we have introduced several types annotation for biologi-
cal sequences and methodologies that can use them for the functional profile of
genome-scale experiments and the aim is to provide a wide range of functional
modules definitions to augment the discovery possibilities.

A clear example on an integromics experiment is the analysis of the KEGG
pathways physical interconnections over a collection of tissues in normal and
cancer stages (chapter 12 in Results). In this analysis we introduced three types
of data, transcriptomics, protein-protein interactions and biochemical pathways
to capture the variation, if any, that occurs in the transition from normal to
cancer stages in both the connections between biochemical pathways and the
activity of the pathways isolated.

A typical functional profiling analysis would have consisted in a differential
expression analysis to find out the differences in gene expression between both
normal and cancer stages and after that we would have extracted the functional
classes (e.g. KEGG pathways) that are over/under-represented in cancer and
normal samples. Our analysis adds two new dimensions: it reports the variation
in activity of every module of action (KEGG pathways) and the changes in the
connection between them. But still it goes far off from this, because it gives
a measure to all the variations. This important feature makes the study an
unprecedented massive analysis of the differences in functional modules activity
in normal and cancer stages.
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Future trends

16.1 Problems with ppi data

Along this thesis we have been talking about the problems that ppi data extracted
by high-throughput techniques have in accuracy and coverage. Furthermore, we
have highlighted the possibilities of introducing the concept of network into the
functional profiling of genome-scale experiments. In this sense, we have identified
at least three main challenges that have to be approached to be able to obtain
whole capabilities from this kind of data:

• High-throughput techniques produce a high proportion of false positives.
Besides, there is still a low coverage of the interactome for the majority
of the species. For filtering ppis according to their accuracy, literature
curation does not seem to be a realistic approach, so new methodologies
have to be proposed while the techniques do not overcome this limitation.

• There is a clear necessity of applying the standard annotation developed by
the HUPO for the ppi experiments. This should be enough to encourage
the community to take a policy of sharing data to be able to have one or
several repositories with all the available ppis.

• The network nature of the functional classes that the ppis form requires
more complex methodologies to study modules enrichment. The topology
of the networks should be taken into account as an important parameter
of the module. A protein in a network cannot be annotated just as part of
the network but as a node with a special position that affects the rest of
of the nodes. Moreover, the global shape of the network is characteristic of
its functional activity.

Recently, an ambitious initiative has been proposed by FEBS Letters journal
(Ceol et al., 2008), which consists on linking scientific manuscripts with protein
interactions databases through a structured summary with controlled vocabulary
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that has to be filled by the authors. These kinds of approaches are going to be
crucial in the quality and accessibility of biological data.

16.2 Increasing the resolution of ppi data

The methodologies developed to deal with ppi data extracted by high-throughput
(reviewed in Bader et al., 2004) aim just to increase accuracy and coverage, not
the depth of the annotations. As said in the introduction, systems biology is
the field of science that attempts to understand and model the cell behaviour
considering the cell components as an intricate network of interactions and not
as isolated units of action. Certainly, high-throughput techniques are making
a valuable contribution to the compilation of the elements and even about their
relationships (e.g. yeast two hybrid assays). However, to fully understand cellular
machinery and to be able to generate models that predict the system behaviour
under determined conditions, we need to go further in the details.

Post-translational modification is the major mechanism by which protein func-
tion is regulated in eukaryotes. A high quality annotated interactome with in-
formation about the phosphorilation, N- and O-glycosilations, ubiquitylations,
methylations or acetylation events, just to mention some of them, would enor-
mously increase the interactome resolution concerning information and augment
its possibilities in terms of function predictive tool. However, there are non pub-
lic resources that provide high quality annotation of protein interactions at the
level of post-translational events for a wide range of species. The major source
of this kind of information is, not surprisingly, the scientific literature, still the
biggest encyclopaedia about functional genomics at the expense of general bio-
logical databases and specific ppi databases. In fact, at least in Saccharomyces
cerevisiae the ppi datasets extracted using high-throughput techniques was found
to cover only about 14% of the interactions in the literature (Reguly et al., 2006).
There are some limited attempts though, Reactome (Vastrik et al., 2007) is a very
reliable resource because it is based on manual curation of scientific papers but
also because of this, still with a very low coverage; or Phospho.ELM (Diella et
al., 2004) also manually curated, quite extent but focused on phosphorilation.

Summarising, as the majority of the data produced with massive techniques,
the information related to protein-protein interactions is rapidly increasing in
terms of quantity but quite slowly in terms of quality and depth of annota-
tion. The introduction of post-translational modifications into the annotation of
protein pairwise interactions would definitely increase the potential of function
prediction of networks. An effort should be made to provide a systematic and
ontology-based annotation of this kind of data.
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From the results of this thesis we can extract the following conclusions:

1. Functional Genomics needs to introduce new sources of information to com-
plement both the biological sequences’ annotation coverage and the biolog-
ical knowledge parcels that are explored.

2. The methods for functional profiling of genome-scale experiments should
consider the annotation data structure and the experiment design. In the
functional enrichment analysis we should take into account a comparison
with the background data to define statistically significant functional mod-
ules.

3. Protein-protein interaction networks conform functional modules that are
also detected integrating other functional classes such as biochemical path-
ways or functionally related proteins.

4. Time series experiments can be studied under a systems biology perspective
leading to the extraction of the dynamics of the functional modules over
time.

5. The integration of several sources of annotation into a single analysis in-
creases the possibilities for knowledge discovery. By studying the variation
of the physical connectivity between biochemical pathways in normal and
cancer cell stages we can measure differences in the activity of functional
modules.

6. Babelomics and GEPAS are two integrated web-based suites of tools that
have demonstrated their suitability to provide a complete and system-
orientated analysis of microarray and other genome-wide experiments thanks
to the integration of several sources of annotation.
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Appendix A

Resumen en castellano

Introducción

La Genómica Funcional es la rama de la Biología Molecular dedicada a describir
el comportamiento celular a partir de los datos producidos por experimentos a
escala genómica. Históricamente, genes y proteínas (su forma ejecutora) han sido
definidos como las unidades funcionales en la célula. Este enfoque reduccionista
de la Biología Molecular ha resultado en excelentes avances en el conocimiento
de base de los organismos vivos a través de la identificación y descripción de los
componentes responsables de los diferentes procesos celulares. A pesar de este
éxito, todavía hay numerosas y fundamentales preguntas sin responder, principal-
mente debido a que existen muy pocos procesos que puedan ser explicados por la
acción de una proteína sola. Por el contrario, las unidades de acción participantes
en los procesos biológicos parecen estar formados por módulos compuestos por
varias moléculas que interaccionan (Hartwell et al., 1999; Barabasi and Oltvai,
2004). Esto representó una limitación para las técnicas que se venían aplicando
en biología molecular, basadas en el estudio de una o pocas moléculas al mismo
tiempo. Recientemente se han desarrollado técnicas de alto rendimiento capaces
de reportar la acción de miles de moléculas simultáneamente. Probablemente la
técnica con más éxito entre todas ellas hayan sido los Microrrays de ADN (Schena
et al., 1995), capaces de medir niveles de expresión de miles de genes en un mismo
experimento.

El conjunto de RNA mensajeros que se expresan en una célula en unas de-
terminadas condiciones recibe el nombre de transcriptoma. Al contrario que
el genoma (información hereditaria codificada en el ADN), el transcriptoma es
una entidad dinámica, sus elementos varían su presencia y cantidad dependiendo
del tipo y estado de la célula. La motivación de esta tesis fue el desarrollo de
metodologías que permitan extraer módulos de acción de proteínas a partir de la
descripción del transcriptoma.

Parece ser por tanto que para comprender la complicada red de interacciones
que sucede en la maquinaria celular es necesario estudiar tanto sus elementos
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por separado como las consecuencias de su actividad conjunta. Esta propiedad
emergente sólo puede ser explicada a través de una visión holística de la célula.
La Biología de Sistemas es la rama de la ciencia que viene a introducir este
enfoque a la biología, trata de describir el comportamiento celular en términos
de la cuantificación de las interacciones entre todos los elementos presentes.

Gracias a las técnicas de alto rendimiento, la biología molecular está acumu-
lando grandísimas cantidades de datos acerca de los elementos implicados en la
actividad celular. Este tipo de datos masivos, incluidos bajo el neologismo de
datos ómicos, han revertido el procedimiento habitual de proceder en biología,
típicamente se solía tener mucha información sobre unos pocos elementos, por
ejemplo se sabía mucho sobre pocos genes. Hoy en día y gracias a las ómicas ten-
emos muchos datos y poca información sobre ellos. Estas técnicas llevan asociada
una falta de precisión además de los problemas de almacenamiento que conllevan.

La clave para aprovechar el máximo de posibilidades que estos datos nos brin-
dan es desarrollar métodos para desechar los falsos positivos y crear sistemas de
almacenamiento y anotación efectivos y controlados. Además se ha demostrado
que la información obtenida a un solo nivel (genoma o proteoma, por ejemplo) no
puede explicar por sí sola el comportamiento celular (Gygi et al., 1999; Anderson
y Seilhammer, 1997; Lee et al., 1993; Hamilton y Baulcombe, 1999) por lo que
una aproximación a la solución del problema es sin duda la integración de varios
tipos de estos datos.

Esta tesis surgió desde el principio con la intención de ayudar a la Biología
de Sistemas desarrollando metodologías capaces de integrar tantas fuentes de
información como fuera posible. Siguiendo con la fiebre de la terminología ómica,
podríamos decir que esta tesis intenta contribuir a la integrómica, todavía otra
parte de la biología moderna cuyo objetivo es la integración de varias ómicas.

La descripción funcional de los resultados de experimentos de alto rendimiento
requiere principalmente de dos elementos: anotación de genes y proteínas y
metodologías capaces de extraer los procesos que definen el comportamiento celu-
lar en una situación determinada.

En cuanto a fuentes de anotación de secuencias biológicas, en esta tesis se han
utilizado básicamente tres tipos:

• Etiquetas discretas. Son el tipo mas habitual y utilizado. Están repre-
sentadas por los términos de Gene Ontology, la rutas bioquímicas de KEGG
y de BioCarta. Podríamos decir que la anotación por medio de este tipo de
etiquetas viene dada en términos de anotado/no anotado.

• Etiquetas continuas. Están asociadas a los genes o proteínas por medio
de un valor. En esta tesis hemos utilizado dos fuentes de anotación de este
tipo: co-ocurrencias entre genes y bioentidades en la literatura científica y
genes asociados a diferentes fenotipos celulares por medio de un valor de
expresión.

• Etiquetas discretas con supra-estructura. Este es el caso de las inter-
acciones entre proteínas. Cada proteína está asociada con otras a las que
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se une físicamente, el conjunto de todos los pares de interacciones forman
una red de interacciones formada por nodos (proteínas) y ejes (los eventos
de interacción). Al conjunto completo de interacciones entre proteínas de
una célula se le llama interactoma.

Los métodos utilizados y desarrollados en esta tesis con el fin de caracterizar
funcionalmente experimentos a escala genómica podrían encuadrarse en dos cat-
egorías que se detallan a continuación.

Enriquecimiento funcional en dos pasos

Una práctica muy extendida al interpretar funcionalmente este tipo de experi-
mentos consiste en seguir dos pasos. En el primero se realiza una selección de
los genes de interés, bien porque co-expresan o porque están diferencialmente
expresados en la comparación entre dos muestras que representan dos diferentes
estados celulares. El siguiente paso consiste en hallar el posible enriquecimiento
en algún tipo de anotación comparando la distribución que tienen las etiquetas en
la lista de genes seleccionados y en el resto del genoma. Una de las herramientas
mas utilizadas para realizar este tipo de análisis es FatiGO (Al-Shahrour et al.,
2004) pero existen otras opciones (Zeeberg et al., 2003; Khatri y Draghici, 2005).
En esta tesis hemos desarrollado herramientas que siguen este patrón de análisis
utilizando anotaciones menos convencionales que la utilizada por FatiGO, es el
caso de las herramientas Marmite (Minguez et al., 2007), Tissues Mining Tool y
SNOW, incluidas como módulos dentro del paquete Babelomics (Al-Shahrour et
al., 2008).

Análisis de enriquecimiento en conjuntos de genes

Aunque muy aceptada, la metodología que tratamos en el anterior punto pre-
senta un inconveniente en la imposición del umbral de decisión para elegir los
genes importantes en el caso de problemas supervisados como por ejemplo los
análisis de expresión diferencial entre dos muestras. En estos casos, debido a que
realizamos miles de test estadísticos al mismo tiempo, se impone una corrección
a los p-valores muy restrictiva que evita los falsos positivos pero que sacrifica mu-
chos falsos negativos. Por ello, otra familia de métodos inspirados en la Biología
de Sistemas ha surgido para cubrir estas debilidades. Este tipo de métodos lla-
mados colectívamente métodos carentes de umbrales trabajan directamente sobre
una lista de genes ordenada por algún parámetro. A partir de esta ordenación
tratan de encontrar etiquetas biológicas cuya anotación siga una distribución no
homogénea dentro de la lista. Esto indica que la etiqueta está relacionada con el
parámetro de ordenación. El método más utilizado en esta categoría es el GSEA
(Mootha et al., 2003; Subramanian et al., 2005), otro ejemplo desarrollado en
nuestro departamento es FatiScan (Al-Shahrour et al., 2005). Esta tesis también
ha dado lugar a un método de esta familia, MarmiteScan (Minguez et al., 2007)
basado en el anterior pero que utiliza etiquetas continuas en lugar de discretas.
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Las metodologías de las que hablamos desarrolladas en esta tesis han sido
integradas en dos exitosos paquetes de herramientas web, GEPAS, que analiza
experimentos de Microarray y Babelomics, que se dedica a la interpretación fun-
cional de una más amplia gama de experimentos de alto rendimiento.

Metodologías desarrolladas en esta tesis

Sin duda gran parte de esta tesis esta dedicada a desarrollar métodos para la
interpretación funcional de experimentos de alto rendimiento, en las siguientes
secciones se resumen los 3 mas importantes.

Enriquecimiento en genes específicos de determinados fenotipos celu-
lares

La fuente de anotación son los niveles de expresión de los genes en diferentes tipos
celulares. Básicamente compara la distribución de los valores de expresión de dos
listas de genes, típicamente una lista de genes de interés y otra representando el
resto de genes del genoma. Utiliza una serie de experimentos de transcriptómica
y extrae aquellos fenotipos, definidos por un tejido y una histología, en los que
una de las dos listas tiene una distribución significativamente mas alta. Este
método está implementado en forma de herramienta web como un módulo del
paquete Babelomics bajo el nombre de Tissues Mining Tool.

Enriquecimiento funcional de bioentidades extraídas de la literatura
científica

Se desarrollaron dos métodos para tratar este tipo de anotación, el primero realiza
el clásico análisis funcional en dos pasos y el segundo perteneciente a la familia
de métodos que no necesitan selección de genes y que realizan un análisis de
enriquecimiento en conjuntos de genes, ambos están implementados en forma de
herramientas web llamadas Marmite y MarmiteScan respectivamente. Marmite
y MarmiteScan están incluidas en el paquete Babelomics.

La anotación estandarizada que proporcionan los términos GO o las rutas
bioquímicas de KEGG, por dar un ejemplo de las mas usadas, tiene aún una
cobertura baja del genoma, sin embargo existe gran cantidad de información
en la literatura científica que por estar embebida en formato de texto libre es
muy difícil de utilizar de forma sistemática y masiva. Nuestro objetivo fue in-
troducir esta información dentro de la interpretación funcional de experimentos.
Utilizamos las anotaciones que nos proporcionó una técnica de minería de texto,
estas anotaciones están basadas en la co-ocurrencia entre genes y palabras con
algún sentido en biomedicina dentro de la misma frase en los resúmenes extraídos
de PubMed. Esta co-ocurrencia es evaluada con respecto a las apariciones del gen
y la palabra por si sola, dando lugar a un peso por cada par de gen y bioentidad.

Las bioentidades están clasificadas en productos químicos y palabras asoci-
adas a enfermedades. Ambas metodologías extraen las bioentidades que están
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significativamente representadas en una lista de genes o en la parte alta o baja
de la lista de genes ordenados, según estemos usando Marmite o MarmiteScan.

Enriquecimiento funcional utilizando datos de interacciones entre pro-
teínas

Como ya dĳimos en la introducción las interacciones entre proteínas tienen la
particularidad de formar una red cuando se consideran varias a la vez. Esta red
tiene unas características que no pueden ser inferidas por el estudio de sus partes
de forma aislada. Se ha visto que la topología de esta red tiene implicaciones
en su rol en procesos celulares (Yeger-Lotem et al., 2004) por lo que su estudio
podría proporcionar información relevante acerca de su funcionalidad. Existen
gran cantidad de mediciones que se pueden hacer sobre una red, en esta tesis
hemos elegido algunas para caracterizarla. Las que se refieren a los nodos son: el
número de conexiones, la centralidad y el coeficiente de agrupamiento. Además
calculamos el número de componentes que son grupos de nodos conectados entre
sí y bicomponentes que son grupos de nodos conectados entre sí y a otro grupo
por medio de un solo eje, este eje recibe el nombre de punto de articulación.

La peculiaridad de este tipo de análisis es que, al contrario que en los realizados
con cualquiera de las anotaciones mas usadas (incluyendo las anteriores), en este
caso no disponemos de clases funcionales predeterminadas que evaluar. Por lo
tanto los pasos que se proponen en esta tesis son primero generar la clase funcional
y después evaluarla.

La clase funcional la generamos a partir de una lista de genes que han sido
seleccionados por alguna razón (co-expresión o expresión diferencial por ejemplo).
A continuación se hallan los caminos más cortos que unen todos los pares de
proteínas y seleccionamos aquellos que las unan directamente o a través de un
número determinado de nodos no presentes en la lista (normalmente uno). La red
resultante se llama Red de Conexión Mínima (RCM) y sería la red de proteínas,
en función de sus interacciones físicas, que definiría la clase funcional activa bajo
los criterios por los que habíamos seleccionado los genes de la lista.

Para la evaluación, nuestra metodología toma en cuenta los parámetros de
la red anteriormente expuestos como indicadores de redes robustas. La distribu-
ción de estos parámetros es comparada por medio de un test estadístico con las
distribuciones de un conjunto de RCMs generadas a partir de listas del mismo
tamaño de genes seleccionados aleatoriamente como indicador de la señal de
fondo. Para determinar si una lista está enriquecida en una red de proteínas
imponemos dos condiciones:

• La distribución del grado de conexión ha de ser significativamente mayor
(p-valor < 0.05) que la distribución del conjunto de RCMs generadas a
partir de listas de genes cogidos al azar.

• El número de componentes de la clase funcional ha de ser menor que el 95%
del conjunto de RCMs generadas a partir de listas de genes cogidos al azar.
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Objetivos

Esta tesis comenzó con el objetivo general de desarrollar metodologías para la
anotación funcional de experimentos a escala genómica. Más específicamente
queríamos introducir nuevas fuentes de anotación que aumentaran el alcance de
estos análisis complementando ambos, la cobertura de la anotación y las parcelas
de conocimiento biológico que son exploradas.

Para ello requeríamos conseguir una serie de objetivos más concretos que se
enumeran a continuación:

• La introducción de nuevas fuentes de información en la interpretación fun-
cional de experimentos. Más detalladamente nos propusimos manegar tres
tipos de datos:

– Palabras con sentido en contexto biológico asociadas a genes a través
de su aparición conjunta en la literatura científica.

– Información de fenotipo asociada a los genes por medio de valores de
expresión.

– Datos de interacciones entre proteínas.

• Desarrollar metodologías para este tipo de análisis que tengan en consid-
eración ambas, la estructura de la fuente de anotación y el diseño previo
del experimento. Específicamente nos propusimos generar métodos que
pudieran adaptarse a:

– Etiquetas contínuas asociadas a los genes por medio de un valor.

– Etiquetas simples con una supra-estructura en forma de red.

– Experimentos que incluyan series temporales.

– Diferentes diseños experimentales tales como problemas supervisados
y no supervisados.

• La implementación de estas metodologías en herramientas web que pudieran
ser integradas en los paquetes Babelomics y GEPAS diseñados para la in-
terpretación funcional de experimentos y el análisis de microarrays respec-
tivamente.

• Testar las posibilidades científicas de los métodos por medio de:

– Interpretar funcionalmente experimentos de escala genómica.

– Explorar el rol de las interacciones entre proteínas en otras clases fun-
cionales.

– La integración de varias fuentes de anotación para estudiar la variación
de módulos funcionales en cáncer.
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Resultados y Discusión

Babelomics

Esta tesis ha contribuido al desarrollo de Babelomics, un paquete de herramientas
accesible vía web para la anotación funcional de experimentos de alto rendimiento.
Babelomics cuenta con diferentes módulos interconectados entre sí y con otro
paquete de gran difusión dentro de la comunidad científica, GEPAS, cuya fun-
cionalidad es analizar experimentos de microarray.

Aparte de las herramientas comentadas en la metodología, Marmite, Mar-
miteScan y Tissues Mining Tool, la siguiente versión de Babelomics vendrá con
un nuevo módulo que utiliza interacciones entre proteínas para anotar funcional-
mente listas de genes. Este módulo está implementado bajo el nombre de SNOW
(Studying Networks in the Omic World, estudiando redes dentro del mundo ómico
en castellano) e integra la metodología anteriormente explicada para generar y
evaluar una clase funcional formada por interacciones entre proteínas. Además
SNOW evalúa estadísticamente si la lista tiene un contenido mayor de proteínas
con alto grado de conexiones, más centradas o con una vecindad mas interconec-
tada que la señal de fondo dada por el resto de proteínas del interactoma com-
pleto. La RCM es también anotada funcionalmente a través de un mapeo de los
términos GO y descripciones génicas/proteicas de cada uno de sus componentes.
SNOW cuenta con un sistema interactivo para visualizar la RCM que completa
la funcionalidad del módulo.

Interpretación funcional de experimentos de microarray basa-
dos en series temporales

Aunque normalmente los experimentos de microarray están diseñados para es-
tudiar condiciones estáticas, existe otro tipo en el que se miden condiciones a
lo largo del tiempo. Los experimentos que incluyen una serie temporal pueden
darnos información a cerca de la dinámica de la activación de genes. Las pe-
culiaridades de este tipo de experimentos hacen que no puedan ser estudiadas
bajo las mismas reglas que un experimento estático. En esta tesis diseñamos un
método para analizar experimentos de microarray basados en una toma secuen-
cial de datos a lo largo del tiempo. Este método se basa en FatiScan (Al-Shahrour
et al., 2006) y tiene en consideración que la medición de la expresión génica está
condicionada por la medición en el tiempo anterior. Además busca módulos de
genes sobre-representados en listas ordenadas de genes, es decir, está orientado
de forma sistémica sin imponer umbrales de decisión.

El método fue aplicado al estudio del ciclo intra-sanguíneo de Plasmodium
falciparum. Este ciclo es el responsable de la malaria en humanos por lo que
el conocimiento de la dinámica del comportamiento celular del parásito es de
crucial importancia para el desarrollo de vacunas y drogas que puedan paliar
los efectos de la enfermedad. Utilizamos los términos GO para la anotación
funcional. Como resultado obtuvimos la dinámica de activación y desactivación
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conjunta de las funcionalidades en cada hora de las 48 que dura el ciclo completo
del parásito.

Estudio del rol de las redes de interacciones entre proteínas
en la anotación funcional de experimentos de alto rendimiento

Con el objetivo de descifrar el rol de las redes de interacciones entre proteínas
en diferentes tipos de clases funcionales desarrollamos un análisis masivo y sis-
temático de las redes funcionales, de acuerdo a la descripción de estas que hicimos
en la metodología, que existen dentro de cuatro tipos de clases funcionales: tér-
minos GO, rutas bioquímicas definidas por KEGG y por BioCarta y módulos
de co-expresión en diferentes tipos de cáncer. Además en el análisis incluimos
un conjunto de listas de genes diferencialmente expresados, ya sea inducidos o
reprimidos en diferentes experimentos de microarray de una temática variada.

Utilizamos los términos GO para realizar una primera aproximación al prob-
lema. Definimos un conjunto de listas de proteínas por su anotación conjunta a
un término GO. A partir de cada una de estas listas generamos una RCM que
a continuación fue evaluada de la forma descrita anteriormente. Para cada lista
generamos dos RCMs, una sólo con las proteínas anotadas con ese determinado
GO y otra permitiendo la introducción en los caminos mínimos de una proteína
externa a la lista. Los resultados demuestran que:

• Los términos GO contienen en un gran porcentaje una red de interacciones
entre proteínas que es mas robusta que un conjunto de redes generadas a
partir de listas sin sentido biológico.

• La introducción de una proteína externa en los caminos mínimos es tra-
ducida en que encontramos aproximadamente el doble de redes mas robus-
tas que las generadas a partir de listas aleatorias.

Para extender estas conclusiones realizamos el mismo análisis para las listas de-
scritas anteriormente. Las listas provenientes de experimentos de microarray
fueron separadas en inducidas y reprimidas y en dos histologías (normal y cáncer)
con el fin de investigar una posible diferenciación en el rol biológico de las redes
de proteínas en cada una de estas situaciones.

La primera observación es que las rutas bioquímicas definidas por KEGG con-
tienen un mayor porcentaje de redes robustas seguidas de los términos GO y a
continuación por las rutas definidas por BioCarta y los módulos de co-expresión
en cáncer. Las listas provenientes de experimentos de microarray resultaron las
que tenían menos redes definidas con sentido biológico. Además la clasificación
de estas listas en inducidas, reprimidas, normales y cancerosas no demostró ape-
nas ninguna diferencia exceptuando en la comparación del coeficiente de agru-
pamiento en la que las listas anotadas como cáncer y/o reprimidas mostraron
mejores resultados indicando que sus redes de proteínas podrían estar mas inter-
conectadas que las normales y/o inducidas.
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Análisis de la variación de las conexiones físicas entre rutas
bioquímicas en situaciones normales y cancerosas

Diseñamos un experimento que analiza como cambian las conexiones físicas entre
procesos celulares en varios tejidos entre situaciones normales y de cáncer. Los
procesos biológicos están definidos por rutas bioquímicas de la base de datos
KEGG.

Lo primero que hicimos fue superponer las anotaciones KEGG sobre el inter-
actoma humano y reajustar los nodos a cada una de las rutas definidas por este
tipo de anotación y los ejes a las interacciones físicas que suceden entre proteínas
de dos grupos diferentes de KEGGs. Con esto conseguimos tener una red que
muestra como se conectan las rutas bioquímicas en función de las interacciones
físicas de sus elementos.

Para la descripción de esta nueva red utilizamos los mismos parámetros que en
las redes de proteínas mas un nuevo concepto, el de pesos de los ejes representando
el número de interacciones entre proteínas que se dan en cada par de nodos
conectados.

Comprobamos que la red de rutas KEGG se comporta igual que una red de
proteínas en cuestión de topología, ambas son redes libres de escala que son la
forma mas característica de las redes biológicas. Su principal característica es que
los nodos tienen en general pocas conexiones exceptuando unos pocos llamados
hubs. Los nodos mas conectados y centrales resultaron ser los asociados a señal-
ización mientras que los menos conectados fueron los asociados con metabolismo.
En contraste, si consideramos la conectividad en el entorno cercano a los nodos,
la situación se revierte.

Utilizamos datos de transcriptómica para filtrar la red de KEGGs y generar
redes específicas de diversos tejidos en estados normales y cancerosos. A partir de
estos datos hicimos comparaciones para cada tejido de como se ganaban o perdían
interacciones físicas entre pares de KEGGs en las redes normales y cancerosas.
Esta forma de analizar este tipo de situaciones toma en cuenta tres tipos de
datos: de expresión, de interacción y de pertenencia a una ruta bioquímica.
Además frente a un análisis clásico de enriquecimiento funcional que sólo aporta
datos descriptivos, aquí tenemos mediciones de cómo varían las conexiones entre
funcionalidades siendo esto un paso mas hacia la Biología de Sistemas.

Conclusiones

De los resultados de esta tesis podemos extraer las siguientes conclusiones:

1. La Genómica funcional necesita introducir nuevas fuentes de información
para complementar tanto la cobertura de la anotación de secuencias biológ-
icas como las parcelas de conocimiento en biología que son exploradas.

2. Los métodos de interpretación funcional de experimentos a escala genómica
deben considerar la estructura de la fuente de anotación así como el diseño
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del experimento. En un análisis de enriquecimiento funcional debemos tener
en cuenta una comparación con la señal de fondo para ser capaces de definir
módulos funcionales con soporte estadístico suficiente.

3. Las redes formadas por proteínas que interaccionan físicamente pueden con-
formar módulos funcionales que son además detectados formando parte de
otras clases funcionales tales como rutas bioquímicas o proteínas funcional-
mente relacionadas.

4. Los experimentos que incluyen series temporales pueden ser estudiados
desde una perspectiva de sistema dando como resultado la descripción de
la dinámica de los módulos funcionales en el tiempo.

5. La integración de varias fuentes de información en un solo análisis aumenta
las posibilidades de extraer conocimiento. Estudiando la variación de la
conectividad física entre rutas bioquímicas en estados celulares normales y
cancerosos podemos llegar a medir la diferencia en la actividad de módulos
funcionales.

6. Babelomics y GEPAS son dos paquetes de herramientas web que han de-
mostrado su capacidad para integrar diferentes fuentes de información con
el fin de proporcionar un análisis completo bajo una perspectiva de sistema
tanto en experimentos de microarray como en otros tipos de experimentos
a escala genómica.
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