
 

 

Chapter 3 
Biological sequence analysis 
 

The steps outlined in the  Figure1.1 are discussed in this chapter. Each step contains 

many sub steps, and there may have different approaches known to tackle the same 

problem. The methodologies that are used in this thesis for deriving results are described 

in details.  

 

3.1 Identifying Close and Remote Homologues to the Query  
 

Nature is a tinkerer and not an inventor. New sequences are adapted from pre-existing 

sequences rather than invented de novo (Jacob, 1977). This is very fortunate for 

computational sequence analysis, since discovery of sequence homology (recognition of 

significant similarity) to a known protein or family of proteins often provides the first 

clues about the function of a query sequence (Altschul et al., 1990). When the homologue 

is encountered the information about structure and/function can be transferred to query 

sequence by homology. Homologous proteins are defined as one that shares clear 

evolutionary relationship (or a common ancestor) with each other, while remote 

homologues are one in which the evolutionary relationships can not be detected at the 

first glance (e.g., using sequence similarity) due to divergent evolution. Following 

flowchart (Figure 3.1) summarizes ways of identification of functional and structural 

similarity.  

 

Well-curated databases assume prime importance as sequence analysis is totally based 

upon the quality of the databases. An error in database may progress by repeated copying 



of annotations between similar sequences. Some of the important publicly available 

sequence and structure databases are listed below. 

 

 

 

 

                          
             
      

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 3.1 Identification of close and remote homolouges of query sequence by searching 

databases of deposited sequences and profiles. Plese see text for clear discussion. 

 

3.1.1 Protein Sequence Databases 

 
¾ SWISS-PROT               http://www.expasy.ch/sprot 

¾ TrEMBL                    http://www.expasy.ch/sprot 

¾ PIR                                http://pir.georgetown.edu 

¾ Entrz protein (NRDB)  http://www.ncbi.nlm.nih.gov:80/entrez/ 

¾ OWL                             http://www.leeds.ac.uk/bmb/owl/owl.htm 

¾ GenPept                         http://www.ncifcrf.gov/pub/genpept/ 

 

 

 



3.1.1.1 SWISS-PROT (Bairoch and Apweiler, 2000)  

 

The SWISS-PROT database  distinguishes itself from other protein sequence databases 

by three distinct criteria:  

 

Annotation: In SWISS-PROT, as in most other sequence databases, two classes of data 

can be distinguished. First are the core data and the annotation. For each sequence entry 

the core data consists of the sequence data; the citation information (bibliographical 

references) and the taxonomic data (description of the biological source of the protein). 

The annotation consists of the description of the following items: Function(s) of the 

protein, post-translational modification(s), domains, secondary structure, quaternary 

structure, similarities to other proteins, disease(s) associated with deficiencies in the 

protein, sequence conflicts and variants, etc. Systematic recourse both to publications 

other than those reporting the core data and to subject referees represents a unique and 

beneficial feature of SWISS- PROT.  

 

Minimal redundancy: In SWISS-PROT all possible data are merged so as to minimize the 

redundancy of the database. If conflicts exist between various sequencing reports, they 

are indicated in the feature table of the corresponding entry.  

 

Integration with other databases: Users of biomolecular databases are provided with a 

degree of integration between the three types of sequence-related databases (nucleic acid 

sequences, protein sequences and protein tertiary structures) as well as with specialized 

data collections. SWISS-PROT is currently cross-referenced with 30 different databases. 

Cross-references are provided in the form of pointers to information related to SWISS-

PROT entries and found in data collections other than SWISS-PROT. 

 

3.1.1.2 TrEMBL (Bairoch and Apweiler, 2000)  

It consists of entries in SWISS-PROT-like format derived from the translation of all 

coding sequences (CDSs) in the EMBL Nucleotide Sequence Database, except the CDSs 

already included in SWISS-PROT.  



3.1.1.3 PIR (Barkar et al., 2000)  

 

The Protein Information Resource, is the most comprehensive and expertly annotated 

protein sequence database in the public domain, aiming to provide timely and high 

quality annotation and promote database interoperability. PIR employs rule-based and 

classification-driven procedures based on controlled vocabulary and standard 

nomenclature and include status tags to distinguish experimentally determined from 

predicted protein features. The database contains about 200000 non-redundant protein 

sequences, which are classified into families and superfamilies and their domains and 

motifs identified. Entries are extensively cross-referenced to other sequence, 

classification, genome, structure and activity databases. The PIR web site features search 

engines that use sequence similarity and database annotation to facilitate the analysis and 

functional identification of proteins. 

 

3.1.1.4 Entrez (on NCBI)  

 

It is a search and retrieval system have been compiled from sources, including SwissProt, 

PIR, PRF, PDB, and translations from annotated coding regions in GenBank and RefSeq.  

 

3.1.2 Protein Structure Databases 

 
¾ PDB                       http://rcsb.org/pdb 

¾ NRL3D                           http://pir.georgetown.edu/pirwww/dbinfo/nrl3d.html 

¾ MODBASE                   http://pipe.rockefeller.edu/modbase/index.shtml 

 

3.1.3 Protein Family/ Domain Databases  

 
¾ PFAM                      http://www.sanger.ac.uk/Pfam/ 

¾ PRODOM                     http://protein.toulouse.inra.fr/prodom.html 

¾ PROSITE                      http://www.expasy.ch/sprot/prosite.html 



¾ BLOCKS           http://www.blocks.fhcrc.org/ 

¾ SMART           http://smart.embl-heidelberg.de/ 

¾ DOMO           http://www.infobiogen.fr/~gracy/domo 

¾ PRINTS                        http://www.biochem.ucl.ac.uk/bsm/dbbbrowser/PRINTS/ 

                                                     PRINTS.html 

¾ PROFILESCAN         http://www.isrec.isb-sib.ch/software/ 

                                                      PFSCAN_form.html 

 

3.1.3.1 PFAM (Bateman et al.., 2000)  

 

Pfam is a database of protein domain families. Pfam contains curated multiple sequence 

alignments for each family, as well as profile hidden Markov models (profile HMMs) for 

finding these domains in new sequences. Pfam contains functional annotation, literature 

references and database links for each family. There are two multiple alignments for each 

Pfam family, the seed alignment that contains a relatively small number of representative 

members of the family and the full alignment that contains all members in the database 

that can be detected. All alignments use sequences taken from pfamseq, which is a non-

redundant protein set composed of SWISS-PROT and TrEMBL. The profile HMM is 

built from the seed alignment using the HMMER package (Durbin et al., 1998), which is 

then used to search the pfamseq sequence database. All the matches found above the 

curated thresholds are aligned using the profile HMM to make the full alignment. The 

Pfam WWW servers can present the domain architecture of a protein graphically as 

‘beads on a string’ with a color-coded and hyperlinked bead for each domain. For a fine-

grained analysis of the evolution of domain architectures, a Java tool displays the 

graphical domain schematics of each sequence connected in an evolutionary tree. 

 

3.1.3.2 PRODOM (Corpet et al., 2000)  

 

The rapid growth of primary sequence databases makes it more and more difficult to 

comprehend the ever increasing diversity of known proteins. One major underlying 

difficulty is that many proteins exhibit a combinatorial arrangement of domains, which 



makes it desirable to develop databases and tools to describe proteins at an intermediary 

level of structure, in terms of domain arrangements. The ProDom database was designed 

with this explicit purpose, with particular emphasis on the user interface. Domains are 

detected in an automatic process that uses sequence similarities between homologous 

domains of SWISS-PROT and TrEMBL (Bairoch and Apweiler, 2000) sequences using 

PSI-BLAST (Altschul et al., 1997). ProDom `domains' thus essentially reflect protein 

subsequences conserved in various proteins. To increase the number of these expert-

validated families, the curated part of Pfam (Bateman et al., 2000) is used: the seed 

alignments of Pfam-A families were added to the list of 21 ProDom expert-validated 

multiple alignments and used to build new ProDom families with the PSI-BLAST 

program. An interactive graphical interface is available to allow for easy navigation 

between schematic domain arrangements, multiple alignments, phylogenetic trees, 

SWISS-PROT entries, PROSITE patterns (Hoffman et al., 1999), Pfam-A families and 3-

D structures in the PDB (Bernstein et al., 1977; Berman et al., 2000). Alignments and 

trees can be reduced or developed to facilitate the analysis of sequence relationships 

within large domain families. New sequences can be searched against ProDom and 

aligned with existing domain families, and modeled on the basis of homologous domains 

in the PDB. 

 

3.1.3.3 PROSITE (Hoffman et al., 1999)  

 

PROSITE is a database of protein families and domains. It is based on the observation 

that, while there is a huge number of different proteins, most of them can be grouped, on 

the basis of similarities in their sequences, into a limited number of families. Proteins or 

protein domains belonging to a particular family generally share functional attributes and 

are derived from a common ancestor. It is apparent, when studying protein sequence 

families, that some regions have been better conserved than others during evolution. 

These regions are generally important for the function of a protein and/or for the 

maintenance of its three- dimensional structure. By analyzing the constant and variable 

properties of such groups of similar sequences, it is possible to derive a signature for a 

protein family or domain, which distinguishes its members from all other unrelated 



proteins. A biologically significant patterns and profiles formulated in such a way that 

with appropriate computational tools it can help to determine to which known family of 

protein (if any) a new sequence belongs, or which known domain(s) it contains. PRINTS 

(Attwood et al., 1999) is a compendium of protein fingerprints. A fingerprint is a group 

of conserved motifs used to characterize a protein family. Fingerprints can encode protein 

folds and functionalities more flexibly and powerfully than can single motifs: the 

database thus provides a useful adjunct to PROSITE. 

 

3.1.4 For Text Based searches in Sequence Databases 

 
¾ Entrez at NCBI            http://www.ncbi.nlm.nih.gov/Entrz/ 

¾ SRS at EBI                  http://srs.ebi.ac.uk/ 

¾ WWW-QUERY          http://pbil.univ-lyon1.fr/ 

¾ ExPASy                       http://www.expasy.ch/sprot/ 

¾ DBGET                        http://www.genome.ad.jp/ 

 

3.1.5 Sequence Alignment and Detection of Similarity 

 
The concept of alignment is crucial for understanding the sequence searching procedures 

from known databases. The most basic sequence analysis task is to ask if two sequences 

are related and this is usually done by first aligning the sequences (or parts of them) and 

then deciding whether that alignment is more likely to have occurred because the 

sequences are related or just by chance. When sequences are compared, in essence, we 

are looking for the evidence that they have diverged from a common ancestor by a 

process of mutation and selection. We look for a series of individual characters or 

character patterns in the same order in the sequences. The key issues are: (1) what sorts 

of alignment should be considered; (2) the scoring system used to rank the alignment; (3) 

the algorithm used to find optimal (or good) scoring alignments; and (4) the statistical 

methods used to evaluate the significance of an alignment score. The basic mutational 

processes that are considered are substitutions, which change residues in sequences and 



insertions and deletions, which add or remove residues. Insertions and deletions are 

together referred to as gaps. The total score assigned to an alignment will be a sum of 

terms for each aligned pair of residues, provisions for substitutions, plus terms for each 

gap.        

 

The Scoring System  

 

Since the proteins, in the course of evolution accommodates the substitutions and gaps. It 

is important to use appropriate substitution matrices while doing sequence alignments. 

The matrices are simply the prediction of tolerable amino acid changes that might occur 

to a sequence during the course of evolution. Two major families of matrices are 

available: (1) Point Accepted Mutation or PAM matrices (Dayhoff et al., 1983) and (2) 

Blocks Amino Acid Substitution Matrices (Henikoff and Henikoff, 1992). The matrices 

are discussed in detail while talking about statistics of sequence similarity scores. The 

probability of occurrence of a gap depends upon its length. Thus, when computing an 

alignment, penalties (P) associated with gaps are often estimated using a linear or "affine" 

model such as   

                                      P = α + βφ 

Where, φ is the length of the gap, α the gap opening penalty, and β is the gap extension 

penalty. The gap opening penalties are higher than the gap extension penalties. 

        

Alignment of Pairs of Sequences 

 

There are two types of sequence alignment, global and local. In global alignment, an 

attempt is made to align the entire sequence, using as many characters as possible, up to 

both ends of each sequence. Sequences that are quite similar and approximately the same 

length are suitable for global alignment. In local alignment, stretches of sequence with 

the highest density of matches are aligned, thus generating one or more islands of 

matches or subalignments in the aligned sequences. Local alignments are more suitable 

for aligning sequences that are similar along some of their lengths but dissimilar in 

others, sequences that differ in lengths, or sequences that share a conserved region or 



domain. It is also the most sensitive way to detect similarity when comparing two highly 

divergent sequences.       

 

Alignment of pairs of sequences can be performed using: (1) Dot matrix analysis (Gibbs 

and McIntyre, 1970); (2) Dynamic programming algorithms for global (Needleman and 

Wunsch, 1970), and local alignment (Smith and Waterman, 1981); and (3) Word or k-

tuple methods, as used by BLAST (Altschul et al., 1990).  

 

Unless the sequences are known to be very much alike, the dot matrix method should be 

used first. This method displays any possible sequence alignments as diagonals on the 

matrix. Dot matrix analysis can readily reveal the presence of gaps and direct and 

inverted repeats that are more difficult to find by other methods.  

 

The dynamic programming method, first used for global alignment of the sequences 

(Needleman and Wunsch, 1970) and subsequently for local alignment (Smith and 

Waterman, 1981) provides one or more alignments of the sequences. An alignment is 

generated by starting at the ends of the two sequences and attempting to match all 

possible pairs of characters between the sequences and following a scoring scheme  (as 

described before; using substitution matrix and gap penalties) for matches, mismatches 

and gaps. This procedure generates a matrix of numbers that represents all possible 

alignments between two sequences. The highest set of sequential scores in the matrix 

defines an optimal alignment. The dynamic programming is guaranteed in a mathematical 

sense to provide the optimal or highest scoring alignment for user defined variables, 

including the substitution matrix and gap penalties.        

 

3.1.5.1 Global Alignment: Needleman-Wunsch Algorithm:           

 

As the name suggests Needleman and Wunsch suggested the first global alignment 

algorithm in 1970. A more efficient version of the algorithm was introduced by Gotoh in 

1982. The later version is described here.  



A matrix F indexed by i and j, is constructed. Where i and j are index for each sequence. 

The value F (i, j) is the score of the best alignment the initial segment χ1…i of χ up to χi  

and initial segment γ1…j of  γ up to γj. F(i, j) is built recursively. One can start by 

initializing F (0,0) = 0. Then proceed to fill the matrix from top left to bottom right (or 

from bottom right to top left). If F (i −1, j −1), F (i −1, j) and F (i, j −1) are known, it is 

possible to calculate F (i, j). There are three possible ways that the best score F(i, j) of an 

alignment up to χi , γj could be obtained: χi could be aligned to γj in which case  

 F(i, j) =  F(i −1, j −1) + s (χi , γj); or χi is aligned to gap, in which case F(i, j) =  F(i −1, j) 

− P; or γj is aligned to gap, in which case F(i, j) =  F(i, j −1) −P. Here s (χi , γj) is the local 

score of the previous step and d is the gap penalty, which can be of the format described 

before. The best score up to (i, j) will be largest of the three points.  

There fore, we have  

 

                         F(i, j) =  max { F (i −1, j −1) + s (χi , γj), 

                                                  F (i −1, j) − P,          

                                                  F (i,  j−1) − P } 

 

The above equation is applied repeatedly to fill the matrix F(i, j) values, calculating the 

value in the bottom right-hand corner of each sequence to the top-left. As one fill in the  

F(i, j) values, the pointer is kept in each cell back to the cell from which its F(i, j) is 

derived. The boundary conditions are calculated as follows. Along the top row, where j = 

0, the values F(i, j −1) and F(i −1, j −1) are not defined, so the values F(i, 0) must be 

handled specially. The value F(i, 0)  represent alignments of a prefix of  χ to all the gaps 

in γ, so we can define F(i, 0) = −iP. Likewise down the left column F (0, j) = -jP. The 

value in the final cell of matrix, F (n, m), is by definition the best score for a alignment of       

χ1…n to γ 1…m, which is the score of the best global alignment of χ and γ. To find the 

alignment itself, one should find the path of choices that lead to the final highest score 

using the pointers. The procedure for doing this is known as traceback. It works by 

building alignment in reverse.  

 



 

3.1.5.2. Local Alignment: Smith-Waterman Algorithm: 

 

Local alignment arises when say for example one is looking for the best alignment 

between subsequences of χ, γ. The highest scoring alignment of subsequences of χ and γ 

is called the best local alignment. The algorithm of local alignment is closely related to 

that described for global alignment. There are two differences. First, in each cell in the 

previous set of equation extra possibility is added, allowing F (i,  j) to take the value 0 if 

all other options have value less than 0: 

 

                       F(i, j) =  max   { 0, 

                                                  F(i −1, j −1) + s (χi , γj), 

                                                  F(i −1, j) − P,           

                                                  F(i,  j−1) − P } 

Taking option 0 corresponds to starting a new alignment. As a result of it the boundary 

values of top row and left column will be 0 and not −iP and -jP respectively.  

The second change is that the alignment can start anywhere in the matrix, so instead of 

taking the value in the bottom right corner, F (n, m), for the best score, one have to look 

for the highest value of F(i,  j) over the whole matrix, and start traceback from there. The 

traceback ends when the cell with 0 value is encountered.      

 

3.1.6 The Blast Algorithm For Searching Databases 
 

Database Searching Programs 

 

¾ BLAST                        http://www.ncbi.nlm.nih.gov/BLAST/ 

¾ PSI-BLAST                 http://www.ncbi.nlm.nih.gov/BLAST/ 

¾ FASTA3          http://www.ebi.ac.uk/fasta3/ 

¾ HMMER                    http://hmmer.wustal.edu/ 

¾ SAM                     http://www.cse.ucsc.edu/research/compbio/sam.html 

¾ PFSEARCH                 http://www.isrec.isb-sib.ch/ftp-server/pftools/pft2.2/ 



¾ IMPALA                      http://bioinformatics.weizmann.ac.il/blocks/impala.html 

Sequence searches algorithms like FASTA and BLAST use the word or K-tuple methods. 

They align two sequences very quickly, by first searching for identical short stretches 

sequences (called word or k-tuples) and then by joining words in to alignment by the 

dynamic programming method. These methods are fast and suitable for searching an 

entire database for the sequences that align best with the query sequence. The FASTA 

and BLAST methods are heuristic and use feedback to improve performance. 

 

3.1.6.1 The Statistics of Sequence Similarity Scores 

 

To assess whether a given alignment constitutes evidence for homology, it helps to know 

how strong an alignment can be expected from chance alone. In this context, "chance" 

can mean the comparison of (i) real but non-homologous sequences; (ii) real sequences 

that are shuffled to preserve compositional properties (Fitch, 1983; Lipman et al., 1984; 

Altschul, 1985) or (iii) sequences that are generated randomly based upon a DNA or 

protein sequence model. Analytic statistical results invariably use the last of these 

definitions of chance, while empirical results based on simulation and curve fitting may 

use any of the definitions.  

 

3.1.6.2 The statistics of local sequence comparison (BLAST)  

 

 Statistics for the scores of local alignments, unlike those of global alignments, are well 

understood. This is particularly true for local alignments lacking gaps, which we will 

consider first. Such alignments were precisely those sought by the original Basic Local 

Alignment Search Tool (BLAST) database search programs (Altschul et al., 1990). A 

local alignment without gaps consists simply of a pair of equal length segments, one from 

each of the two sequences being compared. A modification of the Smith-Waterman 

(Smith and Waterman, 1981) or Sellers (Sellers, 1984) algorithms will find all segment 

pairs whose scores can not be improved by extension or trimming. These are called high-

scoring segment pairs or HSPs. To analyze how high a score is likely to arise by chance, 

a model of random sequences is needed. For proteins, the simplest model chooses the 



amino acid residues in a sequence independently, with specific background probabilities 

for the various residues. Additionally, the expected score for aligning a random pair of 

amino acid is required to be negative. Where this not the case, long alignments would 

tend to have high score independently of whether the segments aligned were related, and 

the statistical theory would break down. 

 

Just as the sum of a large number of independent identically distributed (i.i.d) random 

variables tends to a normal distribution, the maximum of a large number of i.i.d. random 

variables tends to an extreme value distribution (Gumble, 1958). (We will elide the many 

technical points required to make this statement rigorous.) In studying optimal local 

sequence alignments, we are essentially dealing with the latter case (Karlin and Altschul, 

1990; Dembo et al., 1994). In the limit of sufficiently large sequence lengths m and n, the 

statistics of HSP scores are characterized by two parameters, K and λ. Most simply, the 

expected number of HSPs with score at least S is given by the formula 

                                  E = K mn e-λS                                                                                      (1) 
We call this the E-value for the score S. This formula makes eminently intuitive sense. 

Doubling the length of either sequence should double the number of HSPs attaining a 

given score. Also, for an HSP to attain the score 2x it must attain the score x twice in a 

row, so one expects E to decrease exponentially with score. The parameters K and λ can 

be thought of simply as natural scales for the search space size and the scoring system 

respectively. 

 

3.1.6.3 Bit scores 

 

Raw scores have little meaning without detailed knowledge of the scoring system used, 

or more simply its statistical parameters K and λ.  

                                        S' = λS -ln K / ln 2                                         (2) 
Using above equation one attains a "bit score" S', which has a standard set of units. The 

E-value corresponding to a given bit score is simply 

                                  E = mn 2-S'                                                 (3) 



Bit scores subsume the statistical essence of the scoring system employed, so that to 

calculate significance one needs to know in addition only the size of the search space. 

 

3.1.6.4 P-values 

 

The number of random HSPs with score ≥ S is described by a Poisson distribution 

(Karlin and Altschul, 1990; Dembo et al., 1994). This means that the probability of 

finding exactly a HSPs with score ≥S is given by 

                                       e−E * Ea / a!                                                 (4) 
where E is the E-value of S given by equation (1) above. Specifically the chance of 

finding zero HSPs with score ≥S is e-E, so the probability of finding at least one such HSP 

is 

                                       P = 1 − e−E                                                                                              (5) 
This is the P-value associated with the score S. For example, if one expects to find three 

HSPs with score ≥ S, the probability of finding at least one is 0.95. The BLAST programs 

report E-value rather than P-values because it is easier to understand the difference 

between, for example, E-value of 5 and 10 than P-values of 0.993 and 0.99995. However, 

when E < 0.01, P-values and E-value are nearly identical. 

 

3.1.6.5 Database searches 

 

The E-value of equation (1) applies to the comparison of two proteins of lengths m and n. 

How does one assess the significance of an alignment that arises from the comparison of 

a protein of length m to a database containing many different proteins, of varying 

lengths? One view is that all proteins in the database are a priori equally likely to be 

related to the query. This implies that a low E-value for an alignment involving a short 

database sequence should carry the same weight as a low E-value for an alignment 

involving a long database sequence. To calculate a "database search" E-value, one simply 

multiplies the pairwise-comparison E-value by the number of sequences in the database.  



An alternative view is that a query is a priori more likely to be related to a long than to a 

short sequence, because long sequences are often composed of multiple distinct domains. 

If we assume the a priori chance of relatedness is proportional to sequence length, then 

the pairwise E-value involving a database sequence of length n should be multiplied by 

N/n, where N is the total length of the database in residues. Examining equation (1), this 

can be accomplished by treating the database as a single long sequence of length N.  

The BLAST programs (Smith et al., 1985; Collins et al., 1988; Altschul et al., 1990; 

Mott, 1992; Waterman and Vingron, 1994; Altschul and Gish, 1996; Altschul et al., 

1997; Pearson, 1998) take this approach to calculating database E-value.  

 

3.1.6.6 The Statistics of Gapped Alignment: 

 

The statistics developed above have a solid theoretical foundation only for local 

alignments that are not permitted to have gaps. However, many computational 

experiments (Altschul and Gish, 1996; Altschul et al., 1997; and some analytic results 

(Arratia and Waterman, 1994) strongly suggest that the same theory applies as well to 

gapped alignments. For ungapped alignments, the statistical parameters can be calculated, 

using analytic formulas, from the substitution scores and the background residue 

frequencies of the sequences being compared. For gapped alignments, these parameters 

must be estimated from a large-scale comparison of "random" sequences. The BLAST 

programs achieve much of their speed by avoiding the calculation of optimal alignment 

scores for all but a handful of unrelated sequences. The must therefore rely upon a pre-

estimation of the parameters lambda and K, for a selected set of substitution matrices and 

gap costs. This estimation could be done using real sequences, but has instead relied upon 

a random sequence model (Altschul and Gish, 1996), which appears to yield fairly 

accurate result (Pearson, 1998). The BLAST programs also correct for Edge effects 

(Altschul and Gish, 1996).  

 

3.1.6.7 The choice of substitution scores 

 



The results a local alignment program produces depend strongly upon the scores it uses. 

No single scoring scheme is best for all purposes, and an understanding of the basic 

theory of local alignment scores can improve the sensitivity of one's sequence analyses. 

A large number of different amino acid substitution scores, based upon a variety of 

rationales, have been described (Dayhoff et al., 1978; Altschul, 1991; Gonnet et al., 

1992; Henikoff and Henikoff, 1992). However the scores of any substitution matrix with 

negative expected score can be written uniquely in the form 

                                   Sij = (ln q ij/ pi pj) \ λ                              (6)  
Where, the qij, called target frequencies, are positive numbers that sum to 1, the pi are 

background frequencies for the various residues, and λ is a positive constant (Karlin and 

Altschul, 1990; Altschul, 1991). The λ here is identical to the λ of equation (1).  

Multiplying all the scores in a substitution matrix by a positive constant does not change 

their essence: an alignment that was optimal using the original scores remains optimal. 

Such multiplication alters the parameter lambda but not the target frequencies qij. Thus, 

up to a constant scaling factor, every substitution matrix is uniquely determined by its 

target frequencies.  These frequencies have a special significance (Karlin and Altschul, 

1990; Altschul, 1991): A given class of alignments is best distinguished from chance by 

the substitution matrix whose target frequencies characterize the class. The most direct 

way to construct appropriate substitution matrices for local sequence comparison is to 

estimate target and background frequencies, and calculate the corresponding log-odds 

scores of formula (6). These frequencies in general can not be derived from first 

principles, and their estimation requires empirical input. 

 

3.1.6.8 The PAM and BLOSUM amino acid substitution matrices 

 

While all substitution matrices are implicitly of log-odds form, the first explicit 

construction using formula (6) was by Dayhoff and coworkers (Dayhoff et al., 1978; 

Schwartz et al., 1978). From a study of observed residue replacements in closely related 

proteins, they constructed the PAM (point accepted mutation) model of molecular 

evolution. An alternative approach to estimating target frequencies, and the 

corresponding log-odds matrices, has been advanced by Henikoff and Henikoff (Henikoff 



and Henikoff, 1992). They examine multiple alignments of distantly related protein 

regions directly, rather than extrapolate from closely related sequences. An advantage of 

this approach is that it cleaves closer to observation; a disadvantage is that it yields no 

evolutionary model. A number of tests (Pearson, 1995; Henikoff and Henikoff, 1993) 

suggest that the BLOSUM matrices (Blocks Substitution Matrix derived using BLOCKS 

database) produced by this method generally are superior to the PAM matrices for 

detecting biological relationships. BLOSUM62 is default matrix for blast searches.  

 

3.1.6.9 Gap scores and Low Complexity Regions 

 

The theoretical development concerning the optimality of matrices constructed using 

equation (6) unfortunately is invalid as soon as gaps and associated gap scores are 

introduced, and no more general theory is available to take its place. However, if the gap 

scores employed are sufficiently large, one can expect that the optimal substitution scores 

for a given application will not change substantially. In practice, the same substitution 

scores have been applied fruitfully to local alignments both with and without gaps. 

Appropriate gap scores have been selected over the years by trial and error (Pearson, 

1995), and most alignment programs will have a default set of gap scores to go with a 

default set of substitution scores. No clear theoretical guidance can be given, but "affine 

gap scores" (Gotoh, 1982; Fitch and Smith, 1983; Altschul and Erickson, 1986) with a 

large penalty for opening a gap and a much smaller one for extending it, have generally 

proved among the most effective. The BLAST programs employ the SEG algorithm 

(Wootton and Federhen, 1993) to filter low complexity regions from proteins before 

executing a database search. 

 

3.1.7 Database Searching with PSI-BLAST  
 

Many functionally and evolutionarily important protein similarities are recognizable only 

through comparison of three-dimensional structures (Holm and Sander, 1997; Brenner et 

al., 1998). When such structures are not available, patterns of conservation identified 

from the alignment of related sequences can aid the recognition of distant similarities. 



There is a large literature on the definition and construction of these patterns, which have 

been variously called motifs, profiles, position-specific score matrices, and Hidden 

Markov Models (Gribskov, 1987; Staden, 1988; Tatusov et al., 1994; Altschul and Gish, 

1996; Altschul et al., 1997; Durbin et al., 1998). In essence, for each position in the 

derived pattern, every amino acid is assigned a score. If a residue is highly conserved at a 

particular position, that residue is assigned a high positive score, and others are assigned 

high negative scores. At weakly conserved positions, all residues receive scores near 

zero. Position-specific scores can also be assigned to potential insertions and deletions 

(Gribskov et al., 1987; Altschul et al., 1997; Durbin et al., 1998). The power of profile 

methods can be further enhanced through iteration of the search procedure (Gribskov, 

1992; Tatusov, 1994; Yi and Lander, 1994; Altschul et al., 1997). After a profile is run 

against a database, new similar sequences can be detected. A new multiple alignment, 

which includes these sequences, can be constructed, a new profile abstracted, and a new 

database search performed. The procedure can be iterated as often as desired or until the 

search converges, when no new statistically significant sequences are detected. 

 

3.1.7.1 The design of PSI-BLAST 

 

Iterated profile search methods have led to biologically important observations but, for 

many years, were quite slow and generally did not provide precise means for evaluating 

the significance of their results. This limited their utility for systematic mining of the 

protein databases. The principal design goals in developing the Position-Specific Iterated 

BLAST (PSI-BLAST) program (Altschul et al., 1997) were speed, simplicity and 

automatic operation. The procedure PSI-BLAST uses can be summarized in five steps: 

(1) PSI-BLAST takes as an input a single protein sequence and compares it to a protein 

database, using the gapped BLAST program (Altschul et al., 1997). (2) The program 

constructs a multiple alignment, and then a profile, from any significant local alignments 

found. The original query sequence serves as a template for the multiple alignment and 

profile, whose lengths are identical to that of the query. Different numbers of sequences 

can be aligned in different template positions. (3) The profile is compared to the protein 

database, again seeking local alignments. After a few minor modifications, the BLAST 



algorithm (Altschul et al., 1997; Altschul et al., 1990) can be used for this directly. (4) 

PSI-BLAST estimates the statistical significance of the local alignments found. Because 

profile substitution scores are constructed to a fixed scale (Karlin and Altschul, 1990), 

and gap scores remain independent of position, the statistical theory and parameters for 

gapped BLAST alignments (Altschu and Gish, 1994) remain applicable to profile 

alignments (Altschul et al., 1997). (5) Finally, PSI-BLAST iterates, by returning to step 

(2), an arbitrary number of times or until convergence. Profile-alignment statistics allow 

PSI-BLAST to proceed as a natural extension of BLAST; the results produced in iterative 

search steps are comparable to those produced from the first pass. Unlike most profile-

based search methods, PSI-BLAST runs as one program, starting with a single protein 

sequence, and the intermediate steps of multiple alignment and profile construction are 

invisible to the user. 

 

3.1.7.2 Estimation of statistical parameters for local alignment scores 

 

As discussed previously, computation experiments strongly suggest that the optimal 

gapped local alignment scores produced by the Smith-Waterman algorithm (Smith and 

Waterman, 1981) and approximated by FASTA (Pearson and Lipman, 1988) or Gapped 

BLAST (Waterman and Vingron, 1994; Altschul and Gish, 1996) follow an extreme 

value distribution (Gumble, 1958). Specifically, the probability that the optimal score S 

from the comparison of unrelated proteins is at least x is given by the equation, 

    P (S ≥ X) = 1 - exp (-K mn e -λx)            (1)   

Where, K and λ are statistical parameters dependent upon the scoring system and the 

background amino acid frequencies of the sequences being compared. BLAST estimates 

parameters beforehand for specific scoring schemes by comparing many random 

sequences generated using a standard protein amino acid composition (Robinson and 

Robinson, 1991). For example, using BLOSUM-62 amino acid substitution scores 

(Henikoff and Henikoff, 1992), and affine gap costs (Fitch and Smith, 1983; Altschul and 

Erickson, 1986; Myers and Miller, 1988) in which a gap of length k is assigned a score of 

-(10 + k), 10,000 pairs of length-1000 random protein sequences were generated, and 

Smith-Waterman algorithm was used to calculate 10,000 optimal local alignment scores. 



From these scores, λ was estimated at 0.252 and K at 0.035 by the method of maximum-

likelihood (Lawless, 1982). In general, given M samples from an extreme value 

distribution, the ratio of the maximum-likelihood estimate of lambda to its actual value is 

approximately normally distributed, with mean 1.0 and standard deviation 0.78/sqrt(M) 

(Lawless, 1982). Thus the standard error for our estimate of λ is about 0.002, or less than 

1%. The chi-squared goodness-of-fit test for these data, with 34 degrees of freedom, is 

25.6, which is lower than would be expected to occur by chance 87% of the time even 

were the theory precisely valid.  

 

3.1.7.3 Generalization to PSI-BLAST alignment scores 

 

In order for PSI-BLAST to iterate automatically, it needs to be able to generate accurate 

estimates of the statistical significance of the alignments it produces. Unfortunately, there 

is no analytic theory with which to estimate the statistical significance of a gapped local 

alignment of a profile and a simple sequence. One hope is that if amino acid scores 

within each column of a PSI-BLAST profile can be constructed to the same scale (Karlin 

and Altschul, 1990; Altschul, 1991) i.e. with the same ungapped λ, as those for a standard 

amino acid substitution matrix, and then use the same position-independent gap costs, the 

same gapped λ may result. To review, for ungapped local alignments, any substitution 

matrix takes the form 

                                          Sij =  (ln qij / pi pj) λu                                            (2) 
Where, the qij are the target frequencies for aligned pairs of amino acids, the pi are 

background frequencies, and the subscript for λ indicates it is the statistical parameter for 

ungapped local alignments scale (Karlin and Altschul, 1990; Altschul, 1991). For a PSI-

BLAST profile (Altschul et al., 1997), each column has its own unique set of amino acid 

target frequencies qi. Following (2), the amino acid scores for this column may be 

constructed to the same scale by using the formula 

                                                Si = (ln qi / pi) / λu                             (3) 



The hope is that, given a specific set of gap costs, the gapped λ for the PSI-BLAST 

profile will be the same as the gapped λ for the standard substitution matrix, which may 

be calculated in advance. 

 
 

3.1.8 Multiple Alignment using CLUSTAL 
 

CLUSTAL has been written and subsequently improved during the span of last ten years 

(Higgins and Sharp, 1988; Thompson et al., 1994a; Higgins et al., 1996). CLUSTAL 

performs a global multiple alignment using following steps: (1) Perform pairwise 

alignment of all the sequences; (2) use the alignment scores to produce the phylogenetic 

tree (see later); and (3) align the sequences sequentially, guided by the phylogenetic 

relationships indicated by the tree. Thus, the most closely related sequences are aligned 

first, and then additional sequences and groups of sequences are added, guided by the 

initial alignments to produce a multiple sequence alignment. The quality of the 

alignments produced in such way is excellent, as judged by the ability to correctly align 

corresponding domains from sequences of known secondary or tertiary structure. The 

initial alignments used to produce the guide tree may be obtained by a fast k-tuple or 

pattern finding approach similar to BLAST that is useful for many sequences, or a 

slower, dynamic programming method may be used. An enhanced dynamic programming 

alignment algorithm (Myers and Miller, 1988) is used to obtain optimal alignment scores. 

For producing a phylogenetic tree, genetic distances between the sequences are required. 

The genetic distance is the number of mismatched positions in an alignment divided by 

the total number of matched positions (positions opposite to gaps are not scored).         

 

The recent version is CLUSTALW (Thompson et al., 1994) with the W standing for 

"weighing" represent the ability of the program to provide weights to sequence and 

program parameters. The sensitivity of the commonly used progressive multiple sequence 

alignment (CLUSTALV) method has been greatly improved for the alignment of 

divergent protein sequences using following steps. Firstly, individual weights are 



assigned to each sequence in a partial alignment in order to downweight near-duplicate 

sequences and upweight the most divergent ones. Secondly, amino acid substitution 

matrices are varied at different alignment stages according to the divergence of the 

sequences to be aligned. Thirdly, residue specific gap penalties and locally reduced gap 

penalties in hydrophilic regions encourage new gaps in potential loop regions rather than 

regular secondary structure. Fourthly, positions in early alignments where gaps have been 

opened receive locally reduced gap penalties to encourage the opening up of new gaps at 

these positions.  

 

The CLUSTALX  (Thompson et al., 1997) is graphic interface to CLUSTALW. 

CLUSTALX is new windows interface for the widely used progressive multiple sequence 

alignment program CLUSTALW. It is easy to use, providing an integrated system for 

performing multiple sequence and profile alignments and analyzing the results. 

CLUSTALX displays the sequence alignment in a window on the screen. A versatile 

sequence coloring scheme allows the user to highlight conserved features in the 

alignment. Pull-down menus provide all the options required for traditional multiple 

sequence and profile alignment. New features include: the ability to cut-and-paste 

sequences to change the order of the alignment, selection of a subset of the sequences to 

be realigned, and selection of a sub-range of the alignment to be realigned and inserted 

back into the original alignment. Alignment quality analysis can be performed and low-

scoring segments or exceptional residues can be highlighted. Quality analysis and 

realignment of selected residue ranges provide the user with a powerful tool to improve 

and refine difficult alignments and to trap errors in input sequences.  

 

3.1.9 Literature 
 

Searching for literature can be of prime importance for a computational biologist. It is 

equally important for biologists working in all areas of research to stay acquinted with the 

latest development in the field. The Literature can be searched over the web in PubMed. 

PubMed is a project developed by the National Center for Biotechnology Information 

(NCBI). It has been developed in conjunction with publishers of biomedical literature as 



a search tool for accessing literature citations and linking to full-text journals at Web sites 

of participating publishers. The PubMed is available at NCBI web site at 

http://www.ncbi.nlm.nih.gov/.   

 

 
3.1.10 Uses of Patterns  
 

Patterns, searched using family alignment databases or multiple sequence alignments, are 

used to describe the residues that are conserved in a set of sequences. Discovering 

patterns conserved in a protein family can help in the understanding between sequence, 

structure and function of the protein under study. When a conserved pattern is 

discovered, one should analyze how likely it is that pattern has been discovered by 

chance. The less likely this is, the more likely the pattern is to describe functionally or 

structurally conserved residues.  

 

If one finds a pattern that not only is conserved in the family, but also is unique to the 

family, i.e., no (or few) sequences outside the family matches the pattern, then pattern 

can be used to identify new members of the family. The PROSITE database (Hoffman et 

al., 1999) of protein sites and families illustrates this. The patterns in PROSITE can be 

used not only for finding out structurally and functionally important residues but also for 

classification purposes for removing false family members.  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 3.2 Identification of related structures 
 

PSI-BLAST (Altschul et al., 1997) or its relatives has been the best sequence (or 

homology) searching. Probabilistic or Bayesian models also have been applied (e.g., 

hidden markov models; Durbin et al, 1998) for detection of remote homologues. If 

structure level similarity in terms of PDB hit(s) is suggested by sequence searching 

methods, one can straight forward transfer information by homology or can set stage for 

homology modeling (step 3) for more refined function prediction. But in case that the 

sequence searches doesn't arrive at any useful hits once can resolve for secondary 

structure prediction or fold recognition methods for identifying the related structures in 

fold library.  

 

3.2.1 Secondary Structure Prediction 
 

3.2.1.1 History and General Comments  

 

In one of the earliest studies involved in the analysis of helix content in proteins by 

optical rotatory dispersion, Szent -Gyorgyi and Cohen (1957) showed that proteins with 

high proline content also exhibit less helicity. Thus, this established the idea of proline as, 

in some sense, a helix breaker. Cook in 1967 has given some early rules for helix 

formation, using then available structures and chemical properties of residues. Some of 

them are (1) Ala, Val and Leu are the helix formers and they tend to occur in the middle 

of helix. (2) The size of the side chain of a helix-forming residue is important. (3) 

Residues Asp, Asn and phe are helix breaking. (4) Asp, Glu, and Thr favor N-termini of 

α-helical region. (5) Lys, His and Arg prefers the C-termini of α-helical regions.  



As observations the above rules were good and that started the search for more 

sophisticated rules. The x-ray determined structures of 15 proteins were examined by 

Chou and Fasman (1974a) and the number of occurrence of a given amino acid in the α 

helix, β sheet and coil was tabulated. From this, the conformational parameters 

(propensities) for each amino acid within a protein, its occurrence in a given type of 

secondary structure, and the fraction of residues occurring in that type of structure. The 

residue preferences found by Chou and Fasman has been quite accurate and has been 

discussed before while discussing about properties of amino acid side chains. Having 

computed the propensities Chou and Fasman derived the rules for secondary structure 

prediction. This rules, when applied then resulted in 70-80% predictive accuracy. 

However now that accuracy is predicted to be around 50% only. This was the first 

attempt to apply statistical methods for secondary structure prediction. With this Chou 

and Fasman has unknowingly set a trend to do a three-state prediction for a given 

sequence. The GORIII method (Garnier et al., 1978; Gibrat et al., 1987) is a 

representative of the methods based not only on single residue propensities but also on 

statistically significant pairwise residue interactions. The preference (information 

content) I of a residue with sequence number j and residue type Rj for a secondary 

structure type Z ∈ {helix, sheet, coil} is approximated as  

I (Sj = Z; Rj-8,…, Rj+8) = Σ I (Sj Z; Rj+m / Rj)  , where Σ runs from -8 to 8.  

in a sequence environment of eight residues on either side of a central one. The 

information I carried by the amino acid pair (Rj+m / Rj) on the occurrence of the event Z 

(adoption of a specific secondary structure state) is defined as 

I (Sj = Z; Rj+m / Rj) = log [P (Z / (Rj+m / Rj)) / P (Z)]      
Where, P denotes the conditional probability. The enormous amount of parameters (3 

structural states × 20 amino acid types × 20 amino acid types × 17 sequence positions) is 

estimated from a set of 68 non-redundant protein crystallographic structures. The 

prediction accuracy achieved was about 63% then (Gibrat et al., 1987; Garnier and Levin, 

1991). A further improvement of 2.5 to 6.5% (Biou et al., 1988) was obtained by 

combining GORIII method with two other prediction schemes. First based on 

hydrophobicity patterns that are observed in regular secondary structures (bit pattern 



method, and second using structural similarity between short, sequentially homologous 

peptides (Levin and Garnier, 1988). It is important to note that the predictive power of 

methods relying on only sequentially local structure information is limited by about 65% 

(Gibrat et al., 1991). A further increase requires the consideration of tertiary interactions.   

 

3.2.1.2 Importance of Evolutionary information  

 

One of the most successful applications of the multiple sequence alignment has been to 

improve the accuracy of secondary structure prediction. This has been first used by 

Zvelebil et al., (1987) and subsequently used by Levin et al., (1993); Rost and Sander 

(1993); Salamov et al., (1995); Cuff et al., (1999) and others for reaching an overall three 

state prediction accuracy more than 70%. It is around 9% more than single sequence 

based methods. Some of the methods use multi neuron neural networks and jury of neural 

network to give three-state prediction.  

 

It is well known that the structure is more conserved than sequences (Chothia and Lesk, 

1986; Pastore and Lesk, 1990). What we see in alignment of native proteins is a record of 

the evolution. If proteins share more than 30% identity most likely they share same fold 

(Chothia and Lesk, 1986). Of course, not any two residues can be exchanged. On the 

contrary, the pattern of residue substitutions within one structure family contains specific 

information about the structure. Gaps in multiple alignments occur more often in loop 

regions than in regular secondary structure elements such as helix and strand (Pascarella 

and Argos, 1992). This implies that the number of gaps at a particular position carries 

information about secondary structure: the more gaps found in a region, the more likely it 

is a loop region (provided the alignment is correct). 

 

Although secondary structure alone can is generally of limited use, it is nonetheless 

helpful to be able to refer to a reliable secondary-structure prediction to predict the 

tertiary structure by fold recognition or motif searches and secondary structure based 

threading. The following structural clues can sometimes be obtained through inspection 

of predicted secondary structural elements: 



 

¾ The structural class of target proteins may be ascertained (all α, all β, or α-β) 

¾ Structural repeats can be detected. By identifying a repeating sequence of secondary 

structures, it is sometimes possible to identify repeated domains in the target proteins. 

¾ The sequence of secondary structural elements can be compared to the folds matched 

by fold recognition. For the fold-recognition methods, which do not use predicted 

secondary structure, this "second opinion" is of great value in determining the degree 

of confidence to assign to the prediction. 

 

Online servers available for Secondary Structure Prediction 

 

¾ GOR IV           http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html 

¾ PREDATOR    http://www.embl-heidelberg.de/cgi/predator_serv.pl 

¾ PHDsec             http://cubic.bioc.columbia.edu/predictprotein/ 

¾ JPRED              http://jura.ebi.ac.uk/ 

¾ NNPREDICT   http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html 

¾ PSIPRED          http://insulin.brunel.ac.uk/psiform.html 

 

3.2.1.3 Secondary Structure Prediction Using Tertiary Interactions            

 

PREDATOR (Frishman and Argos, 1997) is a secondary structure prediction program. It 

takes as input a single protein sequence to be predicted and can optimally use a set of 

unaligned sequences as additional information to predict the query sequence. The 

principal step in the procedure involves generation of seven secondary structural 

propensities for input sequences and the related sequences. Three propensities are based 

on long-range interactions involving potential hydrogen bonding resides in antiparallel 

(P1) and parallel (P2) β strands as well as α-helices (P3). Three further propensities for 

helix (P4), strand (P5) and coil (P6) rely on the similarity of the sequence segments to be 

predicted with those of known conformation (nearest neighbor approach; Zhang et al., 

1992). Finally a statistically based turn propensity (P7) is used over a four-residue 

window (Hutchinson and Thornton, 1994). The mean prediction accuracy of 



PREDATOR is 68% for a single sequence and 75% for a set of related sequences. 

PREDATOR does not use multiple sequence alignment. Instead, it relies on careful 

pairwise local alignments of the sequences in the set with the query sequence to be 

predicted. 

3.2.1.4 Prediction with Neural Networks 

 

A neural network mimics the architecture of brain neurons. Since 1958, when 

psychologist Frank Rosenblatt proposed the "Perceptron," a pattern recognition device 

with learning capabilities, the hierarchical neural network has been the most widely 

studied form of network structure. A hierarchical neural network is one that links 

multiple neurons together hierarchically. The special characteristic of this type of 

network is its simple dynamics. That is, when a signal is input into the input layer, it is 

propagated to the next layer by the interconnections between the neurons. Simple 

processing is performed on this signal by the neurons of the receiving layer prior to its 

being propagated on to the next layer. This process is repeated until the signal reaches the 

output layer completing the processing process for that signal.  The manner in which the 

various neurons in the intermediary (hidden) layers process the input signal will 

determine the kind of output signal it becomes (how it is transformed). As you can see, 

then, hierarchical network dynamics are determined by the weight and threshold 

parameters of each of their units. If input signals can be transformed to the proper output 

signals by adjusting these values (parameters), then hierarchical networks can be used 

effectively to perform information processing.  

Since it is difficult to accurately determine multiple parameter values, a learning method 

is employed. This involves creating a network that randomly determines parameter 

values. This network is then used to carry out input-to-output transformations for actual 

problems. The correct final parameters are obtained by properly modifying the 

parameters in accordance with the errors that the network makes in the process. Error 

back-propagation learning method has played a major role in the recent neural network 

computing boom. The back-propagation paradigm has been tested in numerous 

applications including bond rating, mortgage application evaluation, protein structure 

determination, backgammon playing, and handwritten digit recognition.  



 

Qian and Sejnowski (1988) presented a neural network method for prediction of 

secondary structures for single protein sequences using supervised learning method and 

back-propagation. They trained a standard network with 13 input groups, with 21 

units/group using 106 protein structures and different window lengths of 1-21 residues.   

They achieved a success rate of 64.3% for three-state prediction. This is substantially 

better than the prediction from statistical methods described before. This however, 

opened a way for next generation secondary structure prediction methods, as described 

below.    

 

3.2.1.5 Prediction with Neural Networks and Multiple Alignments: 

 

3.2.1.5.1 PHD Secondary Structure Prediction Method: 

 

PHD is made of three individual prediction methods that use evolutionary information as 

input to predict secondary structure (PHDsec; Rost and Sander, 1993a,b; 1994a), relative 

solvent accessibility (PHDacc; 1994b) and transmembrane helices (PHDhtm; Rost et al., 

1995). Presently it is available on predict protein server. The method consists of 

following steps.  

 

Generating Multiple Alignment 

 

First step in a PHD prediction is to search for remote homologues from PRODOM 

domain database using SAM-T98 (Karplus et al., 1997). The pairwise profile-based 

alignment is generated using the program MaxHom (Sander and Schneider, 1991).   

 

Multiple level of Computation 

 

The PHD methods process the input information on multiple levels. The first level is a 

feed-forward neural network with three layers of units (input, hidden, and output). Input 

to this first level sequence-to-structure network consists of two contributions: one from 



the local sequence that is, taken from a window of 13 adjacent residues and another from 

global sequence. The global information contents for example can be percentage of each 

amino acid in protein or length of protein etc. Output of the first level network is the 1D 

structural state for the residue at the center of the output window. For PHDsec and 

PHDhtm the second level is a structure-to-structure network. The second level structure-

to-structure network introduces a correlation between adjacent residues. It is important 

that the neural network get trained by balanced data for improved prediction of less 

populated states (e.g., strand) but this is associated with less accurate prediction of more 

populated states (e.g., loops). Consequently, the overall accuracy is lower for balanced 

training than for the unbalanced training. To find a compromise between this, a third and 

final jury decision is performed (effectively a compromise between over- and under 

prediction). This jury is a simple arithmetic average over, typically, four differently 

trained networks: all combination of first and second level networks with balanced and 

unbalanced training, and with balanced and unbalanced training of second level network. 

The final prediction is assigned to the unit with maximum output value.     

 

Final Filtering 

 

For secondary structure prediction (PHDsec) the filter affects only drastic and unrealistic 

predictions. Only filter used for predicting transmembrane helices (PHDhtm) is crucial 

for performance. Predicted transmembrane helices, which are too long, are either split or 

shortened. Predicted transmembrane helices, which are too short are either elongated or 

deleted. All decisions are based on the strength of the prediction and length of the 

transmembrane helix predicted. PHD predicts secondary structure at more than 72% 

accuracy and transmembrane helices are predicted with accuracy of more than 95%.   

 

3.2.1.5.2 Secondary Structure Prediction using JPRED: 

 

JPRED is a consensus prediction method (Cuff et al., 1998) It applies combination of 

various methods and returns consensus prediction which improves the average three state 

accuracy of prediction by 1% that to PHD. The server simplifies the use of current 



prediction algorithms and allows conservation patterns important to structure and 

function to be identified. The server accepts two input types, a family of aligned protein 

sequences or a single protein sequence. If a single sequence is submitted, an automatic 

process creates a multiple sequence alignment, prior to prediction (Cuff & Barton, 1998). 

Six different prediction methods: DSC (King & Sternberg, 1996), PHD (Rost & Sander, 

1993), NNSSP (Salamov & Solovyev, 1995), PREDATOR (Frishman & Argos, 1997), 

ZPRED (Zvelebil et al., 1987) and MULPRED (Barton, 1988, unpublished) are then run, 

and the results from each method are combined into a simple file format.  

 

The NNSSP, DSC, PREDATOR, MULPRED, ZPRED and PHD methods were chosen as 

representatives of current state of the art secondary structure prediction methods, that 

exploit the evolutionary information from multiple sequences. Each derives its prediction 

using a different heuristic, based upon nearest neighbors (NNSSP), jury decision neural 

networks (PHD), linear discrimination (DSC), consensus single sequence method 

combination (MULPRED), hydrogen bonding propensities (PREDATOR), or 

conservation number weighted prediction (ZPRED).  

 

The predictions and corresponding sequence alignment are rendered in colored HTML, 

Java (Clamp et al., 1998) and Postscript. The predictions are colored and aligned with 

their corresponding family of sequences. Physico-chemical properties, solvent 

accessibility, prediction reliability and conservation number values (Zvelebil et al., 1987) 

for each amino acid are included in the output. The original ASCII text data from each of 

the prediction methods can also be downloaded. For example, BLAST results, MSF and 

HSSP format alignments, pair comparison files and so on. 

 

3.2.1.6 Transmembrane Region Prediction 

 

Onlione Servers for Transmembrane Region Detection 

 

¾ DAS                  http://www.sbc.su.se/~miklos/DAS/ 

¾ HMMTOP         http://www.enzim.hu/hmmtop/submit.html 



¾ PHDhtm            http://dodo.cpmc.columbia.edu/predictprotein/ 

¾ SOSUI               http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0.html 

¾ TMAP               http://www.mbb.ki.se/tmap/ 

¾ TMHMM          http://www.cbs.dtu.dk/services/TMHMM-1.0/ 

¾ TMpred             http://www.ch.embnet.org/software/TMPRED_form.html 

¾ TopPred2          http://www.sbc.su.se/~erikw/toppred2/ 

 

3.2.1.6 .1 Using TOPRED 

 

TOPPRED (von Heijne, 1992) is strategy for predicting the topology of bacterial inner 

membrane proteins and it is proposed on the basis of hydrophobicity analysis, automatic 

generation of a set of possible topologies and ranking of these according to the positive-

inside rule. It is shown that positively charged residues in short loop guide the orientation 

of helices by preventing translocation across membranes (von Heijne, 1994). It applies 

two empirical hydrophobicity cutoffs to the output of a sliding trapezoid window in order 

to compile certain and putative transmembrane helices. The combination of the putative 

helices that produces strongest enrichment of positively charged residues on the 

cytoplasmic side is selected as best prediction.   

 

3.2.1.6 .2 Using TMPRED  

 

The TMpred (Hofmann and Stoffel, 1993) program makes a prediction of membrane-

spanning regions and their orientation. The algorithm is based on the statistical analysis 

of TMbase, a database of naturally occuring transmembrane proteins. The prediction is 

made using a combination of several weight-matrices for scoring. TMbase is mainly 

based on SwissProt, but contains informations from other sources as well. All data is 

stored in different tables, suited for use with any relational database management system. 

These tables are distributed as ASCII files. 

 

3.2.1.6 .3 Using HMMTOP  

 



HMMTOP (Tusnády and Simon, 1998) is based on the hypothesis that the localization of 

the transmembrane segments and the topology are determined by the difference in the 

amino acid distributions in various structural parts of these proteins rather than by 

specific amino acid compositions of these parts. Five structural parts were defined in 

membrane proteins: membrane helix (H), inside and outside helix tail (i and o), inside 

and outside loop (I and O). Topology is determined by partitioning amino acid sequence 

in a way that product of the relative frequencies of amino acids in these structural parts 

along the sequence should be maximal. This task can be solved by the hidden Markov 

model (HMM), in which biological constraints can be taken into account by the 

architecture of HMM using the Baum-Welch algorithm. The structural parts, which are 

described above, correspond to the five states used by the model. With use of this HMM 

architecture a state sequence (i.e. a prediction) can be generated as follows: first a state is 

chosen according to the initial state probabilities. Every following state is chosen 

according to the transition probabilities of the present state. The aim is to maximize the 

product of these probabilities and the emission symbol probabilities along the given 

sequence. The method has been a successful demonstration of HMM in secondary 

structure prediction.   

 

3.2.1.6 .4 Using TMHMM 

 

TMHMM (Sonnhammer et al., 1998) is based on a hidden Markov model (HMM) with 

an architecture that corresponds closely to the biological system. The model is cyclic with 

7 types of states for helix core, helix caps on either side, loop on the cytoplasmic side, 

two loops for the non-cytoplasmic side, and a globular domain state in the middle of each 

loop. The two loop paths on the non-cytoplasmic side are used to model short and long 

loops separately, which corresponds biologically to the two known different membrane 

insertion mechanisms. The close mapping between the biological and computational 

states allows us to infer which parts of the model architecture are important to capture the 

information that encodes the membrane topology, and to gain a better understanding of 

the mechanisms and constraints involved. Models were estimated both by maximum 

likelihood and a discriminative method, and a method for reassignment of the membrane 



helix boundaries was developed. In a cross-validated test on single sequences, our 

TMHMM correctly predicts the entire topology for 77% of the sequences in a standard 

dataset of 83 proteins with known topology. The same accuracy was achieved on a larger 

dataset of 160 proteins. These results compare favorably with existing methods. The 

TMHMM method is very similar to HMMTOP and uses the same algorithm for training 

the internal parameter of markov model.  

 

3.2.1.6 .5 Using SOSUI 

 

SOSUI (Hirokawa et al., 1998) is a system for discrimination of membrane proteins 

together with soluble ones and the prediction of transmembrane helices. One important 

assumption SOSUI system makes is that, a primary transmembrane helix is stabilized by 

a combination of amphiphilic side chains at helix ends as well as high hydrophobicity in 

the central region. The system uses four paramamters in form of four indices. A 

hydropathy index (Kyte and Doolittle, 1982), an amphphphilicity index, an index of 

amino acid charges and length of each sequence. The SOSUI output contains (i) the type 

of protein; (ii) the region of transmembrane helices; (iii) a graph of the hydropathy plot; 

and (iv) helix wheel diagram for all transmembrane helices.         

 

3.2.1.7 Perscan: a method for predicting 3D models of transmembrane helices  

 

The structure prediction of integral membrane proteins is a difficult task. However since 

the membranes are essentially 2 dimensional, they provide a powerful constraint upon 

arrangement of the elements that cross them. Therefore structure prediction of  α− helical 

membrane proteins can often be viewd as a two dimensional problem for which four 

pieces of information are required: (1) The region of the sequences that form 

transmembrane helices (2) the basic topology of transmembrane domain; (3) The side of 

each helix that faces the helix bundle. (4) The relative depth that each helix is inserted 

into membrane.  

 



Perscan is a collection of programs that attempts to address some of the requirements in 

order to get information about system under study. Perscan (V7.0) is a collection of 13 

FORTRAN programs that detect and display periodicity in protein sequences or 

structures. These are 2 'PROF' programs, 5 'PER' and 5 'SCAN' programs and one utility 

program called SELHEL. The PROF programs are more traditional method for searching 

transmembrane helices. Perscan use Fourier transform methods in order to identify 

periodicity of hydrophobic and hydrophilic residues in sequence and sequence alignments 

to identify amphipathic helices (Eisenberg et al., 1984; Cornette et al., 1987). The 

periodicity of conserved/variable residues can be used to predict the presence of helix 

(Komiya et al., 1988). The third method uses different between substitution patterns 

described for soluble (Overington et al., 1990; Overington et al., 1992) and membrane 

proteins (Donnelly et al., 1993). These environment-specific substitution tables can also 

be used to assign a value that quantifies the extent to which each position in a sequence 

alignment is buried. The periodicity in such values can be used to assign values to predict 

the presence of α-helix and also allows the buried face of each helix to be identified.  

 

The SCAN programs (SCANHYD, SCANVAR, SCANCON, SCANMUT and 

SCANACC) are designed to look for sequences in complete sequence alignments or 

structures, whereas the PER programs (PERHYD, PERVAR, PERCON, PERMUT and 

PERACC) carry out a more detailed analysis of a single putative helical region. The five 

identifiers (HYD, VAR, CON, MUT and ACC) indicate the different properties for 

which helical periodicity is searched (i.e., hydrophobicity, variability, conservation, 

substitution-patterns and solvent accessibility). This information is then used to predict 

the point at which the helix makes contact with the aqueous environment at the borders of 

bilayer (Donnelly et al., 1993;Donnelly and Codgell, 1993).  

 

PERSCAN is also useful as secondary structure prediction method. The results of 

PERSCAN including the number of helices, variable and constant faces of a helix, buried 

faces, hydrophobic moments combined with helix-wheel diagram provided by it, can be 

used to build a model of the system under study.  

 



 

 

 

 

 

3.2.2 Tertiary Structure Prediction (or Fold Recognition) 
 

Lists of threading servers 

 

¾ 123D                http://www-lmmb.ncifcrf.gov/~nicka/123D.html 

¾ 3D-PSSM         http://www.bmm.icnet.uk/~3dpssm 

¾ Honig lab         http://honiglab.cpmc.columbia.edu/ 

¾ Libra I              http://www.ddbj.nig.ac.jp/htmls/E-mail/libra/libra/libra.html 

¾ NCBI                http://www.ncbi.nlm.nih.gov/Structure/RESEARCH/threading.html 

¾ Profit                http://lore.came.sbg.ac.at/home.html 

¾ Threader2         http://insulin.brunel.ac.uk/threader/threader.html 

¾ TOPITS            http://www.embl-heidelberg.de/predictprotein/help05.html 

¾ UCLA-DOE     http://www.doe-mbi.ucla.edu/people/frsvr/srsvr.html    

¾ GenThreader     http://insulin.brunel.ac.uk/psiform.html    

 

The term "threading was first coined in 1992 by Jones et al. (Jones et al., 1992), but the 

field has grown considerably with many different methods being proposed.  The idea 

behind threading comes from the fact that a large percentage of proteins adopt a limited 

number of folds (Orengo et al., 1994).  

 

Description of the methods is out of scope of this thesis. How ever, the most important 

methods so far had been the 1-D-3-D profiles (Bowie et al., 1991), threading (Jones et 

al., 1992), using secondary structure predictions (Rost, 1997), combining sequence 

similarity with threading as implimented in Gen-THREADER (Jones, 1999), and using 

structural profiles (3D-PSSM; Kelly et al., 2000). 

 



 

 

 

 

 

3.3 Derivation of Model from Template(s) 
 

3.3.1 History and General Comments 
 

Comparative modeling uses experimentally determined protein structures to predict 

conformation of other proteins with similar amino acid sequences. This is possible 

because a small change in the sequence usually results in a small change in structure 

(Lesk and Chothia, 1986; Hubbard and Blundell, 1987). The accuracy of protein models 

obtained by comparative modeling compares favorably with the model calculated by 

other theoretical models. The comparative method produces models with an r.m.s error as 

low as 1Å for the sequences that have sufficiently similar homologues with known 3D 

structures (Topham et al., 1991); in contrast, physical prediction methods and 

combinatorial modeling calculates structures with r.m.s. error of approximately 3.5Å for 

small proteins (Cohen and Kuntz, 1989; Wilson and Doniach, 1989). On the other hand, 

comparative modeling is not as accurate as X-ray crystallography and NMR, which can 

determine protein structures with an r.m.s. error of approximately 0.3 and 0.5Å, 

respectively (Clore and Gronenborn, 1991). It is also restricted to sequences with closely 

related proteins with known structures. It has been estimated that approximately one third 

of all knows sequences are related to at least one protein of known structure (Rost and 

Sander, 1996). With approximately 0.7 million sequences known, comparative modeling 

had been applied to 2,43,410 domains in known sequences (Sanchez et al., 2000). This is 

an order of magnitude more proteins than experimentally determined protein structures 

(~15,600). Furthermore, the usefulness of comparative modeling is steadily increasing 

because the number of different structural folds that protein can adopt is limited (Chothia, 

1992), and because the number of experimentally determined new structures is 

increasong exponentially (Holm and Sander, 1996). Due to Structural Genomics Initiative 



in less than 10years, atleast one example of most structural folds will be known, making 

comparative modeling applicable to most globular domains in most protein sequences 

(Sali et al., 1998).          

 

Early modeling studies frequently relied on the construction of wire or plastic models and 

only later incorporated interactive computer graphics. The first models produced from 

homologous proteins were constructed by taking the existing coordinates of a single 

known structure and then altering those side chains that were not identical in the protein 

to be modeled. Browne and co-workers (1969) published the first model, they modeled 

bovine α-lactalbumin on the three dimensional structure of hen egg-white lysozyme. For 

reviews on the history and development of homology modeling please see Johnson et al., 

1994; Sanchez and Sali, 1997 and Sanchez and Sali, 2000 etc.  

 

3.3.2 Modeling Procedure 
 

Modeling procedures can be envisaged as two steps. The first step is to solve the inverse 

folding problem: to define all those sequences that can adopt a particular fold (step1 and 

step 2 of this thesis; figure 1.1). It involves projecting restraints from a three-dimensional 

structure onto a one-dimensional sequence. The second step is to use the sequence with 

the knowledge that the protein belongs to a family of known fold to construct a model.  

 

The modeling techniques used for comparative modeling generally falls into two classes: 

(a) assembly of rigid fragments and (b) use of distance geometry to construct the models 

that are in best agreement with the distance constraints. Both the approaches have been 

used while working towards this thesis. The packages used are COMPOSER  (Sutcliffe et 

al., 1987a,b; a part of SYBYL suite) and MODELER (Sali and Blundell, 1993) 

respectively. The flow chart of the methodology used by COMPOSER and MODELER is 

given in figure 3.1 and figure 3.2 respectively. The step obviously important to both the 

methods is defining the topologically equivalent parts using the superposition of 

homologous structures and other structural properties. COMPOSER uses it to derive the 

structural framework (Structurally Conserved Regions or SCRs; Sutcliffe et al., 1987a) 



for the model, while MODELER uses it to derive the spatial restraints for the model (Sali 

et al., 1993. The rules for comparative modeling are also derived from the database of 

homologous structures (Sali and Overington, 1994). Several methods are available for 

defining topological equivalence of residues. Most of them use superposition of the 

structures. However proteins can be compared at residue, secondary structure, 

supersecondary structure, motif or domain levels also. The features that can be used for 

the comparison at residue and segment levels of two structures is summarized table 

(derived from Sali and Blundell, 1990). 

 

Comparison at Residue level 

    

Properties: 

Identity, Residue type properties, Local conformation, Distance from gravity centre, 

Side- chain orientation, Main-chain orientation, Solvent accessibility, Position in space 

Relations: 

Hydrogen bond, Distance to one or more nearest neighbors, Disulfide bond, Ionic bond, 

Hydrophobic cluster 

 

 Comparison at Segment level 

    

Properties: 

Secondary structure type, Amphipathicity, Improper-dihedral angle, Distance form 

gravity centre, Orientation relative to gravity centre, Solvent accessibility, Position in 

space, Orientation in space 

Relations: 

Distance to one or more nearest neighbors, Relative orientation of two or more segments 

   

Table 3.1 Showing different levels at which two protein structures can be compared to 

derive topological equivalence 

 



The methods in this thesis for superposition and generating structure-based alignments 

are MNYFIT (Sutcliffe et al., 1987), COMPARER. (Sali and Blundell, 1990) and 

STAMP (Russell and Barton, 1992). COMPOSER uses MNYFIT for generating the 

structural framework while the structure-based alignment for MODELER input can be 

prepared using either method.  

3.3.2.1 MNYFIT 

 

MNYFIT (Sutcliffe et al., 1987) works by method of unweighed least square fitting ( 

Hermans and Ferro, 1971; McLachlan 1979, 1982; Sutcliffe et al., 1987a) choosing one 

of the structures at random to the framework and fit all the others to it pairwise. The 

process is iterative and, it does the fitting till an r.m.s of 10-5Å is reached. In the second 

step, atomic positions are weighed while doing least square fit as to reflect how 

representative it is of the set of topologically equivalent positions. The third step 

generates a framework that is close to the specific structure to be modeled.          

 

3.3.2.2 STAMP  

 

STAMP (Russell and Barton, 1992) is designed with specific purpose of generating 

multiple sequence alignment from tertiary structure comparison. It provides not only 

multiple alignments and the corresponding 'best-fit' superpositions, but also a systematic 

and reproducible method for assessing the quality of such alignments. It also provides a 

method for protein 3D-structure database scanning.  

 

STAMP uses Rossman and Argos equation (Rossman et al., 1975) for expressing the 

probability of equivalence of residue structural equivalence. STAMP then uses Smith 

Waterman dynamic programming algorithm (Smith and Waterman, 1981; Sankoff and 

Kruskal, 1983; Barton, 1994) for fast determination of best path through a matrix 

containing a numerical measure of the pairwise similarity of each position in one 

sequence to each position in another sequence. Within STAMP, these similarity values 

correspond to the modified values of Rossman and Argos equation. From this a set of 

equivalent Cα positions are obtained. These are used to obtain a best fit transformation 



and r.m.s. deviation by a least square method (Kabsch, 1978; McLachlan, 1979). This 

transformation is applied to yield two new sets of coordinates for which the entire 

procedure is repeated in iterative fashion until the two sets of coordinates, and the 

corresponding alignment, converge on a single solution.             

 

3.3.2.3 COMPARER 

 

COMPARER (Sali and Blundell, 1990) attempts to define topological equivalences in 

protein structures by comparing properties of protein structures at various levels. Residue 

and segment properties that COMPARER takes in to are: residue local fold, residue type 

properties, residue distance from molecular gravity centre, side-chain orientation relative 

to molecular gravity centre, side-chain orientation relative to main-chain, main-chain 

orientation relative to molecular gravity centre, side-chain solvent accessibility, main-

chain solvent accessibility, hydrogen bonding relationship, residue identity, residue 

position in space, ϕ, ψ dihedral angle and main chain directions. A normalized difference 

of a certain feature between residues from the pair of proteins is computed. A scaling 

factor is defined that determines the relative importance of a feature used for comparison. 

From this a weighted sum is calculated. Relationships were weighed using simulated 

annealing methods. Once the dissimilarity matrices are computed. Best pairwise or 

multiple alignment is searched using dynamic programming approach described before 

(Needleman and Wunsch, 1970; Sankoff and Kruskal).  

 

COMPARER alignments are more useful in terms of modeling by spatial restraints since 

it gives the topologically equivalent residues using hierarchical definition of structure and 

used in MODELER (Sali and Blundell, 1993). 

 

Description of Modeling Programs 
 

3.3.2.4 COMPOSER 

 



As mentioned before COMPOSER (Sutcliffe et al., 1987a,b) is an automated approach of 

comparative modeling based on assembly of rigid fragments. It is available as a part of 

SYBYL module of TRIPOS Inc. The flow chart of the COMPOSER methodology is as 

shown in figure 3.1. As described before for homologous structures are used to derive the 

structural framework or SCRs using MNYFIT. Modeling of gaps or Structurally Variable 

Regions (SVRs) involves search for fragments of suitable length and end-to-end  

 



 

Figure 3.1 Showing the flowchart of methodology implimented in COMPOSER 

homology modeling program. 

 

 

distances with a check that the modeled loop does not clash with the rest of the proteins. 

The identified region is usually fitted to anchor regions (the ends of the intervening 

regions in the model that are mainly the helices and strands).  The selection of the correct 

conformation can be improved by considering the r.m.s. difference in the anchor regions 

and sequence similarity between the identified segment and one to be modeled. 



Candidate loops can also be ranked by using structural templates (Topham et al., 1993). 

The templates reflect amino acid substitutions that are compatible with the local 

structural environment for each amino acid defined in terms of main chain conformation, 

solvent accessibility, hydrogen bonding, disulfide bonding, and cis-peptide conformation 

(Overington et al., 1990; 1992). The side chains are modeled depending on the 

orientation of the side chains in the equivalent positions in the known homologues or 

based on a large number of rules derived for their preferred conformations in various 

secondary structures (Sutcliffe et al., 1987b). Other techniques, including energy 

minimization and localized molecular dynamics can then be applied to the model.  

 

3.3.2.5 MODELLER          

 

MODELLER is an implementation of an automated approach to comparative protein 

structure modeling by satisfaction of spatial restraints extrapolated from homologous 3D- 

structures to the sequences to be modeled (Sali and Blundell, 1993, Sali et al., 1995). The 

modeling procedure begins with an alignment of the sequence to be modeled (target) with 

related known structures (templates). This alignment is usually the input to the program. 

The output is a 3D model for the target sequence containing all main chain and side chain 

non-hydrogen atoms.  

 

First, many distance and dihedral angle restraints on the sequence are calculated from its 

alignment with template 3D structures. The form of these restraints was obtained from a 

statistical analysis of the relationship between many pairs of homologous structures. This 

analysis relied on the database of 105 family alignments that included 146 known 

structures (Sali and Overington, 1994). By scanning the database, tables quantifying 

various correlations were obtained, such as correlations between two equivalent Cα−Cα 

distances, or between equivalent main chain dihedral angles from two related proteins. 

These relationships were expressed as conditional probability density functions (pdf's) 

and can be used directly as spatial restraints. For example, probabilities for different 

values of the main chain dihedral angles are calculated from the type of a residue  



 

 

 

Figure 3.2 Flowchart showing methodology implimented in homology program 
MODELLER. 

 

 



considered, form the main chain conformation of an equivalent residue, and form the 

sequence similarity between the two proteins. Another example is the pdf for a certain 

Cα−Cα distance given equivalent distances in two related protein structures.  An 

important feature of the method is that the spatial restraints are obtained empirically, 

from the database of protein structure alignments. Next, the spatial restraints and 

CHARMM energy terms enforcing proper stereochemistry are combined in to an 

objective function. Finally, the model is obtained by optimizing the objective function in 

Cartesian space. The optimization is carried out by the use of the variable target function 

method (Braun and Go, 1985) employing methods of conjugate gradients and molecular 

dynamics with simulated annealing.  

 

Several slightly different models can be calculated by varying the initial structure. The 

variability among these models can be used to estimate the errors in the corresponding 

regions of the fold. MODELLER evaluates the model internally. The internal self-

consistency check is that the model has to satisfy most restraints used to calculate it, 

especially the stereochemical restraints. If some restraints are grossly violated in all 

models it is likely that the alignment in the corresponding region is incorrect. The 

restraint violations are reported at the end of the log file.  

 

 

 

 

 

 

 

 

 

 

 

 

 



3.4 Model Evaluation 
 

Evaluation of the 3D model is an essential step that can be performed at different levels 

of structural organization, namely, to identify (1) the correctness of the overall fold, (2) 

detect errors over more localized regions, and (3) check stereochemical parameters like 

bond lengths, bond angles, and hydrogen bond geometry. 

  

Model Evaluation programs and sites 

 

¾ PROCHECK             www.biochem.ucl.ac.uk/~roman/procheck/procheck.html 

¾ WHATCHECK         www.sander.embl-heidelberg.de/whatcheck 

¾ PROSAII                   www.came.sbg.ac.at 

¾ PROCYON               www.horus.com/sippl/ 

¾ BIOTECH                 biotech.embl-ebi.ac.uk:8400/ 

¾ VERIFY3D              www.doe-mbi.ucla.edu/verify3d.html 

¾ ERRAT                     www.doe-mbi.ucla.edu/errat_server.html 

 

It is recommended to evaluate the model obtained by homology modeling for errors. 

Various programs that are developed for checking the quality of protein structures are 

also used for checking quality of models derived from homology modeling.  

 

3.4.1 PROCHECK 

 

PROCHECK (Laskowski et al., 1993) makes use of properties originally derived from a 

set of 119 non-homologous protein crystal structures at a resolution of 2.0 Å or higher 

and having an R-factor no greater than 20% (Morris et al., 1992). It checks the 

stereochemistry using Cα chirality, Percentage of residues found (more than 90%) in the 

core region of Ramachandran plot, torsion angles for secondary structures and χ1, χ2, χ3 

torsional angles etc. It also calculates the main chain hydrogen bond energy. The output 

is a series of postscript files. The most important file is the one that gives the 

Ramachandran plot, which has been discussed extensively before.      
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