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For the analysis of transcriptional tiling arrays we have developed two methods based on state-
of-the-art machine learning algorithms. First, we present a novel transcript normalization tech-
nique to alleviate the effect of oligonucleotide probe sequences on hybridization intensity. It is
specifically designed to decrease the variability observed for individual probes complementary
to the same transcript. Applying this normalization technique to Arabidopsis tiling arrays, we
are able to reduce sequence biases and also significantly improve separation in signal intensity
between exonic and intronic/intergenic probes. Our second contribution is a method for tran-
script mapping. It extends an algorithm proposed for yeast tiling arrays to the more challenging
task of spliced transcript identification. When evaluated on raw versus normalized intensities
our method achieves highest prediction accuracy when segmentation is performed on transcript-
normalized tiling array data.

Datasets, software and the appendix are available for download at http://www.fml.mpg.
de/raetsch/projects/PSBTiling

1. Introduction

Tiling arrays on which oligonucleotide probes are spotted at high density have
made it feasible to study whole genomes in an unbiased and cost-effective way.
They have been used for experiments as diverse as transcriptome analysis, ChIP-
chip and DNA sequence variation detection.4,6,7,8,9,11.

The analysis of tiling array data, however, is not straightforward since inten-
sity measurements are known to be influenced by many factors. In order to allow
direct comparisons between arrays potentially hybridized under slightly differ-
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ent experimental conditions, the measurements are typically first normalized as a
whole, e.g. by array quantile normalization.3 Another major reason for variabil-
ity in hybridization intensity are divergent sequence properties of oligonucleotide
probes that have not been optimized due to constraints on tiling array design. In
this work we compare a newly developed transcript normalization technique for
the removal of sequence-specific effects to the recently proposed sequence quan-
tile normalization.16 Our approach particularly aims at reducing the variability
around mRNA transcript levels which are ideally assumed to be constant across
all exon probes of the same transcript. We have therefore developed a regression
model that estimates the deviation between the observed intensities of individ-
ual probes and the transcript intensity taking probe sequences as input. Such a
normalization is expected to be beneficial particularly for transcript mapping ap-
proaches attempting to segment the genome into transcriptional units of approxi-
mately constant hybridization intensity.

The monitoring of known genes and especially the identification of novel tran-
scripts with whole-genome tiling arrays has received increasing attention over the
last years. For the analysis of S. cerevisiae tiling arrays, Huber et al.11 proposed
a method that segments the yeast chromosomes such that the sum of squared dif-
ferences of signal intensities to their mean within a given segment is minimized.
To solve this mathematical problem, known as Structural Change Model Seg-
mentation (SCM), they adapted the dynamic programming algorithm proposed by
Bai and Perron.2 While this relatively simple approach has been successfully ap-
plied to yeast tiling array data, the segmentation problem is considerably more
challenging for the genomes of higher eukaryotes that are capable of (alternative)
splicing. Here, gene density is typically lower, exon segments are much shorter
and interrupted by potentially very long intron sequences. A more sophisticated
model, called GenRate, has been proposed by Frey et al.9 It explicitly models
coregulated units (CoRegs) such as exons of the same gene exhibiting the same
expression level. However, the generative model for sequences of hybridization
measurements that constitutes the core of their method is based on several as-
sumptions on the structure of a transcript and the distribution of hybridization
measurements (e.g. Gaussian distribution of intensity differences from a desig-
nated reference probe, geometrically distributed distance of the reference probe
from the transcript start, etc.).

Building on this work we propose a novel method that is able to accurately
recognize transcripts from tiling array measurements. Our approach is based on
a discriminative learning technique closely related to Hidden Markov (HM) Sup-
port Vector Machines (SVMs)1 which combine the advantages of HM models5

for label sequence learning with those of the discriminative SVM framework. A
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precursor method can be seen as a reformulation of the SCM method modeling
interruptions of active regions (exons) with inactive regions (introns). For this
model we still assume Gaussian noise for the deviation of exon probe intensities
from their average. Since this assumption is typically not satisfied, we augment
the method with more flexible scoring functions replacing the squared error terms.
Their shapes are estimated from data in order to optimally segment the sequence
of intensity measurements. As a supervised learning approach, our algorithm is
trained on hybridization intensities together with segmentations determined from
known mRNA transcripts.

2. Normalization of Transcriptional Tiling Arrays
2.1. Array Data and Preprocessing

We analyzed data from A. thaliana tiling arrays manufactured by Affymetrix. For
hybridization, total RNA of 21 day-old inflorescences was amplified using oligo-
dT-T7 primers. Resulting RNA was converted into double-stranded cDNA, frag-
mented, labeled and hybridized to Affymetrix TilingR arrays following standard
protocols (see Appendix A for details).

In a first normalization step, measurements affected by artifacts already ap-
parent from the scanned image of the array were removed using a software called
Harshlight.19 To facilitate inter-array comparisons quantile-normalization was ap-
plied, which involves computing the mean over the empirical intensity distribu-
tions of all considered arrays. This mean distribution is then re-assigned to each
of the arrays, thus effectively removing differences in intensity distribution be-
tween arrays.3 All intensity measurements were log2 transformed for the subse-
quent normalization steps.

2.2. Sequence Quantile Normalization (SQN)

Sequence quantile normalization (SQN) has been proposed as an extension of the
above described quantile-normalization to remove probe sequence effects.16 For
each 25-mer probe having nucleotide j ∈ A,C, G, T at position k = 1, . . . , 25
the rank ri,j,k of its intensity yi among all other probes with the same nucleotide
at position k is calculated and normalized by the number of such probes Cj,k.

These position-wise contributions are then averaged: Ŝi = 1
25

25∑
k=1

ri,j,k

Cj,k
. Since the

sequence bias is not uniform across positions and summands are not independent,
the multivariate regression problem is solved iteratively; in each step the above
average is computed and afterwards intensities yi are replaced by Ŝi which is
repeated until convergence.16
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As a side effect, intensities are substituted by relative ranks that are uni-
formly distributed between zero and one. In order to obtain normalized inten-
sity values comparable to the original measurements from the array, we mod-
ified the averaging as follows. Intensity distributions were approximated by
piece-wise linear functions gk(ri,j,k) ≈ yi. In our case, g is parametrized
by 200 supporting points with uniformly spaced x-values sx between zero and
one. The corresponding y-values sy are estimated by linear interpolation be-
tween ym and yn having ranks rm,j,k = max

m′
{rm′,j,k | rm′,j,k/Cj,k ≤ sx} and

rn,j,k = min
n′
{rn′,j,k | rn′,j,k/Cj,k ≥ sx}, respectively. Instead of averaging rela-

tive ranks, we then calculated the mean ĝ = 1
25

∑25
k=1 gk of the supporting points

sy . From this averaged ĝ we reconstructed the normalized intensities by linear
interpolation between the supporting points of ĝ.

2.3. Transcript normalization techniques

Ideally, one would expect constant hybridization intensity for all probes measuring
the same transcript. Similarly, the background signal of probes in untranscribed
or intronic regions of the genome would ideally be constant. However in practice,
this is generally not the case (see e.g. Royce et al.15 for a discussion).

Here we propose a method to reduce within-gene variability caused by probe
sequence effects. In a first step we estimate constant transcript and background
intensities yi based on the TAIR7 genome annotation,14 in the following simply
referred to as transcript intensities: If a probe i is annotated as exon, yi is the
median of the intensities yi of probes in exons of the same gene. Similarly for
intron probes, we compute yi as the median over intronic probes of the same gene
and for intergenic regions yi is the median of
all probes mapped to regions annotated as in-
tergenic. (Probes that were mapped to intron
/ exon boundaries, more than one splice-form
or overlapping genes are excluded from train-
ing and evaluation.)

Assuming that the concentration of mRNA
hybridized to all exon probes of a gene is con-
stant, the differences between the raw intensi-
ties and the transcript intensities ŷi := yi −
yi are mainly due to probe sequence-specific
effects (ignoring cross-hybridization, experi-
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Figure 1.: Illustration of raw and tran-
script intensities for part of a transcript

mental artifacts and thermodynamic noise). Furthermore, it is conceivable that
probe effects also depend on the mRNA concentration, and hence the differences
ŷi may also depend on the transcript intensities yi of the exons of the gene. Since
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it is not a priori clear how this dependence should be modeled, it appears rea-
sonable to non-parametrically model the difference by a function of the form
f(xi, yi) ≈ yi − yi that depends both on sequence features xi of the probe as
well as its transcript intensity. However, in order to use this correction, one would
have to know in advance whether a certain probe is exonic, intronic or intergenic
which is not generally the case. We therefore propose to estimate the function
depending not on the transcript intensity, but instead on the raw intensities, i.e.
f(xi, yi) ≈ yi − yi.

Given the large amounts of available data for estimating f(x, y), we can dis-
cretize the parameter y into Q quantiles and estimate Q independent functions
fq(x). Then f(x, y) is given by

f(x, y) =


f1(x) for y∈(−∞,y1)

... ...
fi(x) for y∈[yi,yi+1)

... ...
fQ(x) for y∈[yQ,∞)

As input xi to the regression function fq the sequence si of probe i was provided
together with additional features derived from the sequence: sequence entropy
−

∑4
i=1 fi×log(fi), where fi is the frequency of the nucleotide i ∈ {A,C, G, T}

in the probe sequence and GC content. Furthermore, two hairpin scores were used:
One is the maximum number of base pairs over all possible hairpin structures that
a probe can form, the other one is equal to the maximum number of consecutive
base pairs over all possible hairpin structures (similarly used for intensity mod-
elling in Zhan et al.22).

Based on these sequence features, we considered two methods for learning the
functions fq based on Q sets of n training examples (xq

i , ŷ
q
i ), where ŷi = yi− yi,

i = 1, . . . , N and q = 1, . . . , Q:

Support Vector Regression (SVR) For regression, we applied Support Vector
Machines17 with a kernel function k(x,x′) that computes the “similarity” of two
examples x and x′. Here we used a sum of the Weighted Degree (WD) kernel13,12

and a linear kernel. The WD kernel has been developed to model sequence prop-
erties taking the occurrence and position of substrings up to a certain length d into
account.13 We considered substrings up to order d = 3 and allowed a shift of 1 bp
between positions of the substring,12 which can be efficiently dealt with using
string indexing data structures.18 The linear kernel computed the scalar product
of the sequence-derived features described above. We used the freely available
implementations from the Shogun toolbox.18

Ridge regression (RR) For every training example we explicitly generated a
feature vector from the sequence s having an entry for every possible mono-,
di- and tri-nucleotide at every position in the probe (one if present at a po-
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sition, zero otherwise; similar to the implicit representation in the WD ker-
nel). The resulting feature vector was augmented with the sequence derived fea-
tures to form xi. In training, the λ-regularized quadratic error is minimized:10

min λ||w||2 +
n∑

i=1

(wT xi − ŷi)2 with w =
(

λI +
n∑

i=1

xix
T
i

)−1 n∑
i=1

ŷixi being

its solution. Then fq(x) = wT
q x is the resulting regression estimate.

Ridge regression is straightforward to implement in any programming lan-
guage supporting matrix operations and linear equation solvers. In terms of com-
putation time it is much less demanding than both SVR and SQN.

3. Transcript Identification

In this section we describe a novel segmentation algorithm for transcriptional
tiling array data. It is based on ideas similarly presented before,9,11 but uses a
different strategy for learning and inference (cf. Section 1).

The goal is to characterize each probe as either intergenic (not transcribed)
or as part of a transcriptional unit (either exon or intron). Instead of predict-

ing the label of a probe (intergenic, exonic or
intronic) directly, we learn to associate a state
with each probe given its hybridization mea-
surements and the local context. From the state
sequence we can easily infer the label sequence
(see Figure 2).

For learning we first defined the target state
sequence, i.e. the “truth” that we attempted to
approximate. It was generated from known
transcripts and hybridization measurements. We
then applied HMSVMs1 for label sequence
learning to build a discriminative model capa-
ble of predicting the state and hence the la-
bel sequence given the hybridization measure-
ments alone.
State Model The simplest version of the state
model had only three states: intergenic, exonic

Figure 2.: State model with a subset
of states for each expression quantile
(columns). The label corresponding to
each state is indicated on the right.

& intronic. It was extended in two ways: (a) by introducing an intron/exon start
state that allowed modeling of the start and the continuation of exons & introns
separately and (b) by repeating the exon and intron states for each expression
quantile which allowed us to model discretized expression levels separately (see
below). The resulting state model is outlined in Figure 2. Finally, to compensate
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for the 3’ intensity bias described in Appendix E, we also allow transitions from
the exon states of one level to the ones of the next higher or lower level.

Generation of Labelings For genomic regions with known transcripts we con-
sidered the sense direction of up to 1 kbp flanking intergenic regions while main-
taining a distance of at least 100 bp to the next annotated gene. Within this region
we assigned one of the following labels to every probe: intergenic, exonic, intronic
and boundary. In a second step we subdivided genes according to the median hy-
bridization intensity of all exonic probes into one of Q = 20 expression quantiles.
For each probe a state was determined from its label and expression quantile. (The
boundary probes were excluded in evaluation.)

Parametrization and Learning Algorithm Our goal was to learn a function f :
R? → Σ? predicting a state sequence σ ∈ Σ? given a sequence of hybridization
measurements χ ∈ R?, both of equal length T . This was done indirectly via a
θ-parametrized discriminant function Fθ : R? × Σ? → R that assigned a real-
valued score to a pair of observation and state sequence.1,20 Knowing Fθ allowed
to determine the maximally scoring state sequence by dynamic programming,5

i.e. f(χ) = argmax
σ∈S?

Fθ(χ,σ).

For each state τ ∈ Σ, we employed a scoring function gτ : R → R. Fθ was
then obtained as the sum of the individual scoring contributions and the transition
scores given by φ : Σ× Σ → R:

Fθ(χ,σ) =
T∑

t=1

∑
τ∈Σ

[[σt = τ ]] gτ (χt) + φ(σt−1, σt)

where [[.]] denotes the indicator function. We modeled the scoring functions gτ

as piecewise linear functions13 (PLiF) with L = 20 supporting points s1, . . . , sL.
Together with the transition scores φ, the y-values at the supporting points θτ,l =:
gτ (sl) constituted the parametrization of the model, collectively denoted by θ.

During discriminative training a large margin of separation between the score
of the correct path and any other wrong path was enforced. (For details on the
optimization problem see Appendix C and Altun et al.1)

4. Results and Discussion

4.1. Probe Normalization

The A. thaliana genome was partitioned into ≈300 regions while avoiding splits
in annotated genes. Mapping perfect match (PM) probes to genome locations re-
sulted in≈10000 probes per region. We randomly chose 40% of these regions for
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training, 20% for hyper-parameter tuning and the remaining 40% as a test set for
performance assessment. The test regions were further used for the segmentation
experiments in Section 4.3.

Removal of Sequence Effects Figure 3 shows that hybridization intensity is
strongly correlated with the GC content of the probe causing more than 4-fold
changes in median intensity. This sequence effect was reduced by all normal-
ization methods. However, Figure 3 also indicates that the effect is (in part) ex-
plained by GC-richness of coding regions.21 Position-specific sequence effects
were further investigated with so-called quantile plots.16 The strongest reduction
of first-order sequence effects was achieved with SQN, although positional se-
quence effects were reduced by all normalization methods (see Appendix D).
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Figure 3. Median hybridization in-
tensity depends on GC content
of oligonucleotide probes. The
histogram obtained by partitioning
probes according to their GC con-
tent is shown as bar plots. In each
bin the frequency of exonic, intronic
and intergenic probes is indicated by
different gray-scales, and the median
log-intensity is shown before and af-
ter the application of normalization
methods (see inset).

Reduction of Transcript Intensity Variability For the assessment of transcript
variability, i.e. the deviation of individual probe intensities yi from the constant
transcript or background intensity yi, we introduced two metrics, T1 and T2.
Both relate the variability of normalized intensities yi − f(xi, yi) to the vari-
ability of raw intensities, and values smaller than 1 indicate a reduction. We
defined T1 :=

P
i |yi−f(xi,yi)−yi|P

i |yi−yi|
as the normalized absolute transcript variabil-

ity and T2 :=
P

i(yi−f(xi,yi)−yi)
2P

i(yi−yi)
2 as the normalized squared transcript variabil-

ity. SVR minimizes the so-called ε-insensitive
loss closely related to the absolute error, while
Ridge regression minimizes the squared loss.
Therefore, we expected and observed smaller
T1 values for SVR and smaller T2 values for RR
(see Figure 4). With both methods transcript

Method T1 T2

SQN 1.83 3.16
SVR 0.54 0.47
RR 0.58 0.44

Figure 4.: Within-gene variability after
normalization.

variability was reduced to approximately half the values of raw intensities. For
SQN we observed both T1 and T2 greater than 1 indicating increased transcript
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variability. One may argue that SQN is therefore not well-suited as a preprocess-
ing routine for transcript mapping (see also Figures 5 and 6). However, as SQN
does not directly attempt to reduce transcript variability, this comparison should
been interpreted with caution.

4.2. Exon Probe Identification

In a simple approach to identify transcribed exonic regions we used a thresh-
old model on the hybridization measurements. Probes with intensities above the
threshold were classified as exonic and below the threshold as untranscribed or
intronic. We compared the resulting classification of probes with the TAIR7
annotation.14 For every threshold we calculated precision and recall, defined as
the proportion of probes mapped to exons among all probes having intensities
greater than the threshold and the proportion of probes with intensities greater
than the threshold among all probes that are annotated as exonic, respectively.
Thresholding was applied to raw intensity values as well as the normalized inten-
sities from SQN, SVR and RR. The resulting precision-recall curves (PRCs) are
displayed in Figure 5 A. We observed that the two transcript normalization meth-
ods, SVR and RR, consistently improved exon probe identification compared to
raw intensities. For SQN the recognition deteriorated. However, when probes
were sub-samples prior to thresholding and evaluation such that the set of ex-
onic probes had the same GC-content the background set (as reported in Royce et
al.16), the performance of SQN recovered, but was still below SVR and RR (cf.
Figure 5 B). Note that the sub-sampling strategy changes the distributions and can
not easily be applied to identify exon probes in the whole genome.

In a second experiment we only considered the transcribed regions of the genes
in the test regions (exons and introns). We now allowed a threshold to be chosen
separately for each gene. Note that this problem is much easier compared to a
single global threshold. However, this approach cannot be directly applied when
the transcript boundaries are not already known. For each gene we estimated
the Receiver-Operator-Characteristic (ROC) curve separately and averaged them
over all genes.a In Figure 6 we display the area under the averaged ROC curves
for genes in different transcript intensity quantiles. As expected, exons could be
more accurately identified in highly expressed transcripts. Again, we observed a
superior performance of the transcript normalization techniques.

aWe considered ROC curves instead of PRCs, since the class sizes varied among genes making PRCs
incomparable.
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Raw: area under the curve = 0.702

SVR: area under the curve = 0.730

RR: area under the curve = 0.734

SQN: area under the curve = 0.710
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Figure 5. Separation in intensity between probes mapped to known exons and probes in regions anno-
tated as untranscribed or intronic improved after normalization with SVR as well as after normalization
with RR. A By varying the cutoff value, we calculated the precision-recall curve from all probes in
the test regions. B Prior to thresholding and precision-recall estimation, probes were sub-sampled to
obtain the same GC-content among exonic and intergenic / intronic probes.
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Figure 6. Separation in intensity be-
tween intron and exon probes broken
down by expression quantiles and nor-
malization methods. Expression val-
ues were calculated based on the me-
dian intensity of probes annotated as ex-
onic. For each gene the area under the
ROC curve (auROC) was obtained by
local thresholding and for each expres-
sion quantile, auROC values were aver-
aged over all genes in that quantile.

4.3. Identification of Transcripts

In a final experiment we show a proof of concept for our transcript identification
algorithm. For this we considered genomic regions (from the test set described
in Section 2) with known transcripts including 1 kbp of their flanking intergenic
regions. We truncated intergenic regions at the boundaries of adjacent, known
transcripts. For training, we took 100 randomly chosen regions, containing a
single gene each, 500 such regions for model selection and 500 other regions
for evaluation. We compared our method with the two simple thresholding ap-
proaches described in the previous section. In the first one we used a global
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Global threshold Local threshold HMSVMs
Raw intensities 70.4% 79.3% 77.1%
Sequence quantile normalization 65.5% 75.3% 70.9%
Support vector regression 73.5% 82.1% 82.9%
Ridge regression 73.9% 82.1% 82.5%

Figure 7. Accuracy of transcript identification in test regions with exactly one gene. Accuracy is
defined as the sum of true positive and true negative exon probes over the total number of probes in a
gene.

threshold which could be realistically applied for exon probe identification. In
the second one an individual threshold was chosen for each gene to maximize
classification accuracy. Note that this method has an advantage in the compari-
son because the threshold is determined based on expression levels of (unknown)
test genes to be identified. Moreover, it cannot be straightforwardly applied to
genome-wide detection of exon probes. As input we provided raw as well as nor-
malized hybridization intensities discussed in Section 2 to our segmentation and
the two thresholding methods. This resulted in a mapping of probes to exons,
introns or intergenic regions. The accuracies of these predictions are summa-
rized in Figure 7. In this comparison our segmentation method was considerably
better than global thresholding, and even slightly better than the locally optimal
threshold when trancript-normalized intensities were give as input. Moreover, we
re-confirmed the findings of the previous section that transcript normalization sig-
nificantly improved discrimination between exonic and untranscribed / intronic
regions not only for thresholding on a per-probe basis, but in particular for a con-
siderably more complex segmentation algorithm.
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