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Germany and 6 Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany
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In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions
that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates
to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory
element polymorphisms. However, comprehensive genome-wide analyses linking expression level,
regulatory sequence and gene structure variation are missing, preventing definite verification of
this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared
with non-variable controls, 50 regulatory sequence variation in the corresponding genes is indeed
increased. However, B42% of all the ELP genes also carry major transcription unit deletions in one
parent as revealed by genome tiling arrays, representing a 44-fold enrichment over controls.
Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are
generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions,
using alternative technical approaches. Collectively, our results suggest that drastic structural
changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed
indel preponderance in cloned Arabidopsis QTL.
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Introduction

Recent advances in high throughput technologies have had a
major impact on quantitative genetic analyses, enabling the
interrogation of whole genomes for characteristics such as,
gene expression levels, single nucleotide polymorphisms
(SNPs) or structural genome variation (Keurentjes et al,
2008). Among these approaches, microarray-based discovery
of genetically controlled gene expression level differences has
identified numerous expression quantitative trait loci (eQTL)
in humans and model organisms (Brem et al, 2002; Morley
et al, 2004; Doss et al, 2005; Li et al, 2006; West et al, 2007;
Stranger et al, 2007b; Potokina et al, 2008). eQTL can be
divided principally into two classes (Gibson and Weir, 2005;

Rockman and Kruglyak, 2006; Hansen et al, 2008). Trans-
acting eQTL (trans-eQTL) control the expression of other loci,
whereas cis-acting eQTL (cis-eQTL) coincide with the loci
whose expression varies. The latter represent B20–50% of
eQTL in various systems (Morley et al, 2004; Li et al, 2006;
Stranger et al, 2007b; Potokina et al, 2008) and, additively,
often explain significant portions of observed phenotypic
variability (Li et al, 2006; Petretto et al, 2006; Keurentjes et al,
2007; Wentzell et al, 2007; Stranger et al, 2007b).

In this study, we focused on expression level polymorph-
isms (ELPs) that are already observed between parental lines
and display simple, single locus inheritance. Such loci
constitute a highly heritable subset of cis-eQTL and, because
of their simple inheritance, can be exploited as markers (Doss
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et al, 2005; Petretto et al, 2006; West et al, 2006, 2007;
Keurentjes et al, 2007; Stranger et al, 2007b; Potokina et al,
2008). They can, for instance, replace SNPs in genotyping, a
particularly interesting application in systems with poorly
characterized genomes (West et al, 2006; Potokina et al,
2008). Despite the abundance of ELPs with simple inheritance,
little is known about their molecular basis. In principle, they
could represent trans-eQTL that are tightly linked to the
locus they control, and this scenario might account for a
significant fraction of heritable ELPs in large, complex
genomes that are difficult to analyze at high resolution.
Generally, however, it appears more likely that ELPs with
simple inheritance represent large effect cis-acting polymorph-
isms in individual genes (Ronald et al, 2005; Stranger et al,
2007b; Hansen et al, 2008). These could include polymorph-
isms that affect gene expression at the transcriptional,
post-transcriptional or post-translational level. For instance,
mutations might alter transcript stability, or activity of the
encoded protein, which could in turn affect RNA levels in cases
of auto-regulatory feedback. Generally, however, cis-eQTL and
thus ELPs with simple inheritance are assumed to reflect
sequence variation in regulatory elements of the correspond-
ing genes (Jansen and Nap, 2001; Cowles et al, 2002; Schadt
et al, 2003; Pastinen and Hudson, 2004; Ronald et al, 2005;
Williams et al, 2007), although only few studies have
addressed this issue systematically (Cowles et al, 2002;
GuhaThakurta et al, 2006).

Somewhat counter to the idea that regulatory polymorph-
isms are major determinants of phenotypic variability, in
Arabidopsis thaliana, quantitative trait locus (QTL) cloning
over the last years has often identified knockout mutations
that affect the transcript and/or protein as the underlying
molecular cause (e.g. Aukerman et al, 1997; Grant et al, 1995;
Johanson et al, 2000; Kliebenstein et al, 2001; Kroymann et al,
2003; Kroymann et al, 2001; Mouchel et al, 2004; Werner et al,
2005). Even if many of these loci represent ELPs, generally, a
preponderance of indels, whether in regulatory or transcript
regions, is observed among these drastic mutations (Koorn-
neef et al, 2004). However, because of the considerable
sequence polymorphisms distinguishing naturally occurring
isogenic Arabidopsis strains (so-called accessions), identifica-
tion of the precise change underlying a QTL is often difficult,
and structural changes are the easiest to discover. Thus, the
successful reports of QTL isolation might reflect a bias in the
ease with which such changes are detected. Indeed, recent
studies that exploited recombinant inbred line (RIL) popula-
tions created from Arabidopsis accessions have identified
numerous eQTL by microarray analyses (Keurentjes et al,
2007; West et al, 2007), including a varying portion of cis-
eQTL. Among the cis-eQTL, a sizable fraction of loci
represented parental ELPs with simple inheritance, which
are strong QTL candidates to explain morphological or
physiological variation between the parental lines. In this
study, we analyzed the molecular basis of such ELPs in greater
detail, by comprehensive comparison of gene expression,
sequence variation and gene structure. Corroborating the
experimental evidence from published reports of QTL cloning,
we found again a preponderance of sizable indels, suggesting
that QTL representing more subtle regulatory polymorphisms
might be less common than anticipated.

Results and discussion

Expression level polymorphisms between the Eil-0
and Lc-0 accessions

To identify parental ELPs, we determined transcript level
variation between Eil-0 and Lc-0 seedlings by microarray
analyses. Arrays based on short oligonucleotide probes are
particularly sensitive to SNPs in parental transcripts, resulting
in spurious eQTL and overestimation of cis-eQTL (Doss et al,
2005; Alberts et al, 2007), although this appears to depend on
various factors, such as array design (Luo et al, 2007). In the
absence of detailed genomic sequence information on the Eil-0
and Lc-0 accessions, in this study, we used arrays based on
gene-specific probes of 150–500 bp lengths (Allemeersch et al,
2005). Genomic DNA hybridizations have previously shown
that such two-color arrays are largely insensitive to potential
hybridization efficiency biases introduced by minor sequence
polymorphisms (Keurentjes et al, 2007). Moreover, they also
offer the advantage of direct sample comparison, allowing
immediate ELP assessment rather than ELP inference from
statistical comparison of single sample hybridizations of
oligonucleotide-based arrays (West et al, 2006). Nevertheless,
in this study, we chose to follow established recommendations
for the analysis of two-color arrays, which includes a statistical
component (Shi et al, 2006). Based on duplicate dye swap
comparison of three independent RNA samples, 499 ELPs
(Po0.005 with Benjamini–Hochberg false discovery rate
multiple testing correction and fold change X2) representing
480 genes distributed across the genome were observed
(Supplementary Table 1). Comparable numbers of parental
ELPs have been found for other pairs of Arabidopsis
accessions (West et al, 2006; Keurentjes et al, 2007).

Determination of expression level polymorphisms
with simple inheritance by microarray analysis of
recombinant inbred lines

To determine which of these ELPs show simple inheritance
over several generations, we took advantage of a RIL
population that had been derived by single-seed descent over
seven generations, starting with F2 individuals from an Eil-0
(~)� Lc-0 (#) cross (Sibout et al, 2008). Notably, it was
evident from earlier studies that detection of parental ELPs
with simple inheritance does not require full-scale eQTL
analysis of RIL populations, as they represent a subgroup of
cis-eQTL that display firm allele-dependent inheritance of
differential expression through all generations starting from
the parents. Thus, dye swap comparisons between a few RILs
and their two parents in microarray analyses were sufficient
for their detection (Figure 1A). The RILs were chosen to
represent the genetic diversity of the population based on
genotyping data from 79 segregating genome-wide SNP
markers (Warthmann et al, 2007; Sibout et al, 2008)
(Supplementary Table 2), such that each locus would be
derived typically from the same parent in at least three RILs.
Thus, seven RILs were chosen for detailed analyses. RNA from
these lines was hybridized against RNA from either parent in a
dye swap layout. To assess the heritability of parental ELPs, we
compared expected and observed differential expression,
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taking into account the genotyping data (Figure 1A). On
average, B60% of predicted ELPs were recovered in a given
RIL versus parent hybridization (Figure 1B, Supplementary
Table 3), similar to proportions found in other studies
(Keurentjes et al, 2007). The absence of differential expression
was an even better predictor, matchingB91% of observations.
This discrepancy is likely due to the fact that the 2-fold change
in expression represents a rather stringent but also arbitrary
selection criterion. Overall, predictions of presence and
absence of differential expression matched better, if data were
treated according to 5% false discovery rate. However, as
an extensive study of two-color microarray hybridizations
recommended a 2-fold change in conjunction with false
discovery rate for scoring differential signals (Shi et al,
2006), we used the analysis of our data according to those
criteria, as the baseline in the following. Similar to earlier
studies (West et al, 2006; Keurentjes et al, 2007), the parental
ELPs could be used for RIL genotyping, delivering higher
resolution than the SNP data (Supplementary Figure 1).

Comparison of the patterns of individual genes correspond-
ing to parental ELPs, across all RIL hybridizations, enabled us
to classify them according to the frequency at which
predictions were met. This analysis identified a group
representing B20% of parental ELPs that perfectly matched
predictions (Figure 1C, Supplementary Table 4) and, thus, can
be considered to have simple cis-inheritance. Notably, as many
of the other loci frequently missed our cutoff criteria for
differential expression only narrowly, particularly the 2-fold
criterion (see above), this is a conservative estimate. Overall,
ELPs whose hybridization pattern matched 80% of predictions
or more represented B44% of all parental ELPs.

Sequence analysis of regulatory regions in genes
representing ELPs with simple inheritance

To determine whether ELPs with simple inheritance are
associated with increased sequence variation in regulatory
regions, as observed in other systems (Cowles et al, 2002;
GuhaThakurta et al, 2006), we compared a sample of 61 genes
chosen from the ELP group that matched at least 90% of
predictions with a control group of 85 genes that displayed
very low variability and differential expression across all
microarray experiments (see Methods). Notably, in Arabidop-
sis, regulatory elements controlling gene expression are
generally found in the 50 vicinity of the transcription start
sites and the 50 leader sequences (Lee et al, 2006). Thus, we
isolated 1 kb fragments immediately upstream of the start
codon for each of the sample and control group genes from
both Eil-0 and Lc-0. Sequence information was obtained for
B44 kb of stably heritable ELP loci and B62 kb of control loci
(Supplementary Table 5, Supplementary sequence align-
ments). Sequence diversity between Eil-0 and Lc-0 was
considerably higher in the ELPs with simple inheritance as
compared with the control group (Figure 2A, Supplementary
Table 5). Overall, SNP frequency was increased 44.5-fold,
indel number 44.7-fold and the number of bp affected by
indels 49.0-fold (Figure 2B and C). Generally, SNPs were
biased towards the promoter as compared with the leader
sequences. These results support the idea that ELPs with
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Figure 1 Assessment of ELP heritability by microarray analyses. RIL from a cross
between Eil-0 and Lc-0 were genotyped with a set of 79 genome-wide SNP markers
(Warthmann et al, 2007), defining the parental origin of chromosome segments.
(A) Principles for the assessment of the heritability of ELPs observed between the Eil-0
and Lc-0 parents. Genotyped RIL from the S6 generation were compared with both
parents in dye swap replicates. Based on the RIL genotype for a particular
chromosome segment as determined by the flanking SNP markers, differential
expression of a parental ELP locus on this chromosome segment was not expected in
hybridizations of the RIL against the parent from whom the segment was inherited.
However, differential expression (42-fold) was expected in hybridizations against the
other parent. ELPs located in regions of ambiguous genotype, i.e. heterozygous
regions or segments spanning recombination breakpoints, were omitted from
the analysis of that particular RIL. (B) Summary of parental ELP behavior in the
hybridizations of the seven RILs (EL lines) against the two parent lines based on the
principles outlined in (A). (C) Percentage of parental ELPs matching predictions across
all RIL-parent hybridizations at a given frequency (100 or the 10% intervals below).

Gene structure variation & expression polymorphism
S Plantegenet et al

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 3



simple inheritance are associated with increased sequence
diversity in the regulatory regions of the corresponding genes.

Genome tiling array analyses of the Eil-0 and Lc-0
genomes

Analyses of Arabidopsis genome variation have discovered
unexpectedly high levels of accession-specific indels, which
often impair gene function (Clark et al, 2007; Zeller et al,

2008). Such indels can, for instance, be identified by probing
whole genome tiling arrays with genomic DNA (Hinds et al,
2006; Clark et al, 2007; Yazaki et al, 2007). As we failed to
amplify the 50 regions of at least one parent for B34% of all
loci initially targeted for sequencing in the ELP group and
B12% in the control group, we sought to determine whether
this could be explained by indels. To this end, duplicate
samples of genomic Col-0, Eil-0 and Lc-0 DNAwere hybridized
to Affymetrix Arabidopsis tiling 1.0R arrays, which represent
the Col-0 genome as a tile of 25mer oligonucleotides with 10 bp
spacing. Thresholds for detection of deletions (X2.8-fold drop
in hybridization signal over X35 bp, maximum allowed gap
150 bp) in Eil-0 and Lc-0 were determined empirically. This
was done using deletions identified in the sequencing data
(Figure 3). These threshold criteria consistently allowed
detection of indels greater than B30 bp, whereas at the same
time ruling out the possibility that deletion calls could
represent spurious differential signals because of SNPs or
smaller indels (Figure 3) as detected in other studies (Li et al,
2006; West et al, 2006; Alberts et al, 2007; Borevitz et al, 2007;
Clark et al, 2007). The genes representing parental ELPs as well
as the control genes were inspected individually and only
indels that were detected consistently in both replicate
hybridizations were considered real. Even using these
stringent criteria, numerous indels of various sizes were
identified in both Eil-0 and Lc-0 (e.g. Figure 4; bar files for
viewing tiling paths are provided in the Supplementary
information). However, although B42% of all parental ELP
genes displayed indels when comparing their structure in Eil-0
versus Lc-0, only 9% of control genes did (Figure 5A;
Supplementary Table 6); thus representing a 44-fold enrich-
ment. Moreover, in the control group, deletions were usually
small and affected mostly intron or leader sequences. As it
appeared possible that the low expression variability of the
control group genes could reflect the effect of purifying
selection, we also analyzed a non-redundant random set of
genes, which yielded essentially quantitatively similar results
(Supplementary Table 6). By contrast, in the ELP group,
generally multiple indels per gene were detected, and these
were often larger and frequently affected exons. Moreover, in
the ELP group, gene deletions (defined as uninterrupted
deletion detection signal spanning 450% of the transcript
region) were observed for nearly 10% of loci. Gene deletions
were never observed in either control group.

The majority of genes representing ELPs with
simple inheritance display uni-parental structural
changes

Analysis of deletions according to ELP class with respect to
matched predictions revealed a clear trend towards more
severe indel types in ELP loci with simple inheritance. For
instance, in the class of ELPs that perfectly matched predic-
tions, 20% of loci displayed uni-parental gene deletions,
whereas 25% of loci carried deletions in exons (Figure 5B).
Still within the group of ELPs that matched at least 80% of
predictions, the majority of loci displayed major uni-parental
deletions. By contrast, the proportion of loci, for which no
structural difference was observed between Eil-0 and Lc-0,

61'972 360 80 283 tot.tot.

N
on

-v
ar

ia
bl

e 
(8

5)
E

LP
s 

w
ith

 s
im

pl
e 

in
he

rit
an

ce
 (

61
)

Total bp SNPs Indels # Indels bp

729 ± 16 4.2 ± 0.7 0.9 ± 0.2 3.3 ± 1.0 av.

44'830 319 58 249 tot.

567 ± 26 4.0 ± 0.8 0.7 ± 0.1 3.2 ± 1.0 av.

13'940 19 17 26 tot.

188 ± 23 0.3 ± 0.1 0.2 ± 0.1 0.4 ± 0.2 av.

44'397 1'177 273 1'848 tot.

728 ± 18 19.3 ± 4.8 4.5 ± 1.2 30.3 ± 9.5 av.

24'813 605 130 1'040 tot.

577 ± 32 14.1 ± 3.7 3.0 ± 0.8 24.2 ± 11.6 av.

6'427 93 25 264 tot.

169 ± 29 2.5 ± 1.0 0.7 ± 0.3 7.0 ± 5.1 av.

Total sequence

Total sequence

Promoter sequence

Promoter sequence

5' leader sequence

5' leader sequence

av.

tot.

av.

tot.

av.

tot.

av.

tot.

av.

tot.

av.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ELPs with 
simple

inheritance
Non-

variable

total
promoter
5′ leader

0.0

1.0

2.0

3.0

4.0

5.0

Non-
variable

total

promoter

5′ leader

774 2 1 1 me.

658 1 0 0 me.

101 0 0 0 me.

765 5 2 3 me.

630 3 1 1 me.

94 1 0 0 me.

me.

me.

me.

me.

me.

me.

** **

**
** *

n.s.

S
N

P
s,

 %

bp
 a

ffe
ct

ed
 b

y 
in

de
ls

, %

ELPs with 
simple

inheritance

Figure 2 Sequence analysis of regulatory regions of a sample of 61 genes
representing parental ELPs with simple inheritance and a control group of 85
genes, which displayed very low variability and differential expression (see
Supplementary Materials and methods) in the array experiments (‘controls’). For
the ELPs with simple inheritance, only genes which perfectly matched predictions
(see Figure 1C), and for which at least 10 precise predictions could be made (i.e.
loci located in unambiguous chromosome segments in at least five RIL) were
included. (A) Summary of sequence analyses of regulatory regions from 61 ELPs
with simple inheritance and 85 control genes. Observed total absolute values (tot.
line), per gene average values (av. line) and median values (me. line) are
indicated. Note that numbers for promoter sequences and 50 leader sequences
do not add up to the total, because leader sequences were not defined for all
genes investigated. (B) Relative abundance of SNPs (based on total sequence
investigated). (C) Relative amount of bp affected by indels (based on total
sequence investigated). Asterisks indicate t-test significance between the
ELPs with simple inheritance and the control group (*Po0.05; **Po0.01; NS,
not significant).
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continuously increased in the parental ELP classes that
matched predictions less and less faithfully, accompanied by
a decrease in the severity of deletions observed. Thus, indels

that are likely to impair or even abolish gene function appear to
be much more frequent in genes representing ELPs, with
simple inheritance, than in genes representing less heritable
parental ELPs or invariable (or random) controls. These data
suggest that the majority of ELPs with simple inheritance
reflect a uni-parental impairment or even loss of gene function.

Importantly, in the vast majority of cases, over 90%,
deletions were in phase with the direction of expression
difference between the parents, such that the allele that carried
deletions was expressed at a lower level. This observation
would be consistent with the idea that the majority of deletions
negatively affect gene function, thus leading to a loss of
selection on gene maintenance and consequently gene
expression. Supporting this notion, those parental ELPs that
carried indels in their coding region also displayed a higher
level of sequence variation in their 50 regulatory regions
(Figure 5C). However, the observation that alleles carrying
deletions were expressed at lower levels could also simply
reflect a difference in hybridization signal because of deletions
in one allele. Although this appears likely for loci that
displayed uni-parental gene deletion, this explanation might
not be generally applicable to loci that carried partial deletions.
Such loci might still yield detectable although potentially
aberrant transcripts, even if those would not encode functional
protein. In fact, deletions were not evident from our expression
arrays, as documented by the signal strength distribution of
parental ELPs, which resembles the one for all genes (Figure
5D–E). Moreover, as background noise is difficult to define in
the two-color array hybridizations employed in our study,
absence of hybridization signal is hard to establish, in
particular for genes that are expressed at low levels (Cze-
chowski et al, 2004). Finally, an earlier study used two-color
arrays as well, and the authors entertained the notion that
ELPs might reflect deletions (Keurentjes et al, 2007). To test
this, they hybridized their arrays with competing genomic
DNA from the parental accessions, Ler and Cvi-0, to identify a
total of 159 indels. Of those, 14 coincided with cis-eQTL that
mostly reflected ELPs with simple inheritance observed
between the parents. However, as their study identified 922
parental ELPs, this would mean that there are either
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significantly fewer structural differences between the Ler and
Cvi-0 genomes than between the Eil-0 and Lc-0 genomes, or
that indels were underestimated as compared with our study.

Independent analysis of ELPs with simple
inheritance between Bay-0 and Sha

To corroborate independently the validity of our approach, we
made use of other studies, in which expression differences
between the Arabidopsis Bay-0 and Sha accessions were

reported (West et al, 2006, 2007). Importantly, these data were
extracted from full-scale single-feature polymorphism and
e-QTL analysis of a population of more than 200 RILs, which,
compared with our Eil-0xLc-0 analysis, was characterized
using a different, short oligonucleotide microarray platform
(Affymetrix) and a different conceptual approach to extract
heritable gene expression differences. Thus, 187 genes
representing parental ELPs with simple inheritance between
Bay-0 and Sha were identified. We performed two independent
hybridizations of genomic DNA of both Bay-0 and Sha to
genome tiling arrays and analyzed the data as outlined above
for Eil-0 and Lc-0. Again, we observed a strong preponderance
of indels in the 187 ELPs with simple inheritance (46-fold
enrichment) as compared with the same control group used
above (the two gene sets did not overlap; importantly, the
control genes had been selected from the Eil-0xLc-0 analysis
according to the indicated threshold criteria, but also accord-
ing to the fact that they were monitored in all hybridizations,
and that they were not part of gene expression markers in the
Bay-0� Sha eQTL analysis). (Figure 6A, Supplementary
Table 7). Similar to our results for Eil-0 and Lc-0, the majority
of the deletions in the ELPs with simple inheritance were
observed at the level of exons (B33% of loci) or genes (18%)
(Figure 6B).

The Bay-0 and Sha accessions were also part of a recent
genome re-sequencing effort using high-density oligonucleo-
tide arrays that interrogate SNP polymorphisms at every single
base of the Arabidopsis genome (Clark et al, 2007). These data
offered us the opportunity to independently verify our results.
To this end, we analyzed the ELPs with simple inheritance and
control group genes by a recently developed algorithm (Zeller
et al, 2008) to identify polymorphic region predictions (PRPs),
i.e. reduced hybridization signal over extended tracts of
sequence. Such PRPs could result from an accumulation of
SNPs or indels. Matching our tiling array analysis, PRPs were
dramatically more frequent and generally more extended in
the ELPs with simple inheritance as compared with the
controls (Supplementary Table 7). This is illustrated by
comparison of the combined PRP lengths in the Bay-0 versus
the Sha alleles, which also revealed a marked asymmetry in
PRP size in the genes representing ELPs with simple
inheritance (Figure 6C), but not in the control genes
(Figure 6D). In nearly all cases, increased PRP size matched
the presence of deletions as detected by the tiling array
approach.

Conclusions

In summary, our data suggest that ELPs with simple
inheritance in Arabidopsis primarily reflect the consequences
of structural differences in the corresponding genes, rather
than variation in regulatory elements, even if such a variation
is observed. Notably, association of increased SNP variability
and proximal deletions has also been observed in the human
genome (Hinds et al, 2006). The large majority of deletions
detected in ELPs with simple inheritance affected open reading
frames or even complete genes, suggesting that they could
frequently lead to loss of gene function. Moreover, we
repeatedly observed major deletions of flanking regulatory
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Figure 4 Indel analysis of the Eil-0 and Lc-0 genomes using genome tiling
arrays. Genomic DNA of genotypes was hybridized against a tile of the Col-0
genome. Two independent hybridizations were performed for each genotype.
Indels were deduced using threshold settings (signal drop p2.8-fold, min run
435, max gap p150) determined empirically as described in Figure 3.
Examples are shown for tiles of individual genes. (A) At1g59900. No
polymorphisms were observed in Lc-0 or Eil-0 as compared with Col-0 or each
other. (B) At1g63900. Various deletions were detected in Eil-0 as compared with
Lc-0 and Col-0. (C) At1g12220. A large-scale deletion likely covering the whole
gene as indicated by a continuous detection bar was observed in Lc-0.
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regions. Even if those deletions leave transcription units intact,
they might lead to reduced or abolished gene expression,
resulting in a de facto loss of gene function.

It remains to be determined whether Arabidopsis
suffers from a particularly heavy mutational load because of
inbreeding, as suggested before (Bustamante et al, 2002),
or whether our findings apply more broadly. The similarity in
ELP behavior across systems and the finding that copy number
variation can explain significant portions of quantitative
traits (Cutler et al, 2007; Stranger et al, 2007a) suggests that
this could be the case. Finally, although functional variation in
cis-regulatory elements contributes clearly to phenotypic
variation (Bentsink et al, 2006; Rus et al, 2006; Sibout et al,
2008), large-effect changes that impact the integrity of
transcribed regions should be considered as an equally
valid explanation for expression variation. Indeed, such
mutations have been shown to underlie phenotypic variation
in natural strains of Arabidopsis (Grant et al, 1995; Aukerman
et al, 1997; Johanson et al, 2000; Kliebenstein et al, 2001;
Kroymann et al, 2001, 2003; Koornneef et al, 2004; Werner
et al, 2005). Finally, the prevalence of indels in ELPs with
simple inheritance mirrors the preponderance of indels with a
drastic effect on gene integrity underlying cloned QTL,
suggesting that the latter do not reflect a technical bias in the
ease of detection. Thus, Arabidopsis QTL representing more
subtle regulatory polymorphisms might be less common than
anticipated.

Materials and methods

Plant materials

Seeds of Arabidopsis accessions were obtained from the Arabidopsis
Biological Resources Center (Ohio State University, USA). Sterilized
seeds were stratified for 48 h at 41C, and seedlings were germinated
and grown in tissue culture on a basic solid medium with macro and
micronutrients (0.5�MS) and 0.9% agar (Duchefa, the Netherlands),
supplemented with 2% sucrose at 211C under continuous light of
130mE intensity. The Eil-0� Lc-0 RIL population was derived from a
cross between those parents in which Eil-0 served as the mother, after
seven generations of single-seed descent starting from the segregating
F2 generation (Sibout et al, 2008). Plant material for RNA analysis was
harvested at 9 days after germination, typically from pools of 20
seedlings per line.
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Figure 5 Summary of indel analyses. (A, B) Indel analysis of genes
representing parental ELPs between the Eil-0 and Lc-0 accessions.
(A) Correlation between strict ELP heritability (matching of hybridization
predictions, see Figure 1C) and presence of deletions in the corresponding
genes in one of the parents. Percentage of genes in each class displaying
structural changes between Eil-0 and Lc-0 (‘indels’) or not (‘similar’). Controls
represent an extended group of 97 genes as described in Figure 2. (B) Detailed
classification of the parental ELPs and controls shown in (A). None: no indels
detected in Eil-0 as compared with Lc-0; introns: indel(s) detected in intron(s) of
one parent as compared with the other; UTRs: indel(s) detected in UTR(s) or
UTR(s) and intron(s) of one parent as compared with the other; exons: indel(s)
detected in exon(s) or exons, UTR(s) and/or intron(s) of one parent as compared
with the other; whole gene: 450% of gene deleted or duplicated in one parent as
compared with the other. (C) Correlation between the presence of indels in the
coding region and increased sequence variation in the corresponding 50

regulatory regions in the parental ELP genes. The quartiles as well as the
average (wider line) are indicated. The distribution between the two groups is
statistically significant (Po0.0390, t-test). (D) Expression microarray hybridiza-
tion signal distribution of all genes in the Eil-0 versus Lc-0 parent comparison.
(E) As in (D), shown for the parental ELPs with simple inheritance.
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SNP Genotyping

Genomic DNA of the EL RIL F5 population was isolated with Plant
DNeasyt kits (QIAGEN, the Netherlands) according to the manufac-

turer’s instructions. Genotyping with a set of 289 SNPs was carried out
by Genaissance Pharmaceuticals, Inc. (New Haven, CT, USA). Of those
SNP, 79 were polymorphic between Eil-0 and Lc-0.

Microarray hybridizations

Total RNA was isolated using the Plant RNeasyt kit (QIAGEN, the
Netherlands) according to the manufacturer’s instructions. Total RNA
from the seedling pools was amplified using the MessageAmpt aRNA
II kit (Ambion, TX, USA). Five micrograms of amplified RNA were
reverse transcribed into cyanin 3- or cyanin 5-labeled cDNA, purified
with Qiaquickt columns (Qiagen, the Netherlands) and hybridized on
microarrays produced by the Lausanne DNA Array Facility (GEO
accession number GPL6147) containing 25 000 gene-specific tags for
the A. thaliana genome (Hilson et al, 2004). In order to analyze ELPs
between the accessions Eil-0 and Lc-0, three independently grown
seedling pools were analyzed by two-color co-hybridization of the
labeled cDNAs in dye swap experiments, giving a total of six slides.
These experiments can be found in the GEO database under entry
GSE13628.

Statistical analyses

Statistical analyses of gene expression measures were carried out with
open source R software packages available as part of the BioConductor
project (http://www.bioconductor.org). Raw data from the micro-
arrays were normalized by print tip lowess normalization (Yang et al,
2002), without applying background subtraction. To identify differen-
tially expressed genes, we computed single gene moderated t-statistics
(Smyth, 2004) using the limma package (Smyth, 2005). Genes were
ranked according to their mod-t P-value and a cutoff was set at a
maximum false discovery rate (Benjamini–Hochberg multiple testing
correction, (Benjamini and Hochberg, 1995) of 0.005. From these
genes, those with a minimum 2-fold expression difference between Eil-
0 and Lc-0 qualified as parental ELP. For the analysis of RIL gene
expression, each RIL sample was co-hybridized with each parent (Eil-0
and Lc-0) in a dye swap, resulting in two slides per parent versus RIL
comparison. Genes with large mod-t and an expression difference of at
least 2-fold in the RIL-parent comparison were considered as expressed
differentially. In order to select genes that show no ELP (control
genes), we selected genes, which had a maximum fold change of 1.3 in
at least 13 out of 17 conditions tested (all RIL versus parent
comparisons and Eil-0 versus Lc-0 comparisons). These genes were
ranked according to their signal intensities and genes with an A-value
o8 were excluded. From the remaining medium to high-intensity
genes (134), 97 were selected for promoter and tiling array analysis.

Sequencing

For sequence analyses of regulatory elements, 1 kb fragments of 85
control genes and 65 stable ELP genes spanning the region 50 to the
start codon were isolated by PCR with KOD Hot Start Polymerases
(Novagent) following the manufacturer’s instructions. PCR-amplified
fragments were purified using QiaQuick columns (Qiagen, the
Netherlands) and sequenced by Macrogen Inc. (Republic of South
Korea). Obtained sequences were analyzed using MacVectort 7.2.2
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software. The sequences have been submitted to the GenBank
database (accession numbers FJ441298-FJ441589).

Tiling arrays

Genomic DNA was extracted from pools of three plants for each
accession (Col-0, Eil-0, Lc-0 Bay-0, Sha) with Plant DNeasyt kits
(QIAGEN, the Netherlands) according to the manufacturer’s instruc-
tions. Biotin-labeled target DNAwas generated from this genomic DNA
as described (Borevitz, 2006). Labeled targets were hybridized on
Affymetrix GeneChips Arabidopsis Tiling 1.0R Arrays and processed
according to the supplier’s protocols. CEL files were processed by
Affymetrix tiling analysis software to generate normalized signal bar
files. Tiling analysis software settings were quantile normalization and
a bandwidth for probe analysis of 50 bp. To determine structural
variations in the genomes of Eil-0, Lc-0, Bay-0 and Sha, two
independent DNA isolates of each accession were compared with
Columbia DNA. The resulting bar files were loaded into the Affymetrix
integrated genome browser software and analyzed manually for the
genes of interest. To qualify as deletions, the integrated genome
browser signals had to be below cutoff—1.5 (log2 scale) and the
settings for min run was435 and for max gapp150. These parameters
were determined empirically (see text and Figure 3). The TAIR
Arabidopsis genome annotation version 7.0 was used for analysis. The
tiling array raw data have been deposited at the ArrayExpress database
under accession number E-MEXP-1888.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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