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In Arabidopsis thaliana, four different dicer-like (DCL) proteins
have distinct but partially overlapping functions in the biogenesis
of microRNAs (miRNAs) and siRNAs from longer, noncoding pre-
cursor RNAs. To analyze the impact of different components of the
small RNA biogenesis machinery on the transcriptome, we sub-
jected dcl and other mutants impaired in small RNA biogenesis
to whole-genome tiling array analysis. We compared both pro-
tein-coding genes and noncoding transcripts, including most pri-
miRNAs, in two tissues and several stress conditions. Our analysis
revealed a surprising number of common targets in dcl1 and dcl2
dcl3 dcl4 triple mutants. Furthermore, our results suggest that the
DCL1 is not only involved in miRNA action but also contributes to
silencing of a subset of transposons, apparently through an effect
on DNA methylation.
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Like other plants, the widely used model species Arabidopsis
thaliana produces a complex population of small RNAs

(sRNAs). These sRNAs come in two major flavors: microRNAs
(miRNAs), most of which are 20–22 nt long, and siRNAs, with
a typical length of 23–24 nt. Most sRNAs are derived from
longer precursor RNAs, which are either dsRNA molecules or
ssRNA molecules that form a self-complementary fold-back
structure. These RNAs are processed to sRNAs by four different
dicer-like (DCL) proteins, DCL1, DCL2, DCL3, and DCL4
(reviewed in ref. 1).
DCL1 is mainly involved in the generation of miRNAs, which

are derived from longer primary miRNA (pri-miRNA) tran-
scripts that are transcribed by polymerase II (polII) (2). Pri-
miRNAs are first trimmed by DCL1 to precursor miRNAs
(pre-miRNAs), from which DCL1 further excises the miRNA/
miRNA* duplexes (3). DCL1 interacts with the dsRNA binding
protein hyponastic leaves 1 (HYL1) and the zinc-finger protein
serrate (SE) (4–10). Formation of this complex occurs in nuclear
dicing bodies and is required for accurate processing activity of
DCL1 (10, 11). The core miRNA biogenesis machinery probably
acts in concert with associated factors that ensure proper pro-
cessing of pri-miRNAs. These include the forkhead-associated
domain containing protein dawdle (DDL) and the components
of the nuclear cap binding complex abscisic acid ABA hyper-
sensitive 1 (ABH1)/Cap-Binding Protein (CBP) 80 and CBP20
(12–15). Processed miRNAs subsequently associate with one of
the ten Arabidopsis argonaute (AGO) proteins to regulate their
target mRNAs by transcript cleavage and/or inhibition of trans-
lation (16–22) until the miRNA is degraded by specific sRNA
degradation nuclease (SDN) proteins (23).
Other classes of sRNAs are mainly produced by DCL2, DCL3,

and DCL4. SiRNAs derived from natural antisense transcripts
(nat-siRNAs) are generated by DCL1 and DCL2 (24). DCL4
mainly acts in the biogenesis of transacting siRNAs (tasiRNAs)
and in the generation of mobile siRNAs that communicate si-
lencing effects between cells, but DCL4 also generates miRNAs

from almost perfectly complementary miRNA fold backs (25–29).
DCL3 acts in concert with RNA-dependent RNA polymerase
2 (RDR2) to generate heterochromatic siRNAs (30, 31). These
24-nt-long sRNAs guide DNA methylation, and mutations in any
of the biogenesis factors cause decreased levels of DNA methyl-
ation, with subsequent loss of histone methylation (31–33). The
main targets of RNA-directed DNA methylation (RdDM) in
plants are pseudogenes, transposable elements, and other re-
petitive sequences (34, 35). Methylation of cytosines depends on
the sequence context. For instance, maintenance and de novo
methylation of CHG and CHH sites often require a persistent
sRNA trigger, whereas symmetric CG methylation, after it is in-
duced by sRNAs, can be maintained by RNA-independent mech-
anisms (33, 36–38).
Although the four DCL proteins have distinctive functions in

many different sRNA-generating pathways, there is functional
overlap (29, 39–43). In addition, there is an interwoven network
of miRNA and siRNA pathways that requires the function of
different DCL proteins. The most prominent example is the
tasiRNApathway, which relies on the coordinated action ofDCL1
and DCL4 together with several other specific components (5, 27,
28, 44–46). Regulation of AGO1 brings miRNA and siRNA
pathways together as well, because AGO1 mRNA, cleaved by
miR168, is a source of secondary siRNA (47).
A comprehensive side-by-side comparison that investigates to

what extent miRNA and siRNA pathways regulate common sets
of transcripts has been missing, although subsets of mutants have
been analyzed by conventional protein-coding, gene-focused ex-
pression arrays or tiling arrays (2, 48, 49). Here, we present
a comparative whole-genome tiling array analysis of RNA pop-
ulations from wild-type plants, different dcl mutants, and two
other miRNA biogenesis mutants, hyl1 and se. Our study, which
included two tissues and several stress treatments, led to the
discovery of previously unknown targets of Arabidopsis DCL
proteins and provided insights into overlapping activities among
DCL proteins.

Results
Expression Analysis of miRNA Precursors. We analyzed RNA pop-
ulations in three biological replicates from two different tissues
of wild-type plants and dcl1-100, hyl1-2, and se-3 mutants with

Author contributions: S.L., G.Z., G.R., and D.W. designed research; S.L., S.B., and J.-W.W.
performed research; S.L., G.Z., S.R.H., and T.S. analyzed data; and S.L., G.Z., and D.W.
wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

Data deposition: The data reported in this paper have been deposited in the Gene Expres-
sion Omnibus (GEO) database, http://www.ncbi.nlm.nih.gov/geo (accession no. GSE21685).
1S.L. and G.Z. contributed equally to this work.
2To whom correspondence should be addressed. E-mail: weigel@weigelworld.org.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1012891107/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1012891107 PNAS Early Edition | 1 of 8

G
EN

ET
IC
S

IN
A
UG

UR
A
L
A
RT

IC
LE

http://www.ncbi.nlm.nih.gov/geo
http://www.pnas.org/external-ref?link_type=GEN&access_num=GSE21685
mailto:weigel@weigelworld.org
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1012891107/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1012891107/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1012891107


Affymetrix Arabidopsis Tiling1.0R whole-genome arrays, focus-
ing first on annotated coding and noncoding genes (dcl1-100
described in Fig. S1). Because we expected RNAs that are
turned over by the miRNA biogenesis machinery in wild type to
be more abundant in the mutants, we first looked at genes with
increased expression in the mutants. Consistent with miRNA
precursors (pri-miRNAs) being stabilized in miRNA biogenesis
mutants, these comprised the largest group of induced genes. In
addition, several transposons and pseudogenes were expressed at
higher levels in the mutants (Fig. 1A). In agreement with pre-
vious work with microarrays (48), very few miRNA target genes
were significantly up-regulated in miRNA biogenesis mutants.
Only a single miRNA target, AGO2, was significantly increased
across all mutants investigated.
For most miRNA precursors, only the pre-miRNA fold backs

are annotated. Where known, we, therefore, made use of pub-
lished information about transcript start and end positions of pri-
miRNAs (2). In cases where such information was not available,
we included the signal intensities of the three probes up- and
downstream of the annotated fold back. Using this extended
approach, we detected 30–54 putative pri-miRNAs in seedlings
and 38–44 pri-miRNAs in inflorescences that were significantly
up-regulated in dcl1, hyl1, or se mutants (Fig. 1B).
There were some cases where the pri-miRNAs were detect-

able at similarly high levels in wild-type and mutant plants (Fig.
1C), suggesting that they were not efficiently processed by DCL1.
Among these were pri-miR839, a substrate of DCL4 (25), and
pri-miR833, which, like pri-miR839, has an almost perfect fold-
back structure. Pri-miR869, another known substrate of DCL4
(50, 51), was not detectable in any of the mutants or conditions
that we investigated. The fold back of another largely unaffected
pri-miRNA, pri-miR775, exhibits an unusual four-base bulge in
the miRNA/miRNA* complementary site (Fig. 1C). We also
observed differences in the processing efficiency in the tissues
analyzed. Pri-miR172b accumulated to similarly high levels in
both seedlings and inflorescences of dcl1 mutants. In contrast, its
abundance in the corresponding wild-type tissues differs re-
markably: it was detectable in wild-type inflorescences but com-
pletely turned over in young wild-type seedlings (Fig. 1D). These
results imply that processing efficiency can be modulated in a tis-
sue- and precursor-specific manner.

miRNA Precursor Expression in Response to Abiotic Stresses. Because
the abundance of several mature miRNAs has been reported to
be affected by abiotic stresses, we used the tiling array platform
to investigate dcl1 mutants exposed to salt, osmotic, cold, and
heat stress as well as the stress hormone ABA for 1 and 12 h. Only
a minority of pri-miRNAs responded to different stresses, in-
cluding miR395 (52) (Fig. 2 A and B). Most changes were
detected in response to heat stress, for example, for miR775,
miR838, or miR844 (Fig. 2B). We also observed that potential
miRNA exonucleases of the SDN1 family were, on average, more
stress-responsive than other factors involved in miRNA process-
ing, methylation, or transport (Fig. 2C).

Differential Effects of DCL1, HYL1, and SE on Unannotated Tran-
scriptionally Active Regions. We also identified unannotated tran-
scriptionally regions (TARs) using previously described compu-
tational tools (54, 55). Between 181 and 1,306 kb, or 0.2–1.1% of
the genome, were transcribed at significantly higher levels in
dcl1, hyl1, or se mutants than in wild type. Conversely, 295–3,279
kb, or 0.2–2.7% of the genome, were transcribed at lower levels
in at least one of the three mutants.

A

B

C

D

Fig. 1. Global gene expression profiles in miRNA biogenesis mutants
determined with tiling arrays. (A) Comparison of annotated genes up-
regulated in dcl1, hyl1, and se mutants. (B) Heat map of pri-miRNA ex-
pression. (C ) Comparison of three pri-miRNAs that are highly expressed in
both wild-type plants and mutants with a canonical pri-miRNA, MIR319a,
which accumulates only in miRNA-processing mutants. Secondary struc-
ture predictions below, indicating extensive doublestrandedness of the

precursors, are from the Arabidopsis Small RNA Project (ASRP) (53). (D) Tiling
array hybridization intensities for two miR172 precursors are averaged
across three biological replicates.
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Underexpressed TARs tended to be close to annotated genes,
suggesting that these corresponded to unannotated parts of
known genes, whereas TARs that were more abundant in the
mutants were often far from annotated genes (Fig. 3A), sug-
gesting that the miRNA biogenesis machinery has a role in
managing the results of inappropriate transcription. Many of the
newly identified TARs were up-regulated in all three mutants,
but some were specifically more abundant only in a single mu-
tant, indicating functional specialization (Fig. 3B). Whereas SE is
known to have DCL1-independent roles (8, 9, 12, 13, 56), the
only function described for HYL1 has been as a DCL1 cofactor
(4–7, 11). It was, therefore, surprising that there were TARs that
were up-regulated in hyl1 but not dcl1 mutants (up to 50% of all
differentially expressed TARs in hyl1 mutants) (Fig. 3 B and C).
Because hyl1-2 mutants are phenotypically less severe than the
dcl1-100 mutants, this cannot be explained by quantitative dif-
ferences. Rather, it indicates qualitative differences, implying
distinct functions for DCL1, HYL1, and SE in addition to their
shared action in RNA processing.
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Fig. 2. Expression of pri-miRNAs and genes encoding miRNA biogenesis
factors in stress-treated dcl1 mutants. (A) Heat map of pri-miRNA expres-
sion in dcl1 mutant seedlings. (B) Examples of pri-miRNAs specifically up-
regulated in response to heat stress. (C ) Expression changes of genes in-
volved in miRNA processing and action (DCL1, HYL1, SE, HEN1, HASTY, and
AGO1) and genes encoding a set of related RNA exonucleases (SDN1,
At2g48100, At5g61390, and At1g74390).
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Fig. 3. Transcriptionally active regions (TARs) that specifically appear in
miRNA-processing mutants. (A) Fractions of intergenic TARs among those
that were significantly induced or repressed relative to wild type (Mann–
Whitney U test, α ≤ 5%). (B) Overlap of total length (in kilobases) among
unannotated TARs with significantly higher expression in dcl1, hyl1, and se
compared to wild type. Fractions of unique TARs are indicated in gray. (C)
Hybridization intensities on tiling arrays for an unannotated TAR detected
exclusively in hyl1 mutants. An unannotated expressed sequence tag clone is
shown in green.
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Length of pri-miRNA Transcripts. pri-miRNAs are variable in size
and often contain introns. We, therefore, asked whether some of
the TARs identified in dcl1, hyl1, and semutants might constitute
unannotated exons of annotated miRNAs genes. Between 10%
and 30% of unannotated TARs that were uregulated in inflor-
escences were found in a 0- to 5-kb window around annotated
miRNA genes (Fig. 4A), suggesting that miRNA transcripts are
often much longer than previously thought.
We analyzed the expression pattern of a particularly long

miRNA transcript, pri-miR865, in more detail. The miR865 fold
back is located downstream of the constans (CO) transcription
unit, for which enhanced expression of an antisense RNA in
abh1/cbp80 mutants has been reported (57). RT-PCR analysis
confirmed that pri-miR865 accumulated to increased levels in
dcl1 seedlings and inflorescences. Additionally, we found that the
pri-miR865 transcript extended all of the way into the CO pro-
moter region (Fig. 4B). Mapping with RACE revealed that
a major transcript with two introns terminated 1,677 nt upstream
of the CO start codon. The CO promoter region antisense RNA
is much more abundant in dcl1 mutants than in wild type, par-
alleling the behavior of pri-miR865 (Fig. 4B). The long pri-
miR865 transcript accumulated not only in dcl1 mutants but also
in se, abh1, and to a lesser extent, hyl1 mutants (Fig. 4C). As a
control, we analyzed plants with a mutation in AGO1, the major
downstream effector of the miRNA pathway; no change was
seen, further supporting the notion that the miRNA biogenesis
machinery directly affects stability of the long pri-mi865 isoform.
Taken together, our results indicate that miRNA genes can
produce very long transcripts that can overlap with adjacent
protein coding genes.

Effects of DCL1 on Transposon Transcripts. Some of the nongenic
TARs that accumulate in miRNA biogenesis mutants over-
lapped with annotated transposons. We analyzed two helitron-
type transposons, AT1TE36060 and AT1TE93270, in more detail.

In dcl1 mutants, we detected transcripts that partially covered
the two transposons (Fig. 5A). Both were also detected in hyl1
mutants, whereas only AT1TE93270 was induced in se mutants
(Fig. 5 A and B).
The differential effects suggest distinct silencing mechanisms

that silence these transposons in wild type. To investigate this
further, we analyzed their expression in other sRNA-related
mutants. AT1TE36060 but not AT1TE93275 expression was
detected in plants lacking the three other DCL proteins, DCL2,
DCL3, and DCL4 (Fig. 5 B and C). This implies that DCL1 acts
in concert with other DCL proteins to repress AT1TE36060 but
that AT1TE93275 is an exclusive client of DCL1. In agreement,
AT1TE93275 is derepressed in abh1 and ago1 mutants that are
affected in miRNA biogenesis or function (Fig. 5C).
Because transposon silencing often relies on DNA methyla-

tion (58, 59), we analyzed mutants that are impaired in siRNA-
mediated de novo methylation or maintenance methylation.
Whereas there were only modest changes in AT1TE36060 ex-
pression, large amounts of AT1TE93275 transcripts accumulated
in all of the DNA methylation mutants investigated (Fig. 5D). To
investigate DNA methylation directly, we first used methylation-
sensitive restriction enzymes HpaII (for CG and CHG methyl-
ation) and PstI (for CHG methylation) to analyze AT1TE93275
(Fig. 5E). DNA methylation at AT1TE93275 was indeed strongly
reduced in dcl1 mutants, which was confirmed by bisulfite se-
quencing of genomic DNA (Fig. 5 E and F). These results sug-
gest that DCL1 can affect DNA methylation like other members
of the DCL family do.

Comparison of DCL1 and DCL2/DCL3/DCL4 Effects. Because of over-
lapping effects on at least one transposon, we directly compared
the transcriptomes of dcl1 and dcl2 dcl3 dcl4mutants. Expression
analysis of annotated genes revealed that 45 and 31 genes, re-
spectively, were up-regulated in seedlings and inflorescences of
both dcl1 and dcl2 dcl3 dcl4 mutants. This group included TAS1c
as well as several targets of tasi-RNAs; all of these are known be
under the direct or indirect control of DCL1 and DCL4. Also,
the expression of some miRNAs is increased in both dcl1 and
dcl2 dcl3 dcl4 mutants (Fig. 6A and Fig. S2). About one-quarter
of common targets were pseudogenes or transposable elements
(Fig. 6A), further supporting the idea that DCL1 acts in concert
with other DCLs to regulate the expression of some transposons.
However, DCL1 is apparently required only for the silencing of
a small subset of transposons, because many more were induced
in dcl2 dcl3 dcl4 than in dcl1 mutants.
We also performed de novo TAR identification in dcl2 dcl3

dcl4 plants. In total, up to 507 kb of the genome were expressed
at higher levels in the triple mutants, whereas up to 3,403 kb
were underexpressed. However, a much larger fraction of the
induced TARs are located in intergenic regions than is the case
for the underexpressed TARs (Fig. 6B). We observed very little
overlap between unannotated TARs detected in dcl2 dcl3 dcl4
and in dcl1 mutants (Fig. 6C). We then compared genome-wide
effects of loss of either DCL1 or DCL2 and DCL3 and DCL4 on
transposon transcription. TARs that were more abundant in dcl2
dcl3 dcl4 mutants compared with wild type more often over-
lapped with transposable elements than in the case of dcl1 (Fig.
6D and Fig. S3). Taken together, these results suggest that all
four DCL proteins act cooperatively on some transposons but
that, otherwise, DCL1 functions largely independent of DCL2,
DCL3, and DCL4.

Discussion
We have analyzed a core set of mutants impaired in proteins
required for miRNA (DCL1, HYL1, and SE) and siRNA bio-
genesis (DCL2/DCL3/DCL4). With genome-wide tiling arrays,
we have been able to detect pri-miRNAs and other unstable
transcripts that are processed by these factors. Our results are

A

B C

Fig. 4. Many TARs likely identify unannotated portions of pri-miRNAs. (A)
Distances of unannotated TARs with induced expression in mutant inflor-
escences from annotated miRNA genes. (B) RT-PCR analysis of pri-miRNA865.
Primers for the reaction on the right spanned splice junctions. (C) Quanti-
tative RT-PCR analysis of pri-miRNA865. Error bars indicate the range of two
independent biological experiments.
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reminiscent of studies of other RNA-processing mutants, which
also revealed many transcripts that are not detectable in wild-
type plants and that would have escaped detection with con-
ventional expression arrays (12, 58, 60–62).

Expression of miRNA Precursors. Many pri-miRNAs were not ob-
viously affected by mutations in DCL1, HYL1, or SE. Our
observations are in agreement with a recent report that many pri-
miRNAs are relatively insensitive to loss of HYL1 (63). A trivial
explanation could be that expression of pri-miRNAs is simply
too low for detection on microarrays. However, there was no
clear correlation between background levels in wild type and
increased expression in one of the three mutants. It is possible
that expression changes are obscured by feedback regulation or
that other factors contribute to the stability of pri-miRNA
transcripts. In addition, both dcl1 and se alleles are not complete
null alleles, and residual functions of the mutant proteins might
be sufficient for processing of some miRNAs.
Several miRNAs are regulated by biotic and abiotic stresses

(19, 52, 64–70), but we detected only a small number of pri-
miRNAs that responded robustly to different stresses. This find-
ing is consistent with what has been reported for miR159a, the

levels of which are induced by ABA without an effect on the
corresponding pri-miRNAs (66). These observations suggest that
mature miRNAs might be differentially turned over in a given
tissue or under certain stress conditions. SDN1, which belongs to
a family of 15 proteins with an exonuclease domain, degrades
mature miRNAs (23). Four of the genes in this family, including
SDN1, were affected by at least one of the stresses that we ex-
amined. Therefore, we hypothesize that changes in miRNA turn-
over and stability contribute to the overall changes of the sRNA
inventory under stress.
Another level of regulation of miRNA accumulation is the

processing efficiency of pri- and pre-miRNAs. The RNA binding
protein Lin-28 selectively blocks processing of let-7 pre-miRNA
in stem cells by directly binding to the loop region of the fold
back and by uridylation of the pre-miRNA (71–75). We observed
high levels of pri-miR172b in both dcl1 seedlings and inflor-
escences, indicating that the precursor is transcribed in both
tissues. As with other pri-miRNAs, pri-miR172b was not de-
tectable in wild-type seedlings but accumulated to high levels in
wild-type inflorescences. This suggests that pri-miRNA172b
processing is at least partially suppressed in inflorescences or
that specific factors promote processing in seedlings. Further
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Fig. 5. Analysis of two helitron-type transposons. (A) Comparison of tiling array expression analysis and small RNA profiles from ref. 53. (B) RT-PCR analysis.
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analysis of this locus will help to identify Arabidopsis proteins
involved in miRNA processing efficiency. More generally, care-
ful expression analysis of miRNA genes under different con-
ditions might reveal other pri-miRNAs that are likely subject to
posttranscriptional regulation.
In this regard, it is also of interest that some pri-miRNA

transcripts are quite long, with many opportunities for recruit-
ment of regulatory proteins. Very long pri-miRNA transcripts
themselves might play additional roles not related to miRNA
function, especially if they overlap with adjacent genes such as
pri-miR865, which is part of a long antisense transcript at the CO
locus. This locus might also be another example of a pri-miRNAs
with several isoforms, because the transcript that we identified
differed in length from the CO antisense transcripts reported
before (57), with the potential caveat that these authors in-
vestigated a different strain of A. thaliana. One can speculate
that, compared with protein coding genes, there is less selection
on the length and presence of specific introns in pri-miRNAs.

Overlapping Effects of the Four DCLs on Transposons. Comparative
transcriptome analysis of dcl1 and dcl2 dcl3 dcl4 mutants sup-
ports the conclusion that DCL1 acts mainly in miRNA pro-
cessing and that it fulfills this role largely independently of other
DCL proteins. However, the four DCLs also have overlapping
functions; for instance, they are all involved in RNA silencing of
viral transcripts, and DCL1 and DCL3 act redundantly in the
control of FLOWERING LOCUS C expression (29, 41, 76). To
this, we can now add coordinated action of DCLs in silencing
a subset of transposons, exemplified by AT1TE36060. What then
makes some transcripts a substrate for multiple DCL proteins? It
is conceivable that DCL1 creates an initial cut in some trans-
poson-derived RNAs, which it does in the generation of pre-
miRNAs and they are processed from much longer pri-miRNAs.
The cleaved, aberrant transcripts might then enter the RNAi
pathway executed by other DCL proteins.
Surprisingly, transcripts derived from the AT1TE93275 trans-

poson only require DCL1 function for a complete turnover. There
is no evidence that the effect of DCL1 on transposon expression
and methylation is indirect. Interestingly, several sRNAs larger
than 21 nt, the typical DCL1 product, are derived from this region
of the genome, even in the absence of DCL2, DCL3, and DCL4
(Fig. 5A and a detailed view in Fig. S4) (53, 77), consistent with
DCL1 being able to generate sRNAs larger than 21 nt from cer-

tain substrates. The fact that methylation of the AT1TE93275
locus is DCL1-dependent may imply that DCL1-derived small
RNAs can guide RdDM.
miRNAs can evolve from transposons (78–81). A common

route for miRNA origin is from perfectly complementary fold
backs that undergo a shift from DCL4- to DCL1-mediated pro-
cessing. If evolution of miRNAs from transposable elements is
a general phenomenon, one might expect to identify more such
miRNAs in plant genomes with more transposons than in the
relatively streamlined A. thaliana genome. Transcripts derived
from transposons can also interfere with the activity of themiRNA
biogenesis machinery. Intriguingly, a short interspersed trans-
posable element RNA introduced through transgenesis can re-
duce HYL1 activity (82). Whether endogenous, transcribed
transposons play a role in modulating DCL1, HYL1, and SE ac-
tivity remains to be elucidated.

Materials and Methods
Plant Material. All mutants used in this study were in the Columbia (Col-0)
background. The dcl1-100 (Fig. S1), hyl1-2, se-1, se-3, abh1-285, and ago1-27
mutants and thedcl2-1dcl3-1dcl4-2 triplemutants have beendescribed (5, 13,
43, 56, 83, 84). nrpd1a-3 (SALK_128428), nrpd2b-1 (SALK_008535), drm1-2
(SALK_031705), drm2-2 (SALK_150863), ddm1 (SALK_024844),met1-7 (SALK_
076522), and ago4-1 (N3854) were ordered from NASC, and homozygous
mutants were isolated.

Tiling Array Analyses. RNA was extracted from whole seedlings or inflor-
escences using the RNeasy Plant Mini Kit (Qiagen). RNA integrity was de-
termined on a Bioanalyzer using the RNA 6000 Series II Nano Kit (Agilent). SI
Materials and Methods has hybridization to Affymetrix Arabidopsis
Tiling1.0R arrays and data analyses. Raw array data files are located in the
Gene Expression Omnibus (accession number GSE21685).

RT-PCR and DNA Methylation Analyses. Please see SI Materials and Methods
for information on RT-PCR and DNA methylation analyses.
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