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Abstract

Combinatorial therapy is a promising strategy for combating complex disorders due to improved efficacy and reduced side
effects. However, screening new drug combinations exhaustively is impractical considering all possible combinations
between drugs. Here, we present a novel computational approach to predict drug combinations by integrating molecular
and pharmacological data. Specifically, drugs are represented by a set of their properties, such as their targets or indications.
By integrating several of these features, we show that feature patterns enriched in approved drug combinations are not
only predictive for new drug combinations but also provide insights into mechanisms underlying combinatorial therapy.
Further analysis confirmed that among our top ranked predictions of effective combinations, 69% are supported by
literature, while the others represent novel potential drug combinations. We believe that our proposed approach can help
to limit the search space of drug combinations and provide a new way to effectively utilize existing drugs for new purposes.
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Introduction

In the past decades, targeted therapies modulating specific
targets were considerably successful. However, recently, the rate of
new drug approvals is slowing down despite increasing research
budgets for drug discovery. One reason for this is that most human
diseases are caused by complex biological processes that are
redundant and robust to drug perturbations of a single molecular
target. Therefore, the ‘one-drug-one-gene’ approach is unlikely to
treat these diseases effectively [1].
Drug combinations can potentially overcome these limitations:

they consist of multiple agents, each of which has generally been
used as a single effective drug in clinic. Since the agents in drug
combinations can modulate the activity of distinct proteins, drug
combinations can help to improve therapeutic efficacy by
overcoming the redundancy underlying pathogenic processes. In
addition, some drug combinations were found to be more selective
compared to single agents [2], thereby reducing toxicity and side
effects. Nowadays, drug combinatorial therapy is becoming a
promising strategy for multifactorial complex diseases. For
example, thiazide diuretics cause hypokalaemia when used to
treat hypertension, while this side effect can be prevented by
angiotensin-converting enzyme (ACE) inhibitors when they are
used concurrently [3]. Saracatinib can overcome the resistance of
breast cancer to trastuzumab when both drugs are used together,
thereby improving the efficacy of trastuzumab [4]. Both glyburide
and metformin are indicated for type 2 diabetes but work in
different ways: glyburide reduces insulin resistance while metfor-
min increases insulin secretion, and therefore the combination of
these two drugs can improve therapeutic efficacy due to their
complementary mechanisms [5].

Despite the increasing number of drug combinations in use,

many of them were found in the clinic by experience and were not

designed as such; the molecular mechanisms underlying these drug

combinations are often not clear, which makes it difficult to

propose new drug combinations. High-throughput screening was

found to be useful to identify possible drug combinations [6];

however, it is impractical to screen all possible drug combinations

for all possible indications since it leads to an exponential

explosion as the number of drugs increases. Therefore, similarly

to drug-target predictions [7,8,9,10], a number of computational

methods for predicting drug combinations have recently been

developed. For example, stochastic search techniques were used to

identify optimal combinations within a large parameter space [11]

in an iterative way, but they only work on small drug sets due to

the computational and experimental cost. Mathematical modeling

was used to determine synergistic combinations by comparing

dose-response profiles of single agents against those of drug

combinations [12], but it cannot explain the molecular mecha-

nisms that underlie the drug combinations. Recently, in systems

biology, both quantitative [13] and qualitative [14] models were

introduced to investigate drug combinations based on the

molecular networks or pathways possibly affected by the drugs.

Although network analysis, in principle, can provide insights into

the molecular mechanisms of drug actions [15], the incomplete-

ness of molecular networks and the scarceness of the correspond-

ing kinetic parameters limit the application of such approaches to
drug combinations considerably.
In general, drugs are combined based on their mechanisms of

action, which is characterized by the properties of drugs, such as
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their targets and pharmacology [16,17]. Taking this into account,
we present here a novel concept for the prediction of drug
combinations that integrates both molecular and pharmacological
features associated with drugs. We treated drug combinations as
combinations of their corresponding features, including their
target proteins, therapeutic effects, and indication areas. Analysis
on the drug combinations approved by the US Food and Drug
Administration (FDA) demonstrates that there are some feature
patterns enriched in known combinatorial therapies that are both
predictive of new drug combinations and provide insights into the
mechanisms underlying combinatorial therapy. We consequently
predict new drug combinations based on feature patterns enriched
in approved drug combinations. Subsequent targeted literature
survey revealed that 69% of our predictions were previously
reported as effective combinations although they are not approved
yet, corroborating the predictive power of our proposed method.
In addition, we identify several novel potential drug combinations.
For example, we predict a novel combination of promethazine and
ibuprofen that could be used as decongestant. Although
experimental validation of each individual prediction needs to be
provided in the future, we believe that our proposed approach can
guide the selection of drug combinations to be tested experimen-
tally.

Results/Discussion

Drug features of approved drug combinations
In order to predict potential drug combinations, we first

identified properties of approved pairwise drug combinations. A
total of 184 pairwise drug combinations (involving 238 drugs) were
approved by the FDA until November 2010 (see Table S1). We
collected the molecular and pharmacological information associ-
ated with these drugs, including their target proteins and
corresponding downstream pathways, medical indication areas,
therapeutic effects as represented in the Anatomical Therapeutic
Chemical (ATC) Classification System, and side effects. Here,
each such property of a drug is called a feature, and a feature pair
means two feature variables respectively associated with two
different drugs. Therefore, a drug pair can be represented as a

vector composed of feature pairs. For example, in case of the
feature ‘target protein’, drug 1 binds two proteins {p1, p2}, drug 2
binds three proteins {p3, p4, p5}, the combination of drug 1 and
drug 2 can be represented as following feature pairs: {(p1, p3), (p1,
p4), (p1, p5), (p2, p3), (p2, p4), (p2, p5)}, and similarly for other
features. The numbers of drug combinations with available
features are shown in Figure 1 (drug combinations with pathway
annotations are not shown because they are a subset of those with
target annotations).

Target protein pairs are repeatedly used in drug
combinations
Focusing on the ‘target protein’ feature, we investigated the

drug combinations approved each year between 1984 and 2010
and observed that protein pairs targeted by newly approved
combinations have often already been the targets of previous drug
combinations. In total, 117 drug pairs approved as effective
combinations until November 2010 have specific targets, when
metabolizing enzymes and unspecific protein binders are excluded
[16]. With the 16 drug combinations approved until 1983 as
baseline, we found that as many as 76% (77/101) of drug
combinations approved during 1984 and 2010 are directed against
6039 unique protein pairs (418 proteins) that had been targeted
previously by other combinations (Figure 2 (a)). According to
annotations from Gene Ontology [18], we investigated the
molecular functions of these 418 repeatedly used proteins
(Figure 2 (b)), and found that these target proteins cover a broad
range of functions, which implies that drug combinations are not
biased towards specific classes of protein targets. The above
observations indicate that there are some target protein patterns
enriched in previously approved drug combinations, which can be
used to predict new drug combinations.

Benchmarking enriched molecular and pharmacological
feature patterns to predict drug combinations
Encouraged by the enrichment of certain protein patterns in

approved drug combinations, we investigated the possibility to use
the five drug features described above for predicting drug
combinations. For this, each feature pair was assigned a score by
comparing its frequency in effective drug combinations with that
in the background (see Materials and Methods, Eq. 1), which
consists of all possible pairs of drugs involved in effective
combinations. The detailed scores for each feature pair can be
found in Tables S2, S3, S4.
To evaluate the predictive ability of these features, we

performed 5-fold cross-validation on the 184 drug combinations
extracted from FDA orange book [19] (see Materials and
Methods). Figure 3 shows the receiver operating characteristics
(ROC) curves obtained for different features, where the 5-fold
cross-validation was repeated 10 times and the average was used as
the final result (detailed results can be found in Table S5). Note
that the performance of our method may be underestimated here
because there are no true negative samples that are verified as
invalid combinations. Furthermore, Figure 3 shows that all the
features perform better than a random predictor, which implies
that these properties can indeed help to predict new drug
combinations. Among the features, the pathway feature was only
weakly predictive, maybe because the simple association between
drugs and pathways through target proteins does not sufficiently
reflect the physiological context in which drugs work. One possible
explanation for the observed poor predictive ability of the side-
effect feature is that there are some common side effects associated
with most drugs, thereby introducing much background noise.

Author Summary

The combination of distinct drugs in combinatorial therapy
can help to improve therapeutic efficacy by overcoming
the redundancy and robustness of pathogenic processes,
or by lowering the risk of side effects. However,
identification of effective drug combinations is cumber-
some, considering the possible search space with respect
to the large number of drugs that could potentially be
combined. In this work, we explore various molecular and
pharmacological features of drugs, and show that by
utilizing combinations of such features it is possible to
predict new drug combinations. Benchmarking the ap-
proach using approved drug combinations demonstrates
that these feature combinations are indeed predictive and
can propose promising new drug combinations. In
addition, the enriched feature patterns provide insights
into the mechanisms underlying drug combinations. For
example, they suggest that if two drugs share targets or
therapeutic effects, they can be independently combined
with a third common drug. The ability to efficiently predict
drug combinations should facilitate the development of
more efficient drug therapies for a broader range of
indications including hard-to-treat complex diseases.

Prediction of Drug Combinations
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The performance of side effects may be improved if we consider
only severe side effects associated with drugs. However, currently
information on side-effect severity is unfortunately rarely available.
The therapy information denoted by ATC code was found to be
most predictive, probably due to the pharmacological information
captured in the ATC code.
Given the incomplete coverage of drug combinations by

different features (cf. Figure 1), we integrated the three most
predictive features (i.e. therapy, target and indication area) for
predicting new combinations hereinafter (see Materials and
Methods, Eq. 3). A correlation analysis of feature similarities
shows that some correlations between features exist (Figure S1).
However, distinct data sources complement each other in the
prediction of drug combinations since the coverage of each feature
is incomplete and the overlap between different features is low as
shown in Figure 1. By aggregating the three features where
available, we aimed at improving the coverage of drug
combinations compared with single features. For example, in 5-
fold cross-validation, there are about 37 drug combinations in the
validation set, among which 24 have ATC annotations while data
integration by aggregating the three features can cover 34 drug
combinations. In addition, the threshold above which data
integration achieves the highest F1 score in cross-validation was
used to make future predictions (see Materials and Methods for
details). Hereinafter, we set the threshold to 0.4, corresponding to
an F1 score of 0.17. If a new drug pair has an integration score

above this threshold, it will be treated as a putative combination.
Note that here we choose to use a simple method (maximization of
the F1 score) to predict whether a drug pair is an effective
combination instead of other classifiers (e.g. support vector
machine or Bayesian classifier). The advantage of this method is
that it is easy to interpret and avoids overfitting when dealing with
small sample sizes and an imbalance between positive and
negative examples (i.e. all possible drug pairs except approved
combinations) in our datasets.

Predicting novel drug combinations
By aggregating the three features that have been shown to be

most informative above, we then predict possible effective
combinations between marketed drugs. For this, pairwise drug
combinations from the FDA orange book were used as training set
to assign an enrichment score for each feature pair, and the
integration of these features was used to screen all possible
combinations between drugs involved in known combinations. To
identify novel combinations, we excluded pairs already known to be
valid combinations. In our dataset, we found that the mechanisms of
drug combinations indicated for hypertension and contraception
are relatively well studied. The drugs involved in combinations for
hypertension mainly include thiazide diuretics, ACE inhibitors,
angiotensin II antagonists, and beta-blocking agents, while the
majority of available combinations are diuretic-based [20]. In the
case of drug combinations for contraception, estrogen is mainly
combined with hormonal contraceptives or progestogens. There-
fore, the drugs involved in these two kinds of combinations were not
considered here while making new predictions.
As a result, we predict 16 possible drug combinations with

confidence scores above the threshold of 0.4 (see Benchmarking)
(Table 1); the detailed feature patterns and their corresponding
scores involved in predictions can be found in Table S6. A
literature survey showed that 11 out of our 16 predictions have
already been reported to be effective in the literature (Table 1)
although they have not yet been approved by the FDA. For
example, metformin and glimepiride are being explored as a
combinatorial treatment for type 2 diabetes with different but
complementary mechanisms, and have shown promising results
[21,22,23]. Some of our 11 predictions are also supported by other
sources beyond the scientific literature. For example, ciprofloxacin
and loteprednol etabonate have been patented as an effective
combinatorial treatment (United States Patent 6359016). In

Figure 2. Historical distribution of drug combinations with
respect to novel target combinations. (a) Distribution of pairwise
drug combinations that target novel protein pairs or ones that are also
targeted by previous combinations for the time between 1984 and
2010. (b) Distribution of drug targets with respect to molecular
functions from Gene Ontology.
doi:10.1371/journal.pcbi.1002323.g002

Figure 3. Performance of molecular and pharmacological
features in 5-fold cross-validation, where the diagonal dashed
line denotes random prediction.
doi:10.1371/journal.pcbi.1002323.g003

Figure 1. The Venn diagram of drug combinations, where the
numbers indicate how many drug combinations can be
covered by available features.
doi:10.1371/journal.pcbi.1002323.g001

Prediction of Drug Combinations
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summary, the large overlap (69%) between our predictions and
those reported demonstrates that our proposed method effectively
predicts new potential drug combinations.
For the remaining 5 combinations, no literature support was

found, implying that they are novel potential combination
therapies. For example, we propose the combination of prometh-
azine hydrochloride and ibuprofen based on the target combina-
tion (HRH3 and ALOX12) to relieve nasal blockage. In our
training dataset, ibuprofen is combined with three drugs, i.e.
diphenhydramine, phenylephrine, and pseudoephedrine. Howev-
er, promethazine share neither chemical similarity nor therapeutic
effects with any of these three drugs. Promethazine is known as
histamine receptor H1 antagonist and used as an anesthetic agent.
Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) used
for relief of symptoms of arthritis and pain. These two drugs are
predicted to be an effective combination mainly based on the
inhibition of histamine receptor H3 (HRH3) and arachidonate 12-
lipoxygenase (ALOX12) by promethazine and ibuprofen respec-
tively. Promethazine inhibits histamine that in turn increases
human airway epithelial paracellular permeability [24], while 12-
lipoxygenase deficiency was found to protect mice from allergic
airway inflammation [25]. Based on their target information, we
thus propose that promethazine and ibuprofen can be combined
as decongestant.
Furthermore, ciprofloxacin and budesonide were predicted to

be combinable because of the therapeutic effect combination
between anti-inflammatory agents (coded as A07E) and antibac-
terials (coded by J01M). Ciprofloxacin is a synthetic antibiotic
inhibiting DNA gyrase that is necessary to separate bacterial
DNA, thereby blocking synthesis of bacterial DNA. Budesonide is
an anti-inflammatory glucocorticoid steroid and is used to treat
asthma. Recently, the composition of microbiota from the
bronchial epithelium was found to be associated with asthma
pathogenesis [26]. Therefore, a therapy that combines anti-
inflammatory agents (such as budenoside) and antibacterials (such
as ciprofloxacin) appears promising for treating asthma. In
addition, fluticasone propionate was also predicted to be

combinable with ciprofloxacin based on the therapeutic effect
combination between corticosteroids (coded by D07A) and
antibacterials (coded by J01M). Fluticasone propionate is a
synthetic corticosteroid and is indicated for asthma and allergic
rhinitis. Based on their respective therapeutic information, the
combination of these two drugs appears promising for the
treatment of asthma.

Characteristics of feature patterns enriched in approved
drug combinations
To gain more insights into the mechanisms of drug combina-

tions, we investigated the enriched protein and therapy patterns
that contribute to the integration score above the threshold of 0.4
as described above. For this, we constructed two drug-feature
networks: a drug-protein network and a drug-therapy network for
drug combinations that contain these enriched patterns. In these
networks, two drugs were linked if they were documented as an
effective combination and each drug was additionally linked to its
features.
The drug-protein network (Figure 4) involving 59 drug

combinations that contain enriched protein pairs shows that most
of the drug pairs in the same combinations belong to the same
general therapeutic category (the first level of the ATC code), and
the detailed network can be found in Dataset S1. For two drugs
that are found in approved combinations with a common third
drug, we observed that they tend to share target proteins. Among
281 such pairs of drugs, 100 share target proteins - a significantly
higher proportion than expected by chance (p-value of 1025,
Fisher’s exact test). This phenomenon is more obvious for drugs
sharing main targets. For example, five angiotensin II receptor
antagonists - irbesartan, olmesartan medoxomil, valsartan, epro-
sartan mesylate and telmisartan - have type 1 angiotensin II
receptor (AG2S) as main target, and all these five drugs can be
combined with hydrochlorothiazide, a thiazide agent. This
observation is not surprising since drugs that share the same
target protein generally have similar pharmacology, thereby

Table 1. Predicted drug combinations and corresponding confidence scores, and PubMed IDs if they were reported in literature.

Agent 1 Agent 2 Confidence score
PubMed ID if confirmed in literature (included
in combinations with more than 2 agents)

metformin hydrochloride glimepiride 0.45 PMID: 11678974, PMID: 18849173, PMID: 16406190

niacin atorvastatin calcium 0.45 PMID: 10095800

ibuprofen pseudoephedrine sulfate 0.45 PMID: 15562884 (ibuprofen/pseudoephedrine/chlorpheniramine)

metformin hydrochloride telmisartan 0.45 PMID: 20415664

promethazine hydrochloride ibuprofen 0.45

budesonide ciprofloxacin 0.45

loteprednol etabonate ciprofloxacin 0.45 US Patent 6359016

fluoxetine hydrochloride perphenazine 0.44 PMID:8104930

acetaminophen morphine sulfate 0.44 PMID: 9706932

acetaminophen buprenorphine 0.44 PMID: 7041936

ciprofloxacin diclofenac sodium 0.44 PMID: 19301941

amitriptyline hydrochloride olanzapine 0.44 PMID: 18172909

niacin ezetimibe 0.44 PMID: 20152243 (ezetimibe/simvastatin/niacin)

methocarbamol dipyridamole 0.44

carisoprodol dipyridamole 0.44

ciprofloxacin fluticasone propionate 0.44

doi:10.1371/journal.pcbi.1002323.t001
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tending to be interchangeable with each other when combined
with another drug for similar purposes. Furthermore, we ruled out
the possibility that our identified protein patterns are a trivial
consequence of high chemical similarity between drugs, which
would in turn imply increased likelihood of targeting the same
proteins [8] as well as similar pharmacology. By investigating the
pairs of drugs in approved combinations with a third common
drug, we found that only few of them have similar chemical
structures. Among the 281 drug pairs, only 14 have chemical
similarity larger than 0.6, indicating that our approach captures
much richer descriptions of drug combinations than chemical
structure similarity alone.
Furthermore, the feature patterns we identified here can help to

explain the mechanisms of action of drug combinations. For
example, hydrochlorothiazide, a diuretic drug, and methyldopa,
an alpha-adrenergic agonist, are combined for the treatment of
hypertension. Hydrochlorothiazide is very commonly combined
with other drugs (Figure 4) for lowering blood pressure by
reducing the kidney’s ability to retain water, thereby resulting in
reduced blood volume. At the molecular level, hydrochlorothia-
zide inhibits carbonic anhydrase 2 (CA2), a member of an enzyme
family that catalyzes the release of water molecules from carbonic
acid. Methyldopa is an agonist of alpha-2 adrenergic receptors
(ADRA2A) that mediates the sympathetic nerve activity, which in
turn leads to reduced renin activity and lower blood pressure [27].
With knowledge about the physiological roles of drug targets,
protein feature pairs are indeed helpful for explaining the
mechanism underlying the combination therapies.
The drug-therapy network (Figure 5) constructed for 55 drug

combinations containing enriched therapy patterns (third level of
the ATC code) reveals that drugs in combinations do not
necessarily have therapeutic effects in common (the detailed

network can be found in Dataset S2). In fact, only 9 out of 55 drug
combinations share therapeutic effects, indicating that the agents
in the same combination tend to complement each other with
respect to their specific therapeutic effects although they belong to
the same general therapeutic category. Furthermore, we found
that two drugs that are in approved combinations with a common
third drug tend to have similar therapeutic effects. Among the
drugs shown in Figure 5, there are 205 such drug pairs, 77 of
which share therapeutic effects indicating a significant enrichment
(p-value,1026, Fisher’s exact test). For example, both lovastatin
and simvastin can be combined with niacin for the treatment of
dyslipidemia, where lovastatin and simvastin are peripheral
vasodilators (ATC code C04A) and niacin is a lipid-modifying
agent (ATC code C10A).
Analysis of the two drug-feature networks shown above

demonstrates that our identified drug feature patterns can indeed
provide insights into the mechanisms of action that underlie drug
combinations.

Conclusions
Our approach to predict drug combinations by representing

drug combinations as combinations of their molecular and
pharmacological features, including target proteins, therapies,
and indication areas, not only led to the proposal of new drug
combinations but also allowed mechanistic insights into existing
ones. The overlap between our predictions and those reported in
the literature demonstrate that this approach can effectively

Figure 4. Drug combination and drug-protein network. A drug is
linked to its target protein(s) and additionally to other drugs with which
it can be combined. Only the protein pair(s) with the highest score for
each drug pair is (are) included for clarity. Drugs are depicted as
diamonds, proteins as circles. The color of drug nodes indicates its
therapeutic category (the first level of ATC code), and drugs are labeled
as multiple if they are associated with more than one ATC code. Cases
discussed in the text are highlighted within dashed lines.
doi:10.1371/journal.pcbi.1002323.g004

Figure 5. Drug combination and drug-therapy network. A drug
is linked to its therapy, additionally drugs are linked if they can be
combined, where the third level of the ATC code was considered
because other levels are either too general to reveal pharmacological
differences or too specific with too few common annotations left. Drugs
are depicted by diamonds, therapies (according to ATC) as circles, and
the color of each drug node denotes its therapeutic category (the first
level of ATC code). Cases detailed in the text are highlighted within
dashed lines.
doi:10.1371/journal.pcbi.1002323.g005
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identify new drug combinations with the enriched feature patterns
as an indicator for the mode of action underlying both marketed
and predicted drug combinations. A limitation of this method is
that it relies on the feature patterns enriched in approved drug
combinations, which limits our predictions to those combinations
that are similar to existing ones to some extent. Nevertheless, the
new combinations are far from being obvious given the vast space
of possible solutions. We believe that the methods proposed here
can limit the search space of possible drug combinations as a guide
for experimental screens and provide an alternative starting point
towards repurposing old drugs.

Materials and Methods

Drug combinations, drug targets, drug therapy, drug
indications, and drug side effects
All drug combinations were parsed from the FDA orange book

[19] (up to November, 2010), and only pairwise combinations of
prescription and over-the-counter (OTC) drugs were considered
here. In total, our data set contains 184 drug combinations and
238 drugs.
For drug target annotations, we used the compound-protein

interactions from STITCH (version 2) database [28], requiring a
confidence score higher than 0.7 and supported by either database
or experiments. Furthermore, we combined this information with
data collected from DrugBank (version 3) [29] and therapeutic
target database (TTD, November, 2010) [30]. In particular, the
targets from the TTD database were treated as main targets
because they are annotated as primary therapeutic targets of
drugs. We further investigated the pathways possibly affected by a
drug through its target(s), where pathway information was
retrieved from the KEGG database [31]. For drug-pathway
associations, each drug was associated with the pathways in which
its target proteins are found.
Drug indications were extracted from drug package inserts. Due

to different names and synonyms associated with a disease, we
mapped all disease names to Medical Subject Headings (MeSH)
[32] terms by exact match, considering only the diseases branch
and the psychiatry and psychology branch. Drug side effect
information was retrieved from the SIDER database [33]. Drug
therapy information was extracted from both STITCH and
DrugBank, where the therapy information is represented as
Anatomical Therapeutic Chemical (ATC) Classification System.
Specifically, the third level of the ATC code was used here to
represent the therapy information for each drug. Chemical
similarity was calculated as the two-dimensional Tanimoto
chemical similarity score with the Chemistry Development Kit
[34].
The drug-protein network was constructed for drug combina-

tions that contain enriched protein patterns, where two drugs were
linked if they are an effective combination and each drug was also
linked to its targets, and the same for the drug-therapy network.
The networks were visualized with Cytoscape [35].

Prediction of drug combinations
For each drug, the information extracted above can be used

to describe the drug, including targets, indications, pathways,
therapies encoded by ATC code, and side effects. For a drug
pair (di,dj) and a feature F (e.g. drug target), fi is associated
with di and fj is associated with dj , where fi[F and fj[F .
Therefore, drug pair (di,dj) can be represented as feature pair
(fi,fj). For each feature pair (fi,fj), a score sij is calculated as
follows.

sij~
Nij

N ’ij
ð1Þ

where Nij is the number of times that feature pair (fi,fj) occurs
in effective drug combinations, and N ’ij is the number of times

that feature pair (fi,fj) occurs in the background set of all

possible pairwise combinations between drugs involved in
known drug combinations. In this way, all the feature pairs
can be ranked based on their scores and those ranked top are
the feature pairs most strongly enriched in drug combinations.
After getting the feature pairs for each drug combination, we

used 5-fold cross-validation to evaluate their performance. In the
5-fold cross-validation, all the drug combinations were randomly
split into five groups with similar size without overlap, four of
which were used as training set and used to calculate the
enrichment score for each feature pair while the remaining group
was used as the validation set to evaluate the performance of the
feature pairs, and the procedure was repeated for five times. The
F1 score defined below was adopted as performance index.

F1~
2 # precision # recall
precisionzrecall

ð2Þ

where precision is the ratio of true positives in predicted positives
and recall is the ratio of true positives that can be predicted
correctly. The threshold above which the highest F1 score was
achieved in cross-validation was used to make future prediction.
We predict a drug pair as an effective combination if its score is
above the threshold.
Since the annotations from different data sources are incom-

plete, the feature pairs from distinct data sources were aggregated
to calculate a confidence score about whether two drugs can be
combined with the hope that information from distinct data
sources can complement each other. For a drug pair (di,dj), the
confidence score is defined as follows.

S(di,dj)~1{P
k
(1{pkij) ð3Þ

where S(di,dj) is the confidence or probability of drug di
combining with drug dj , p

k
ij is the confidence that drug di can

be combined with drug dj based on feature pairs from data source

k (e.g. target), and pij
k~0 if the drug pair have no corresponding

information from data source k. The feature confidence pkij is

defined as follows.

pij
k~ max

(f ki ,fj
k )

fPre(fik,fjk)g ð4Þ

where Pre(f ki ,f
k
j ) is the precision obtained with feature pairs

whose scores (sij ) are larger than that of feature pair (f ki ,f
k
j ), and

the maximum is used because there are possibly multiple feature
pairs for one drug pair from data source k.

Supporting Information

Figure S1 Correlation analysis between different fea-
tures. For each feature, e.g. target protein, one vector with
dimensionality of m (i.e. the total number of approved drug
combinations) is constructed, where each element denotes the
highest score achieved by the feature pairs associated with the
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corresponding drug pair based on Eq.1. Subsequently, the
spearman correlation coefficient is calculated between different
features.
(TIF)

Dataset S1 The drug-protein network in Cytoscape
format. In the network, the edge property of ‘dd’ denotes
drug-drug associations that are approved combinations, and ‘dp’
drug-protein interactions while ‘d_m’ denotes the interactions
between drugs and their main targets.
(TSV)

Dataset S2 The drug-therapy network in Cytoscape
format. In the network, the edge property of ‘dd’ denotes
drug-drug associations that are approved combinations and ‘da’
drug-therapy (represented as ATC code) associations.
(TSV)

Table S1 All pairwise drug combinations parsed from
FDA orange book.
(XLSX)

Table S2 Protein pairs with corresponding scores
based on all known drug combinations.
(XLSX)

Table S3 Therapeutic effect (ATC code) pairs with
corresponding scores based on all known drug combi-
nations.
(XLSX)

Table S4 Disease (MeSH code) pairs with correspond-
ing scores based on all known drug combinations.
(XLSX)

Table S5 5-fold cross-validation results obtained by
different features.
(XLSX)

Table S6 Detailed features used for predicted drug
combinations, where only the feature pattern with the
highest score from each feature is shown for clarity.
(XLSX)
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