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In contrast to this single-gene targeted approach, shotgun 
sequencing of metagenomes generates millions of short reads 
that are randomly sampled from microbial community genomes. 
These reads are commonly aligned to taxonomically annotated 
reference genomes5 to generate a read-abundance distribution 
in taxonomic bins. However, without appropriate normaliza-
tion by genome size, which has to be estimated for uncharac-
terized species, taxonomic abundance estimates may be highly 
biased5,6. Alternatively, phylogenetic marker genes, either clade-
specific7 or universal, that are both present as single copies in 
most genomes8 and rarely subject to horizontal gene transfer9, 
are ideal candidates for taxonomic profiling of environmental 
samples6,7,10. Regardless of methodological differences, however, 
current approaches that use metagenomic shotgun sequencing 
data primarily for taxonomic composition analysis depend on 
the availability of reference (genome) sequences. Hence, they 
cannot resolve taxa for which no representative sequence infor-
mation is available, although members of these unrepresented 
taxa may constitute a large fraction or even the majority of 
microbial communities.

To address this limitation, we developed a method based on 
universal, single-copy marker genes, which provide prokaryo-
tic species boundaries at higher resolution than 16S rDNA11, to 
estimate relative abundances of known and currently unknown 
microbial community members using metagenomics data at spe-
cies-level resolution. The method clusters marker gene sequences 
from metagenomes and reference genomes into mOTUs. 
Based on covariance data across multiple samples, mOTUs 
of common species origin are combined into mOTU linkage  
groups (mOTU-LGs).

We started with 40 marker genes that previously had been used 
to accurately delineate prokaryotic species11. We calibrated and 
benchmarked an efficient profile hidden Markov model–based 
approach to identify these marker genes in reference genomes 
and metagenomes (Supplementary Tables 1 and 2, and Online 
Methods), and applied it to 3,496 prokaryotic reference genomes 
and 263 published human gut metagenomic samples12,13 (Online 
Methods and Supplementary Table 3). Then we clustered the 
identified marker genes into mOTUs using marker gene–specific 
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to quantify known and unknown microorganisms at species-
level resolution using shotgun sequencing data, we developed 
a method that establishes metagenomic operational taxonomic 
units (motus) based on single-copy phylogenetic marker 
genes. applied to 252 human fecal samples, the method 
revealed that on average 43% of the species abundance and 
58% of the richness cannot be captured by current reference 
genome–based methods. an implementation of the method is 
available at http://www.bork.embl.de/software/motu/.

A common approach for taxonomic profiling of microbial commu-
nities involves the sequencing and classification of amplified 16S 
ribosomal RNA gene (here referred to as 16S rDNA) fragments using 
DNA directly isolated from environmental samples. Owing to its uni-
versality in prokaryotes and the availability of large, curated reference 
databases, 16S rDNA is a powerful phylogenetic marker, yet its use 
has known problems including biases introduced by copy-number 
variations1, variability in amplification efficiency2, inconsistencies 
when targeting different regions of this gene3, and problems with 
accurately and consistently delineating prokaryotic species4.
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species-level sequence identity cutoffs (Supplementary Table 4) 
to account for differences in evolutionary divergence rates across 
marker genes11.

We assessed the suitability of each of the 40 marker genes for 
microbial composition profiling at the species level based on the 
false discovery rate (FDR) for their identification in reference 
genomes and the accuracy of their respective mOTUs in species-
level profiling (Supplementary Table 4 and Online Methods). 
From this analysis, we selected the ten best-performing marker 

genes, which had an average FDR of 1.4% (range, 0.1%–3.8%) 
and a mean ambiguous read alignment rate of 3.5% (range, 
0.9%–6.4%; Supplementary Table 4 and Online Methods). For 
comparison, the 16S rDNA, which is about ten times shorter 
than the 10 marker genes, had an ambiguous alignment rate of 
41.1% when using species-level clustering cutoffs11 and its accu-
racy in delineating prokaryotic species was lower than for any of 
the ten marker genes, in agreement with previous observations11 
(Supplementary Fig. 1).

The clustering step allowed us to estimate the fraction of gut 
microbial species that were not represented by currently available 
reference genome sequences, by classifying mOTUs based on the 
origin of their cluster members (i.e., whether they were similar 
to a reference marker gene or were only found in a metagenome; 
Fig. 1a). We defined mOTUs that recruited at least one meta-
genomic read and contained at least one marker gene originating 
from a reference genome as mOTURefMeta and those that con-
tained marker genes identified only in metagenomes as mOTUMeta  
(Fig. 1a). An average of 701 ± 46 (± s.d.) mOTUs per marker 
gene represented gut microbial species out of which as many as 
58% ± 2.2% belonged to mOTUMeta (Fig. 1b and Supplementary 
Table 5). This implies that the majority of species in human 
gut microbial samples are not represented by current genomic 
resources, despite the substantial efforts that have gone into tar-
geted genome sequencing projects with the goal of improving 
phylogenomic representation (ref. 14 and http://www.metahit.eu). 
The combined relative abundance of these species was on average 
43% ± 1.3%, indicating that hitherto unsequenced gut species are 
likely important in the human gut ecosystem (Fig. 1b).

In the absence of genome sequences, it is not possible to reli-
ably link sets of genes that originate from the same species due to 
the fragmented nature of metagenomic data. Such linkage groups 
would, however, not only increase the amount of phylogenetic  
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figure 1 | Phylogenetic marker gene–based mOTUs. (a) Schematic showing 
the mOTUs that contained at least one marker gene (MG) that originated 
from a sequenced reference genome and at least one metagenomic MG 
(mOTURefMeta) and mOTUs that contained at least one metagenomic MG 
but no reference MG (mOTUMeta). Black and red lines indicate known and 
unknown topologies, respectively. (b) Mean fractions of mOTUMeta and 
mOTURefMeta of the observed mOTU richness per sample, and mean relative  
abundances based on mOTU abundance profiles of 252 human fecal samples. 

a b

c

Inner nodes Bars in ring
mOTU-LG (new) mOTU-LG (new)

Euryarchaeota
Cyanobacteria
Actinobacteria
Firmicutes
Tenericutes
Spirochaetes

mOTU-LG (reference)

Bacteroidetes
Lentisphaerae
Verrucomicrobia
Proteobacteria
Not annotated

150

100

50

0

N
um

be
r 

of
 m

O
T

U
-L

G
s

P
ro

te
in

 id
en

tit
y 

(%
)

100

90

80

70

60

50

40

30

*

26
5

11
3

20
7 25 38
9

57
4

28
9

56
8

19
2

27
9

63
4

11
1

48
0 65 19
1

22
8

16
1 72 28
6

37
3 18 13

28
8

16
5

mOTU-LG

Oscillibacter valericigenes
mOTU-LG 456
mOTU-LG 366
mOTU-LG 212
mOTU-LG 258
mOTU-LG 636
mOTU-LG 460
mOTU-LG 346
mOTU-LG 117
mOTU-LG 307
mOTU-LG 678
mOTU-LG 651
mOTU-LG 520
mOTU-LG 638
mOTU-LG 525
mOTU-LG 644
mOTU-LG 771
mOTU-LG 508
mOTU-LG 672
mOTU-LG 306

0.1 amino acid
changes per site

figure 2 | Phylogenetic analysis of mOTU linkage groups. (a) Maximum likelihood phylogenetic tree of prokaryotic species used to infer the topology of mOTU-
LGs (Online Methods). US National Center for Biotechnology Information phylum-level taxonomy is color-coded on the outer ring, and placements of mOTU-LGs 
are shown as circles on tree edges. Dashed lines indicate a clade of Oscillibacter valericigenes and related mOTU-LGs that are highlighted in c. (b) Phylum-level 
breakdown of new mOTU-LG (Online Methods). *, for mOTU-LGs that had no consistent annotation across their mOTU members at the phylum level, BLASTp identities 
of the member sequences are shown in the inset. Median protein identities (n = 6–10) with interquartile ranges (box) are shown with whiskers extending up to 1.5 
times the interquartile range. (c) Maximum likelihood tree for a subset of mOTU-LGs that represent previously unidentified (new) species in the genus Oscillibacter.
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information per species, but also allow for 
more robust abundance estimations (by 
averaging across individual marker genes). Here we exploited 
the property that in shotgun-sequenced metagenomes genes 
are expected to covary in their abundance if they originate from 
the same species. Thus, we correlated mOTU abundances from 
different marker genes across 252 samples (Supplementary 
Table 3) to generate mOTU-LGs that represented 404 species 
(Supplementary Figs. 2–5), including 278 without a correspond-
ing reference genome (Supplementary Table 6). On average, 
mOTU-LGs accounted for almost 95% of human gut microbial 
species (Supplementary Fig. 6). For 12 of the 30 most abundant 
species (40%), we found that representative genome sequences 
were lacking, highlighting the utility and importance of using 
reference-independent approaches to characterize microbial  
community structures (Supplementary Fig. 7).

We also tested the accuracy of taxonomic profiling using mOTU-
LGs by running a benchmark against expected species abundances 
in a simulated gut metagenome (Supplementary Table 1 and 
Online Methods). The mOTU-LG–based approach was highly 
accurate (r2 = 0.98) and outperformed MetaPhlAn7 (r2 = 0.90), a 
method that uses clade-specific genes rather than universal genes 
for estimation of abundance (Supplementary Fig. 8).

We next asked whether species without a representative genome 
originated from only a few clades or whether they were widely dis-
tributed across the prokaryotic tree of life. To address this ques-
tion, we constructed a maximum likelihood reference tree based 
on 1,753 species clusters11. Then we inferred the most likely place-
ment of representative sequences for each mOTU-LG into this 
reference tree (Fig. 2a and Online Methods). For the 278 mOTU-
LGs without species-level annotations, a phylum-level breakdown 
of their affiliation (Fig. 2b) showed that the vast majority belonged 
to Firmicutes (69%) and Bacteroidetes (17%). Some large clades 
were identified within genera for which a representative genome 

already existed. For example, within the genus Oscillibacter  
(phylum Firmicutes) we found 19 different mOTU-LGs, each of 
which suggests the existence of a species without a sequenced 
reference genome (Fig. 2c). Uncultured Oscillibacter have been 
identified as responsive to dietary change15 and depleted in indi-
viduals with Crohn’s disease16. The species-level resolution pro-
vided here thus might be particularly important for studying their 
functional role in these processes.

We also identified organisms that were highly divergent from 
any sequenced reference species. For example, the closest rela-
tives for mOTU-LG 159 in the phylum Euryarchaeota were from 
the genera Aciduliprofundum and Methanocella, but each of them 
exhibited a protein sequence identity of only 54%. Similarly, a 
cluster of six mOTU-LGs (mOTU-LGs 13, 18, 165, 233, 286 and 
373) was most closely related to Cyanobacteria, but again, protein 
sequence identities were as low as 53%.

Next, we evaluated how our method’s ability to profile relative 
abundances of species for which no reference genome sequences 
were available affects comparative analyses of microbial commu-
nity similarities. For this, we used a data set from 207 individuals: 
110 individuals in Europe sampled once, and 97 individuals in the 
United States including 54 sampled once, 41 sampled twice and 
two sampled three times13,17. Based on evidence that variability 
of human gut microbial composition is smaller within individu-
als than between individuals18,19, we used the subset of 43 US 
individuals from whom at least two fecal samples were collected 
37–378 d apart, in the context of all samples, to identify samples 
from the same individual.

We compared our method, mOTU-LGs to two reference-based 
approaches; one uses the subset of mOTU-LGs that were anno-
tated at species cluster-level (Supplementary Table 6) and the 
other one, MetaPhlAn, uses clade-specific marker genes that were 

a b

c

mOTU-LG

Reference mOTU-LG

MetaPhlAn

mOTU-LG 634

0
Most similar sample from same individual (%)

20 40 60 80 100 0
Shannon diversity index

Padj.

Padj.
AM

mOTU-LG 460

mOTU-LG 672

mOTU-LG 644

mOTU-LG 225

mOTU-LG 525

mOTU-LG 712

mOTU-LG 586

1

Relative abundance (%)

10–6 10–4 10–2

Bifidobacterium bifidum

Akkermansia muciniphila

Bacteroides intestinalis

EU

IBD

1 2 3 4

8.6 × 10–3

2.7 × 10–15

1.0 × 10–2

5

Mean protein
sequence identity (%)

0.006

0.006

0.006

0.008

0.008

0.012

0.012

0.017

0.021

0.027

0.035 86.1

100

85.1

78.0

99.2

97.6

76.1

77.0

99.9

71.4

58.7

Asymptomatic UC

figure 3 | Performance and application of 
mOTU linkage groups. (a) Fraction of samples 
originating from 43 individuals that were 
sampled at least twice (total 88 samples) for 
which the most similar sample originated from 
the same individual using mOTU-LG (red), a 
subset of mOTU-LGs that represent reference 
species (reference mOTU-LG) and clade- 
specific genes7 at species level (MetaPhlAn).  
(b) Shannon diversity index for samples 
originating from US individuals (AM; n = 97),  
asymptomatic European individuals (EU; n = 85)  
and individuals diagnosed with IBD (IBD; n = 25).  
Individual samples are shown as closed circles 
and collective data for each group superimposed 
as box plots. Padj. denotes Bonferroni-adjusted 
P values of Wilcoxon’s rank-sum test results. 
(c) Relative abundances of mOTU-LGs that were 
significantly different between fecal samples 
from a cohort of UC patients (n = 21) and 
matched asymptomatic individuals (n = 35). 
The mean (across mOTU-LG members) protein 
identity for best BLASTp hits is shown as a 
proxy for phylogenetic distance to the closest 
organism for which a reference genome sequence 
was available. Padj. values denote FDR-adjusted  
P values of Wilcoxon test results.
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identified in reference genomes7. As a measure of performance,  
we calculated the fraction of cases in which a sample collected 
from one individual was more similar to another sample from 
the same individual than to any other sample. For mOTU-
LGs, 98% of samples matched to a different sample from the 
same individual, compared to only 92% and 86% for annotated 
mOTU-LGs and MetaPhlAn, respectively (Fig. 3a). The higher 
performance of mOTU-LGs was also consistent across a broad 
selection of distance measures that we tested (Supplementary 
Table 7). Our results demonstrate that the increased resolution 
of mOTU-LGs provided by including previously unidentified 
species yields more accurate community similarity estimates 
compared to methods that solely depend on the availability of 
reference sequences. Furthermore, this implies that the tempo-
ral variation of microbial community structures of human gut 
microbiota is lower than previously assumed primarily owing to 
limitations of other existing methods.

Calculating species diversities can provide information about 
the ecology of microbial communities or may also indicate poten-
tial sampling biases. We calculated the Shannon diversity index for 
fecal samples from asymptomatic US individuals (here referred 
to as ‘AM’; n = 97: only samples from the first time point were 
included) and European individuals (EU; n = 85), and patients 
with inflammatory bowel disease (IBD; n = 25; Supplementary 
Table 3). The differences between samples from AM, EU and IBD 
data sets were all significant (AM versus EU, P = 2.7 ×10−15; EU 
versus IBD, P = 0.0086; AM versus IBD, P = 0.0102; pairwise 
Wilcoxon test, adjusted using Bonferroni’s correction; Fig. 3b). 
Samples from AM data exhibited the lowest diversity followed by 
those from IBD data and EU data. The reduced species diversity we 
detected in individuals that were diagnosed with IBD corroborated 
previous studies20. Lower species diversity in fecal samples from 
asymptomatic US individuals compared to those collected from 
IBD patients may indicate a methodological bias as the data were 
collected in two independent large-scale projects12,13. It should be 
noted that these projects used different methods for sample collec-
tion, DNA extraction and DNA sequencing, which highlights the 
need for standardizing protocols from sample collection to DNA 
sequencing. The International Human Microbiome Standards 
consortium is currently addressing this issue.

Finally, we tested for differentially abundant species between 
fecal samples from individuals with ulcerative colitis (UC) and 
healthy controls (Supplementary Table 3). At an FDR of 5%, 
11 species were identified including Bifidobacterium bifidum, 
Bacteroides intestinalis and Akkermansia muciniphila, the latter of 
which has been shown to be depleted in UC patients21,22. In addi-
tion, we identified differentially abundant Firmicutes, putatively 
in the order of Clostridiales, which were highly divergent from 
any currently sequenced reference species (Fig. 3c). This result 
illustrates the practical utility of our method and underscores the 
importance of profiling currently unknown species and the need 
for sequencing additional genomes to better understand the func-
tional role of these microorganisms in the human gut ecosystem.

When using reference-based methods for species-level taxo-
nomic profiling of shotgun-sequenced metagenomic samples, 
data that originate from unknown species are currently ignored, 
summarized into a single taxonomically unassigned group or 
grouped at higher taxonomic levels using a last common ancestor– 
based approach. The main novelty of our method is to resolve 

this single unassigned fraction into species-level taxonomic abun-
dances. We demonstrated the advantages of our method over  
reference-based methods and illustrated examples of its practical 
utility. In addition to gene functional23,24 and genomic variation 
analyses17, taxonomic profiling using mOTUs provides another 
powerful approach for the exhaustive mining of different types 
of information contained in metagenomic data.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Implementation of the method. Metagenomic species profiling has 
been implemented as a new feature in the MOCAT pipeline25 and as 
a standalone tool (Supplementary Software). Software and scripts 
that were used to identify marker genes (MGs) in reference genomes 
and metagenomes as well as a tutorial for profiling metagenomic data 
sets are available at http://www.bork.embl.de/software/mOTU/.

Identification of single-copy marker genes. Profile hidden 
Markov models (HMMs) were generated using the hmmbuild 
and hmmsearch programs of HMMER26 (v3) for 40 universal 
single-copy MGs8,9 based on multiple-sequence alignments of 
their orthologous groups that had been previously identified in 
1,497 prokaryotic genomes17,27,28. Prokaryotic reference genome 
sequences were downloaded (February 2012) from the US 
National Center for Biotechnology Information (NCBI) genomes 
database. As a quality filter, we removed complete genomes with 
less than 30 MGs and genomes with more than 500 contigs, yield-
ing a set of 3,496 reference genomes (Supplementary Table 1). 
For these genomes, we used hmmsearch with a bit score cutoff of 
60 to identify 138,132 MGs (39.5 per genome) in >11 million pro-
teins by selecting the highest-scoring target sequence (best hit) for 
each MG in each genome (Supplementary Table 2). Compared 
to a BLAST-based annotation of the same set of proteins, the 
HMM–based procedure was four orders of magnitude faster in 
terms of computing time (134,000 versus 17.5 CPU h).

In addition to increasing the speed of MG identification, it is 
important to minimize the FDR when extending these search 
methods to metagenomic data, because selecting the best hit 
(as done for reference genomes) is not possible and a bit score 
threshold must be used instead. For example, when simply using 
HMMs with a cutoff of 60 bits on the set of 3,496 genomes, 15.7% 
more genes that are likely false positives were identified compared 
to the best hits only (Supplementary Table 2). Thus, we cali-
brated MG-specific bit-score cutoffs (Supplementary Table 2) 
by maximizing the accuracy (F score) of MG identification using 
a training set of 1,004 well-annotated prokaryotic genomes that 
are available in the eggNOG (evolutionary genealogy of genes: 
Nonsupervised Orthologous Groups; v3.0) database28. When 
repeating the search using these calibrated cut offs, the increase in 
the number of identified sequences compared to selecting the best 
hit only was 3.3% (expected, 39.51 MGs per genome; observed, 
40.81 MGs) for all 40 MGs. This was reduced to 1.0% (expected, 
38.52 per genome; observed, 38.90 MGs) when COG0085 was 
excluded, which alone accounted for 71% of all putative false 
positives (Supplementary Table 2).

Metagenome assembly and marker gene prediction. Raw data 
from 263 Illumina shotgun-sequenced gut metagenomic samples 
from 39 Spanish, 85 Danish and 94 US (American) individu-
als12,13,17 (Supplementary Table 3) were quality-controlled and 
processed using MOCAT as previously described25. Briefly, raw 
sequencing reads were quality-trimmed with a base quality and 
read length cutoff of 20 and 30, respectively. High-quality reads 
were then assembled, assemblies were revised, and genes were pre-
dicted on contiguous sequences longer than 500 base pairs (bp) 
without any unknown bases (‘scaftigs’). Metagenomic MGs were 
subsequently identified using the calibrated profile HMM bit score 
cutoffs (see above) in translated sequences of all full-length genes. 

To test whether artificial MG sequences were expected to be com-
monly generated when assembling metagenomic data, we simulated 
a representative gut metagenome and applied the same data process-
ing steps as described above. From the 101 most abundant genomes 
among 252 samples that we used for abundance profiling here and 
in ref. 17, we selected the overlap with the set of 3,496 reference 
genomes and additionally removed genomes for which full bino-
mial species names were not available (Supplementary Table 1). We 
then calculated the expected relative abundance for the remaining 
87 genomes and simulated 4.5 Gbp of paired-end 75-bp Illumina 
reads with modeled sequencing errors as described in ref. 29,  
which were assembled using the same parameters as described 
above. We identified a total of 184 assembled full-length MGs and 
aligned them to the genome sequences of origin using BLASTn. All 
MG sequences were aligned completely, and only a single mismatch 
was found among the 270,042 aligned nucleotide positions.

Clustering of marker gene sequences into mOTUs. For all MGs 
identified in both reference genomes and metagenomes, cluster-
ing was performed with USEARCH30 (v4.2.66) and MG-specific 
species-level identify cutoffs11 (Supplementary Table 2) result-
ing in universal single-copy MG-based mOTUs. Before cluster-
ing, we sorted the nucleotide sequences so that MGs identified 
in reference genome sequences were followed by those identified 
in metagenomes. The accuracy of clustering was evaluated by 
testing whether mOTUs that had at least two MGs originating 
from a reference genome were consistent regarding the taxonomic 
annotation of their members according to a curated version of the 
NCBI taxonomy11. We also compared the results to the commonly 
used 16S rDNA (using full-length sequences identified in 2,899 
genomes listed in Supplementary Table 1) and found that the 
accuracy for delineating prokaryotic species was lower than for 
any of the ten MGs (Supplementary Fig. 1).

Abundance profiling of gut metagenomic samples using 
mOTUs and selection of MGs. To reduce the effect of unequal 
alignment probability across the length of the gene, we first 
dereplicated (clustered at 100% identity) marker gene sequences 
and extended them up to 100 bp upstream and downstream of 
the start and stop codon using the sequence information avail-
able on the reference genomes and assembled scaftigs of origin. 
Using this nonredundant, ‘padded’ mOTU database, abundance 
calculations of each mOTU were performed using MOCAT25. In 
summary, shotgun sequencing reads from 252 gut metagnomic 
samples (Supplementary Table 3) were mapped to the mOTU 
database using a base quality, sequence identity and alignment-
length cutoff of 20, 97% and 45 bp, respectively. For each DNA 
fragment (insert) that mapped to one or more MGs that belonged 
to the same mOTU (unique mapper), we increased the count of 
the respective mOTU by one (note that two paired-end reads or 
a single read, i.e., if one of the paired-end sequence reads did not 
map or had previously been removed due to low quality, were 
counted as one insert). For each insert that mapped to MGs from 
n different mOTUs with the same alignment score (multiple map-
per), the count for each of the respective mOTUs was increased 
by the fraction of unique mappers of these mOTUs. The insert 
counts were then normalized to gene length, scaled by the aver-
age gene length and rounded down to obtain integer numbers of 
mOTU abundances.
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We used two criteria to assess the suitability of MGs given the 
aims of our analysis: the accuracy of their identification based on 
profile HMM searches and their accuracy in quantifying species 
abundances, the latter of which poses a challenge because of the 
limited length of shotgun sequencing reads typical for metagen-
omic data sets. We required the accuracy of MG identification to 
be higher than 90%, which excluded two of the 40 MGs (COG0085 
and COG0124). To quantify the effect of ambiguous sequence align-
ment, we calculated the number of multiple mappers and found that 
across all samples, the mean rate of multiple mappers was 18.9%, 
ranging from 1.2% to 61.5% for different MGs (Supplementary 
Table 4). As a compromise between maximizing the phylogenetic 
signal and minimizing noise, we excluded any MG with a median 
multiple mapper fraction above 7% (Supplementary Table 4), 
which resulted in the ten MGs selected for this work.

Linking mOTUs of common species origin. Sequences that 
originate from the same prokaryotic genome are expected to cov-
ary in abundance across metagenomic samples. We thus inferred 
genomic linkage between mOTUs constructed from different 
marker genes based on their correlated abundance across metage-
nomes. We computed Spearman correlation between abundance 
estimates for each of 7,010 mOTUs across 252 metagenomic sam-
ples. To avoid spurious associations between very rare mOTUs, 
we excluded any mOTU with prevalence (proportion of nonzero 
abundances among all samples) below 2%. To link mOTUs, we 
employed a greedy procedure that examined the entries in the 
correlation matrix starting from the strongest correlations. In 
each step, it linked two mOTUs if the resulting group contained 
at most one member from each marker gene (also considering 
other mOTUs linked to this group in previous steps).

To estimate the accuracy of this approach, we used the taxo-
nomic information available for MGs originating from reference 
genomes, i.e., those that were contained in mOTURefMeta (using a 
curated NCBI taxonomy11). For this, we only considered mOTUs 
with a consistent taxonomic annotation, i.e., with more than half 
their taxonomically annotated sequences coming from the same 
taxon. For each step of the linking procedure we determined 
whether it grouped mOTUs with the same taxonomic annotation 
(true positives, TP) or with different annotations (false positives, 
FP), allowing us to monitor the FDR as TP / (TP + FP) during the 
linking process. Owing to the greedy nature of the algorithm, this 
FDR increased with the number of steps as the underlying cor-
relation coefficients decreased (Supplementary Fig. 3). Based on 
the FDR, we terminated the linking procedure after the maximum 
number of steps that still maintained an FDR below 0.01 (result-
ing after 40,889 linking steps). Further analysis was restricted to 
the 404 mOTU linkage groups that contained at least six different 
marker genes (Supplementary Table 6). Together these repre-
sented an average of 94.2% of the total abundance of all detected 
species in our gut metagenomic data set (Supplementary Fig. 6). 
The relative abundance of each mOTU-LG in a given sample was 
estimated as the mean relative abundance of all of its members.

Quality assessment of mOTU linkage groups. We assessed to 
which extent each mOTU linkage group as a whole was consist-
ent with respect to the taxonomic annotation of its members 
(Supplementary Fig. 2; note that these results differ from the 
linking FDR estimate above, which only evaluates pair-wise links 

between mOTUs, not the resulting group). We found that for 
>99% of mOTU-LGs, the majority of MGs were consistent at the 
species level (for >95%, all MGs were consistent); at the genus 
level, >98% of mOTU-LGs had completely consistent taxonomic 
annotations (Supplementary Fig. 2). We next evaluated how 
well the relative abundance estimates derived from individual 
mOTUs agreed within each cluster (Supplementary Fig. 4). As 
a final quality control step, we estimated the G+C content of the 
gene sequences in each mOTU and assessed the homogeneity 
in G+C content within each mOTU-LG, as G+C content from 
genes belonging to the same genome is expected to be much more 
homogenous than from a random sample of genes from a metage-
nome (Supplementary Fig. 5).

Taxonomic and phylogenetic diversity. Shannon diversity 
indices were calculated for each sample based on mOTU-LG 
abundances using the diversity function in the vegan R pack-
age (http://cran.r-project.org/web/packages/vegan/index.html). 
Differences between samples collected on the two continents and 
IBD patients were tested using the Wilcoxon rank-sum test, and 
P values were adjusted using Bonferroni’s correction. To evalu-
ate the phylogenetic diversity of new species, we first generated 
a reference tree based on the 1,753 species clusters as defined in 
ref. 11. For each species cluster, the genome with the highest N50 
statistic (the length for which the collection of all contigs of that 
length or longer contains at least half of the total of the lengths of 
the contigs) was chosen as the representative genome, and mul-
tiple sequence alignments (MSAs) were generated for each of the 
40 MG using AQUA27 (v1.1). The 40 MSAs were concatenated 
into a multigene MSA comprising 50,911 protein sites. For each 
of the 40 MSAs, the best log-likelihood scores were calculated 
using RAxML31 (v7.3.2) to determine the best-scoring empirical 
protein substitution model to be assigned to each MG partition 
of the multigene MSA.

ExaML32 for large-scale phylogenetic inference was run to exe-
cute six independent maximum-likelihood searches for the best-
scoring maximum likelihood (ML) tree on six distinct parsimony 
starting trees that were computed using the randomized stepwise 
addition order algorithm as implemented in standard RAxML 
(v7.3.2). Searches were conducted under the per site rate model 
of among-site heterogeneity. Finally, we scored the resulting six 
tree topologies from the ExaML searches using standard RAxML 
(v7.3.1) under the GAMMA model of rate heterogeneity31. The 
best-scoring tree topology was then chosen as the reference species 
tree for the phylogeny-aware placement of mOTU-LG sequences. 
PaPaRa33 (v2) was used to align the fragments to the multigene 
reference MSA. Subsequently, the RAxML Evolutionary Placement 
Algorithm (EPA)34 was run to place the fragments into the refer-
ence species tree. The EPA placement runs were conducted under 
the same partitioning scheme and protein substitution models that 
were used to infer the reference species tree. Although the PaPaRa 
and EPA algorithms were readily available, we introduced several 
technical and methodological improvements to increase scalability 
of the alignment and placement steps in order to handle large data 
sets. We used the heuristic tuning parameter of the EPA algorithm 
that relies on a fast prescoring method, which in turn reduces the 
number of expensive full-likelihood computations to calculate 
fragment insertion scores by a factor of 10 (ref. 34). The placement 
results were visualized using interactive Tree of Life (iTOL)35.
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Time-series benchmark. Two reference-dependent methods that 
calculate relative species abundances by mapping metagenomic  
reads to clade-specific7 or reference mOTU-LGs (this work) 
were compared to our mOTU-LG–based method. Relative spe-
cies abundances calculated by the MetaPhlAn pipeline were 
downloaded from the Human Microbiome Project Data Analysis 
and Coordination Center website (ftp://public-ftp.hmpdacc.
org/HMSMCP/HMP.ab.txt.bz2). To assess the robustness of our 
results, we tested three qualitatively different distance measures 
(rank-based, Spearman; frequency-based, Euclidean; frequency-
weighted, Jensen-Shannon Distance (JSD)) and three additional 
distance measures that are commonly applied in community 
ecological studies (Bray-Curtis, Gower and Horn-Morisita) on 
log-transformed (after adding a pseudocount of 10−6) and non-
transformed data. For each of the 88 samples originating from 
either one of the 41 individuals that were sampled twice or one 
of the two individuals that were sampled three times, we calcu-
lated the fraction of samples for which the most similar sample 
originated from the same individual.

Differential abundance estimation in IBD. We examined 56 gut 
metagenomes (Supplementary Table 3), 21 of which originated  
from patients diagnosed with UC, a subset of samples used 
previously for a matched analysis of IBD versus non-IBD 
samples23. Significant differences in species abundance were 
determined using the Wilcoxon test with a maximum q value  
(FDR correction) of 0.05.
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