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high-throughput rnA sequencing is an increasingly accessible 
method for studying gene structure and activity on a genome-
wide scale. A critical step in rnA-seq data analysis is the 
alignment of partial transcript reads to a reference genome 
sequence. to assess the performance of current mapping 
software, we invited developers of rnA-seq aligners to process 
four large human and mouse rnA-seq data sets. in total,  
we compared 26 mapping protocols based on 11 programs  
and pipelines and found major performance differences 
between methods on numerous benchmarks, including 
alignment yield, basewise accuracy, mismatch and gap 
placement, exon junction discovery and suitability of 
alignments for transcript reconstruction. We observed 
concordant results on real and simulated rnA-seq data, 
confirming the relevance of the metrics employed. Future 
developments in rnA-seq alignment methods would benefit 
from improved placement of multimapped reads, balanced 
utilization of existing gene annotation and a reduced false 
discovery rate for splice junctions.

Programs for aligning transcript reads to a reference genome 
address the challenging task of placing spliced reads across introns 
and correctly determining exon-intron boundaries. The advent 
of RNA-seq prompted the development of a new generation of 
spliced-alignment software, with several advances over earlier 
programs such as the BLAST-like alignment tool (BLAT)1,2. The 
tools GEM3, GSTRUCT, MapSplice4 and TopHat5,6 implement 
a two-step approach in which initial read alignments are ana-
lyzed to discover exon junctions; these junctions are then used 
to guide final alignment. Several programs can also use existing 
gene annotation to inform spliced-read placement5–9. Most RNA-
seq aligners can further increase accuracy by prioritizing align-
ments in which read pairs map in a consistent fashion3,5–7,9,10. To 
place reads that match multiple genomic sequences, GSTRUCT 

examines the density of independent reads at those loci. Many 
algorithms also consider base-call quality scores and use sophis-
ticated indexing schemes to decrease runtime.

Here we assess the performance of 26 RNA-seq alignment  
protocols on real and simulated human and mouse transcrip-
tomes. We adopted a competitive evaluation model applied  
in other areas of bioinformatics11–14. Developers were invited to 
run their software and submit results for evaluation as part of 
the RNA-seq Genome Annotation Assessment Project (RGASP). 
Programs included six spliced aligners GSNAP7, MapSplice4, 
PALMapper8, ReadsMap, STAR9 and TopHat5,6) and four 
alignment pipelines (GEM3, PASS15, GSTRUCT and BAGET). 
GSTRUCT is based on GSNAP, whereas BAGET uses a contigu-
ous DNA aligner to map reads to the genome as well as to exon 
junction sequences derived from reference gene annotation. 
For comparison, the contiguous aligner SMALT was also tested. 
SMALT can map reads in a split manner, but it lacks several fea-
tures of dedicated spliced aligners, such as precise determination 
of exon-intron boundaries. We demonstrate that choice of align-
ment software is critical for accurate interpretation of RNA-seq 
data, and we identify aspects of the spliced-alignment problem 
in need of further attention.

results
Alignment protocols were evaluated on Illumina 76-nucleotide (nt)  
paired-end RNA-seq data from the human leukemia cell line K562 
(1.3 × 109 reads), mouse brain (1.1 × 108 reads) and two simulated 
human transcriptomes (8.0 × 107 reads each; Supplementary 
Table 1). Nine development teams contributed alignments for 
evaluation. We additionally included two versions of the widely 
used RNA-seq aligner TopHat5,6. Most development teams pro-
vided results from several alignment protocols, corresponding to 
different parameter choices and pipeline configurations (Fig. 1 
and Supplementary Note).
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Alignment yield
There were major differences among protocols in the alignment 
yield (68.4–95.1% of K562 read pairs; mean = 91.5%, s.d. = 5.4), 
extent to which both reads from a pair were mapped, and fre-
quency of ambiguous mappings (reads with several reported 
alignments) (Fig. 1 and Supplementary Tables 2 and 3). These 
trends were similar across data sets (Fig. 1). The fraction of pairs 
with only one read aligned was typically highest for TopHat, 
ReadsMap and PASS, whereas PALMapper output exhibited more 
complex discrepancies within read pairs. GEM results consistently 
included many ambiguous mappings (37% of sequenced reads 
per data set on average). Mapping ambiguities were also common 
with PALMapper, although these were reduced with the more 
conservative protocols that involve stringent filtering of align-
ments (Fig. 1 and Supplementary Fig. 1). To avoid introducing 
bias at later evaluation stages due to differences in the number 
of alignments per read, we instructed developer teams to assign 
a preferred (primary) alignment for each read mapped in their 
program output. The following results are based on these primary 
alignments unless otherwise noted.

mismatches and basewise accuracy
Compared to the other aligners, GSNAP, GSTRUCT, MapSplice, 
PASS, SMALT and STAR reported more primary alignments 
devoid of mismatches (Fig. 2a), partly because these methods 
can truncate read ends and thus output an incomplete align-
ment when they are unable to map an entire sequence (Fig. 2b). 
PASS and SMALT performed extensive truncation, suggesting 
that these programs often report alignments shorter than is opti-
mal. MapSplice, PASS and TopHat displayed a low tolerance for 
mismatches (Fig. 2a). Consequently, a large proportion of reads 
with low base-call quality scores were not mapped by these meth-
ods (Supplementary Fig. 2). The mapping yield of TopHat was 
particularly low (mean yield of 84% on K562 data, compared to 
90% for MapSplice; Fig. 2a and Supplementary Tables 2 and 3), 
likely owing to a lack of read truncation (Fig. 2b). Note that many 

aligners have options to increase mismatch tolerance beyond the 
settings used here, but this approach may negatively affect other 
performance aspects.

Polymorphisms and accumulated mutations distinguish the 
cancer cell line K562 from the human reference assembly, which 
itself is a consensus based on several individuals16. Conversely, 
mouse RNA samples were obtained from strain C57BL/6NJ, the 
genome of which is nearly identical to the mouse reference assem-
bly17. Accordingly, high-quality reads from mouse were mapped 
at a greater rate and with fewer mismatches than those from K562 
(Supplementary Fig. 3). Even so, differences among aligners in 
mismatch and truncation frequencies were consistent across data 
sets (Fig. 2 and Supplementary Fig. 4). Mapping properties are 
thus largely dependent on software algorithms even when the 
genome and transcriptome are virtually identical.

Consistent with real RNA-seq data, GSNAP, GSTRUCT, 
MapSplice and STAR outperformed other methods for base-
wise accuracy on simulated data (Supplementary Table 2). 
As expected, error rates were substantially lower for uniquely 
mapped reads than for primary alignments of multimapped reads 
(Supplementary Table 4). Notably, despite the many ambiguous 
mappings reported by GEM and PALMapper, the primary align-
ments were usually correct (Supplementary Table 4).

Differences among methods were most apparent for spliced 
reads (Supplementary Tables 5–7). On the first simulated data 
set, GSNAP, GSTRUCT, MapSplice and STAR mapped 96.3–98.4% 
of spliced reads to the correct locations and 0.9–2.9% to alterna-
tive locations (Fig. 3 and Supplementary Table 6). Although 
these mappers assigned nearly all spliced reads to the correct 
locus, the frequency of reads for which they aligned all bases cor-
rectly was substantially lower (60.3–89.3% of spliced reads from 
simulation 1; Fig. 3). In contrast, ReadsMap and the annotation- 
based TopHat2 protocol produced high rates of perfect 
spliced alignments and few partially correct ones (Fig. 3 and 
Supplementary Table 6), a behavior consistent with the afore-
mentioned lack of read truncation. However, ReadsMap also 
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Figure 1 | Alignment yield. Shown is the percentage of sequenced or simulated read pairs (fragments) mapped by each protocol. Protocols are grouped 
by the underlying alignment program (gray shading). Protocol names contain the suffix “ann” if annotation was used. The suffix “cons” distinguishes 
more conservative protocols from others based on the same aligner. The K562 data set comprises six samples, and the metrics presented here were 
averaged over them.
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assigned an exceptionally high proportion of bases to the wrong 
genomic positions, largely owing to a programmatic error that 
placed reads a few bases from their correct locations (Fig. 3 and 
Supplementary Table 5).

The second simulated data set was designed to be more challeng-
ing, with higher frequencies of insertions and deletions (indels), 
base-calling errors and novel transcript isoforms. MapSplice, 
PASS and TopHat showed a reduction in performance on this 
data set relative to the other methods (Fig. 3 and Supplementary 
Tables 5–7), results consistent with the low mismatch tolerance 
of these protocols (Fig. 2a).

indel frequency and accuracy
GEM and PALMapper output included more indels than 
any other method (up to 115 indels per 1,000 K562 reads;  
Fig. 4a and Supplementary Fig. 5), but GEM preferentially 
reported insertions, and PALMapper, mostly deletions. Long 

deletions were most common with GSNAP and GSTRUCT, 
whereas TopHat2 called numerous long insertions. In contrast, 
PASS, ReadsMap and TopHat1 reported few long indels, and 
the conservative PALMapper protocols allowed only single- 
nucleotide indels.

These results were corroborated by analysis of indel accuracy 
on simulated data (Fig. 4b), which demonstrated that GEM and 
PALMapper report many false indels (indel precision < 37% for all 
protocols except PALMapper cons; simulation 1), that GSNAP and 
GSTRUCT exhibit high sensitivity for deletions largely independ-
ent of size (recall > 68% for each length interval depicted in Fig. 4b),  
and that the annotation-based TopHat2 protocol is the most 
sensitive method for long insertions (recall = 87% for insertions  
≥5 bp; simulation 1). The ability of GSNAP, GSTRUCT and TopHat2 
to detect long indels was accompanied by high false discovery 
rates, however, and MapSplice achieved a better balance between 
precision and recall for long deletions than GSNAP (Fig. 4b; this 
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Figure 2 | Mismatch and truncation frequencies. (a) Percentage of sequenced reads mapped with the indicated number of mismatches. (b) Percentage of 
sequenced reads truncated at either or both ends. Bar colors indicate the number of bases removed.
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Figure 3 | Read placement accuracy for simulated spliced reads.
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balance can be quantified using the F-score, which for deletions 
≥5 bp was 87% for MapSplice and 36% for GSNAP on simulation 1 
 when these programs were executed without provision of gene 
annotation). Supplementary Figure 6 illustrates alignments of 
two simulated reads that each contain a small insertion, resulting 
in erroneous mappings by several protocols.

Positioning of mismatches and gaps in reads
We determined the spatial distribution of mismatches, indels and 
introns over read sequences (Supplementary Fig. 7). All methods 
except MapSplice and PASS consistently reported an increasing 
frequency of mismatches along reads, in agreement with base-call 
quality-score distributions (Supplementary Figs. 2 and 8). BAGET, 
GEM, MapSplice, PALMapper and TopHat produced an excess of 
mismatches at read termini, whereas other methods avoided such a 
bias by truncating reads (Fig. 2b). Indels were preferentially placed 
near ends of reads by some methods, such as PALMapper and 
TopHat; others, such as MapSplice and STAR, tended to place them 
internally. GSTRUCT produced the most uniform distribution of 
indel frequency over the K562 data (coefficient of variation (CV) =  
0.32), and TopHat produced the most variable (CV = 1.5 and 1.1 
for TopHat1 and TopHat2, respectively). The positioning of splice 
junctions was generally more even, although several methods did 
not call junctions near read termini (Supplementary Fig. 7).

Coverage of annotated genes
We assessed how RNA-seq reads were 
placed in relation to annotated gene 
structures from the Ensembl database 
(Supplementary Note). Given the exten-
sive annotation of the human and mouse 
genomes, the majority of reads would be 
expected to originate from known exons. 
Experimental data will also contain an 
unknown fraction of sequencing reads 
from unannotated transcripts and hetero-
geneous nuclear RNA. The simulated data 
sets were generated to recapitulate these 
features (Online Methods). Mapping 
trends were typically very similar between 
real and simulated data, a result indicating 
that simulation results reflect alignment 
performance in real RNA-seq experiments 
(Supplementary Figs. 9–11). The number 
of reads mapped to annotated exons 
were highest for GSNAP and GSTRUCT, 
on both real and simulated data, and 
close to the true number for the latter 
(Supplementary Figs. 9–12). However,  
all methods dispersed reads across too 
many genes: whereas reads from the first 
simulation should map to 16,554 Ensembl 

genes, all protocols reported primary alignments for more than 
17,800 genes. This effect was largely due to the placement of reads 
at pseudogenes and was most severe for SMALT, BAGET and 
GEM (Supplementary Figs. 9–11).

spliced alignment
In assessing spliced-alignment performance, we distinguish 
between detection of splices in individual reads and detection of 
unique splice junctions on the genomic sequence. The latter are 
often supported by multiple splices depending on expression level 
and sequencing depth. In general, GSNAP, GSTRUCT, ReadsMap, 
STAR and TopHat2 reported more (predicted) splices than other 
aligners (Fig. 5a and Supplementary Table 2). However, these 
results differed among protocol variants, such that GSNAP, STAR 
1-pass and TopHat2 produced substantially fewer spliced mappings 
unless alignment was guided by known splice sites. SMALT, BAGET, 
PASS and the conservative PALMapper protocols inferred the fewest 
splices from the data (Fig. 5a and Supplementary Fig. 13). Several 
methods reported numerous splices not corresponding to known 
introns, particularly ReadsMap and PALMapper, and, to a lesser 
extent, SMALT, GSTRUCT and STAR 2-pass (Fig. 5a). These novel 
splice junctions were typically supported by few alignments, and 
many featured noncanonical splice signals, which suggests that they 
may be incorrect (Fig. 5b and Supplementary Figs. 14 and 15).  

TopHat2 ann
TopHat2
TopHat1 ann
TopHat1
STAR 2-pass ann
STAR 2-pass
STAR 1-pass ann
STAR 1-pass
SMALT
ReadsMap
PASS cons
PASS
PALMapper cons
PALMapper
MapSplice ann
MapSplice
GSTRUCT ann
GSTRUCT
GSNAP ann
GSNAP
GEM cons ann
GEM cons
GEM ann
BAGET ann

Insertions (%)

0 20 40 60 80 100

5.86
6.71
2.05
2.05
2.02
2.02
2.03
2.00
8.91
2.70
2.38
2.44
0.68

31.54
1.65
1.65
4.90
4.94
4.84
5.80

84.91
85.76
83.32
14.46

Deletions (%)

0 20 40 60 80 100

Indel size (bases):

a

1 2 3 4 5 6 7 8+ 1 2 3 4 5 6 7 8+1 2 3 4 5 6 7 8+
TopHat2 ann
TopHat2
TopHat1 ann
TopHat1
STAR 2-pass ann
STAR 2-pass
STAR 1-pass ann
STAR 1-pass
SMALT
ReadsMap
PASS cons
PASS
PALMapper cons ann
PALMapper cons
PALMapper ann
PALMapper
MapSplice ann
MapSplice
GSTRUCT ann
GSTRUCT
GSNAP ann
GSNAP
GEM cons ann
GEM cons
GEM ann
BAGET ann

1 2 3 4 5 6 7 8+

b
Precision Recall Precision Recall

Insertions Deletions

Indel size (bases)

0%

100%

6.94
6.09
7.33
7.29
4.50
4.37
4.50
4.14
9.92
4.48
4.77
4.95
0.30

61.71
5.00
4.98
9.12
9.16
8.97

10.25
29.39
29.51
29.12
13.07

n.a.

1 2 3 4 5–7 8+

Figure 4 | Indel frequency and accuracy.  
(a) Bars show the size distribution of indels 
for the human K562 data set. Indel frequencies 
are tabulated (number of indels per 1,000 
sequenced reads). (b) Precision and recall, 
stratified by indel size, for human simulated 
data set 1.

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nAture methods  |  VOL.10  NO.12  |  DECEMBER 2013  |  1189

AnAlysis

A substantial proportion were exclusive to 
particular methods. For example, 52–54% 
of the novel junctions reported by GSNAP/
GSTRUCT on K562 whole-cell RNA were 
absent from the output of all other mappers 
(Supplementary Table 8).

Analysis of splice-detection performance on simulated data 
confirmed a substantial false discovery rate for ReadsMap, 
PALMapper and SMALT, whereas the highest accuracy was 
achieved by protocols based on GSNAP, GSTRUCT, MapSplice 
and STAR (Fig. 5a). Splices near the ends of reads can be par-
ticularly difficult to align, as a minimum amount of sequence 
is needed to confidently identify exon boundaries. Accuracy 
improved when the assessment was restricted to splices located 
between positions 20 and 57 in the 76-nt reads, but the same 
four methods still performed best (Supplementary Fig. 16). 
The use of simulated data further allowed us to measure the 
rate at which splices were detected in individual reads as a func-
tion of true coverage at corresponding junctions. Most proto-
cols displayed decreased sensitivity at junctions covered by <5 
reads (Supplementary Fig. 17). This reflects the reliance on 
junction coverage by alignment algorithms to increase preci-
sion. Accordingly, the trend was absent for methods that align 
each read independently (BAGET, GSNAP, PASS, SMALT and 
STAR 1-pass). Notably, the annotation-based GSNAP proto-
col achieved high sensitivity irrespective of junction coverage 
(Supplementary Fig. 17).

The number of false junction calls was considerable for most 
protocols but was greatly reduced if junctions were filtered by 
supporting alignment counts (Fig. 5c). At a threshold of two 
alignments, GSTRUCT outperformed most other methods on 
both simulated data sets when assessed by numbers of true and 
false junction calls (Fig. 5c and Supplementary Tables 2 and 9). 

MapSplice displayed similar performance on the first simulated 
data set, but only if used without annotation.

The simulated transcriptomes contain a subset of splice 
junctions in the Ensembl annotation as well as junctions from 
other gene catalogs and those created by simulating alternate 
isoforms of known genes. This corresponds to a realistic sce-
nario wherein a subset of known transcripts are expressed in 
the assayed sample and knowledge of the transcriptome is 
incomplete. Protocols using annotation recovered nearly all of 
the known junctions in expressed transcripts, but most of these 
protocols also aligned reads at thousands of annotated junctions 
that were not expressed the simulated transcriptomes (Fig. 5d). 
This effect was particularly severe for TopHat2, PALMapper and 
STAR. For novel-junction discovery, GSTRUCT and MapSplice 
outperformed other methods (Fig. 5e).

Most programs could detect three or more splices per read, but 
PASS and PALMapper rarely reported more than two, and BAGET 
and SMALT never reported more than one (Supplementary  
Fig. 18 and Supplementary Table 10). In general, ReadsMap, 
STAR and the annotation-based TopHat2 protocol produced 
the most primary alignments with at least three splices. The last 
protocol was also the most sensitive for recovering such multi-
intron alignments from the simulated reads (recall = 79.3% for 
simulation 1; Supplementary Table 11). Among the protocols 
run without annotation, ReadsMap exhibited the best recall for 
alignments spanning three or more introns (72.1%), followed 
by the 2-pass version of STAR (70.7%) and GSTRUCT (65.8%). 
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Figure 5 | Spliced alignment performance.  
(a) Frequency and accuracy of splices in primary 
alignments. Splice frequency was defined as 
the number of reported splices divided by the 
number of sequenced reads. For simulated 
data (center and right), splice recall and false 
discovery rate (FDR) is presented. Insets show 
details of the dense upper-left areas (gray 
rectangles). (b) Number of annotated and 
novel junctions reported at different thresholds 
for the number of supporting mappings. In 
the rightmost plot, filled symbols depict 
the number of junctions with at least one 
supporting mapping, and lines demonstrate the 
result of thresholding. (c) Junction discovery 
accuracy for simulated data set 1 (top) and 2 
(bottom). Counts of true and false junctions 
were computed at increasing thresholds 
for the number of supporting mappings, 
and results were depicted as in b to obtain 
receiver operating characteristic–like curves. 
Gray horizontal lines indicate the number 
of junctions supported by true simulated 
alignments. (d) Accuracy for the subset of 
junctions contained in the Ensembl annotation. 
(e) Accuracy for junctions absent from the 
Ensembl annotation.
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However, ReadsMap also exhibited exceptionally low precision 
for such alignments (Supplementary Table 11).

influence of aligners on transcript reconstruction
To assess the impact of alignment methodology on exon discovery 
and transcript reconstruction, we applied the transcript assem-
bly program Cufflinks to the alignments. Exon detection results 
based on K562 data were similar for GEM, GSNAP, GSTRUCT, 
MapSplice, STAR and TopHat (Fig. 6a). With the K562 whole-
cell RNA primary alignments from these methods, up to 69% of 
the exons reported by Cufflinks matched Ensembl annotation, 
and up to 51% of all exons from annotated protein-coding genes 
were recovered. Performance was substantially lower with out-
put from the other alignment programs (Fig. 6a). Inclusion of  
secondary alignments negatively affected transcript recon-
struction for methods that reported numerous such alignments  
(GEM and PALMapper) but typically had a small effect for other 
methods (Supplementary Fig. 19).

The six aligners noted above also enabled highly accurate exon 
detection on the first simulated data set, with recall reaching 84% 
and precision 83% (Fig. 6a). On the second, more challenging 
simulated data set, the TopHat2 protocol using annotation out-
performed other methods, followed by GSNAP (with annotation) 
and GSTRUCT (with or without annotation) (Fig. 6a). The same 
protocols gave the best Cufflinks accuracy for the more complex 
task of reconstructing spliced transcripts (Fig. 6b).

It should be noted that the advantage of the annotation-based 
TopHat2 protocol was apparent only for reconstruction of exons 
and transcripts present in the annotation provided to aligners 
(Supplementary Table 12). This observation is consistent with 
the unique approach of TopHat2 involving read alignment to full-
length annotated transcript sequences. It may seem paradoxical 
that several methods exhibiting relatively poor precision for junc-
tion alignments (Fig. 5c–e) produced high-quality input for tran-
script reconstruction. However, the Cufflinks algorithm is able to 
discard erroneous exon junctions in the input data at a high rate. 

For example, on the data from the first simulation, 71% of true 
junctions identified by the annotation-based TopHat2 protocol 
were incorporated into transcripts by Cufflinks, compared to 5% 
of false junctions (Supplementary Table 13).

disCussion
In general, GSNAP, GSTRUCT, MapSplice and STAR compared 
favorably to the other methods, consistent with an earlier evalua-
tion that included a subset of these tools18. Our assessment shows 
MapSplice to be a conservative aligner with respect to mismatch 
frequency, indel and exon junction calls. Conversely, the most sig-
nificant issue with GSNAP, GSTRUCT and STAR is the presence of 
many false exon junctions in the output. This can be ameliorated 
by filtering junctions on the number of supporting alignments.  
It should be noted that both GSNAP and GSTRUCT require 
considerable computing time when parameterized for sensi-
tive spliced alignment7, and the GSTRUCT pipeline has not yet 
been released. A recent runtime comparison found GSNAP and 
MapSplice to perform similarly, whereas TopHat2 and STAR were 
about 3 and 180 times faster, respectively9.

RNA-seq aligners use gene annotation to achieve better place-
ment of spliced reads, and the resulting improvement was appar-
ent on several metrics, particularly for GSNAP and the 1-pass 
version of STAR. Notably, these programs align each read inde-
pendently, and the effect of using annotation was generally less 
pronounced for tools that carry out splice-junction discovery 
before final alignment, such as GEM, MapSplice, GSTRUCT 
and STAR 2-pass. TopHat also belongs to this class of programs, 
but provision of annotation still had a major effect on TopHat2 
results, most likely because of the unique strategy whereby reads 
are aligned directly against annotated transcripts. This approach 
is clearly effective in several respects but may be suitable only for 
genomes with near-complete annotation.

Remaining challenges include exploiting gene annotation with-
out introducing bias, correctly placing multimapped reads, achiev-
ing optimal yet fast alignment around gaps and mismatches, and 
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Figure 6 | Aligner influence on transcript assembly. (a,b) Cufflinks performance was assessed by measuring precision and recall for individual exons 
(a) and spliced transcripts (b). For K562 data, precision was defined as the fraction of predicted exons matching Ensembl annotation, and recall as the 
fraction of annotated protein-coding gene exons that were predicted.
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reducing the number of false exon junctions reported. Ongoing 
developments in sequencing technology will demand efficient 
processing of longer reads with higher error rates and will require 
more extensive spliced alignment as reads span multiple exon 
junctions. We expect performance of the aligners evaluated 
here to improve as current shortfalls are addressed. Differential  
treatment of these issues will enhance and expand the range of 
RNA-seq aligners suited to varied computational methodologies 
and analysis aims.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
RNA-seq data. The human K562 data used here correspond 
to the K562 poly(A)+ RNA samples produced at Cold Spring 
Harbor Laboratory for the ENCODE project19 and can be 
accessed at http://www.encodeproject.org/. RNA-seq libraries 
were sequenced using a strand-specific protocol and comprise 
two biological replicates each of whole-cell, cytoplasmic and 
nuclear RNA. The mouse RNA-seq data set was produced at the 
Wellcome Trust Sanger Institute as part of the Mouse Genomes 
Project using brain tissue from adult mice of strain C57BL/6NJ. 
The library was constructed using the standard Illumina pro-
tocol that does not retain strand information. These data have 
been previously described20 and are available from the European 
Nucleotide Archive (http://www.ebi.ac.uk/ena/) under accessions 
ERR033015 and ERR033016. All of the data used in this study 
have been consolidated as a single experimental record in the 
ArrayExpress repository (http://www.ebi.ac.uk/arrayexpress/) 
under accession E-MTAB-1728.

Simulated RNA-seq data were generated using the BEERS 
toolkit (http://cbil.upenn.edu/BEERS/), and additional mode-
ling of base-call errors and quality scores was done with simNGS 
(http://www.ebi.ac.uk/goldman-srv/simNGS/). BEERS has been 
previously described18. Briefly, the simulator takes as input 
a database of transcript models and a quantification file that 
specifies expression levels for each transcript and intron in the 
database. A transcriptome is simulated by sampling a specified 
number of transcript models from the database at random and 
creating additional alternative splice forms from each model. 
Polymorphisms (indels and substitutions) are introduced into the 
exons according to independent rates. Reads are then produced 
from the transcriptome in an iterative manner. In each iteration,  
a transcript is chosen with probability proportional to its expres-
sion level in the quantification file. An intron may be left in, with 
probability based on the intronic expression levels in the quanti-
fication file. A fragment of normally distributed length is sampled 
from the transcript, and the L bases from each end of this frag-
ment are reported, where L is the read length.

Here, the simulator was executed using the transcript database 
and quantification file previously described18. This database 
comprises 538,991 transcript models merged from 11 annota-
tion tracks available from the UCSC Genome Browser (AceView, 
Ensembl, Geneid, Genscan, NSCAN, Other RefSeq, RefSeq, SGP, 
Transcriptome, UCSC and Vega), and expression levels were 
derived from a human retina RNA-seq data set. In each of the two 
simulations, 25,000 transcripts were randomly chosen from the 
database, and two additional alternative isoforms were generated 
for each sampled transcript. The proportion of signal originating 
from novel isoforms was 20% and 35% for simulation 1 and 2, 
respectively. Substitution variants were introduced into exons at 
rates of 0.001 (simulation 1) and 0.005 (simulation 2) events per 
base pair, and indel polymorphisms at rates of 0.0005 (simula-
tion 1) and 0.0025 (simulation 2). The simulated transcriptomes 
included 136,226 (simulation 1) and 134,717 (simulation 2) 
unique splice junctions, of which 90% and 92%, respectively, were 
represented in the simulated reads (Supplementary Table 9).

The option to simulate sequencing errors was disabled. Instead, 
the program simNGS was used to add noise to the simulated 
reads. simNGS recreates observations from Illumina sequenc-
ing machines using the statistical models underlying the AYB  

base-calling software21. Here, base-call errors and quality scores 
were simulated by applying simNGS version 1.5 with a paired-
end simulation model. The model was trained on intensity data 
released by Illumina from a sequencing run on the HiSeq 2000 
instrument using TruSeq chemistry. The resulting quality-score 
distributions are shown in Supplementary Figure 8, and the 
correct alignments of simulated data have been deposited in 
ArrayExpress under accession E-MTAB-1728.

Alignment protocols making use of gene annotation were pro-
vided with annotation from Ensembl only (Supplementary Note), 
whereas the simulated transcriptomes were based on Ensembl as 
well as several additional gene catalogs. In addition, novel tran-
script isoforms and retained introns were simulated, as detailed 
above. This reflects a realistic scenario where knowledge of the 
transcriptome is incomplete even for well-studied organisms, and 
a proportion of transcripts captured by RNA-seq correspond to 
pre-spliced mRNAs.

Read alignment. Developer teams were provided with RNA-seq 
data, human and mouse reference genome sequences, and tran-
script annotations from the Ensembl database. So that we avoided 
potential biases, teams were not informed of the final evaluation 
criteria and were not given the true results for simulated data. 
Developers providing alignments for evaluation could not access 
submissions from other teams and were prohibited from partici-
pating in the analysis phase as part of the study design. Details of 
alignment protocols are provided in the Supplementary Note.

Evaluation of alignments. Developer teams provided alignments 
in BAM format. These files were processed to ensure compliance 
with the SAM specification22 and eliminate formatting discrepan-
cies that otherwise could have affected the evaluation. Mismatch 
information (NM and MD tags) was stripped from the files and 
recomputed using the SAMtools command “calmd” to ensure that 
mismatches were counted in the same manner for all protocols22. 
The resulting alignment files have been deposited in ArrayExpress 
under accession E-MTAB-1728.

With inspiration from earlier benchmarking studies9,18,23, we 
devised several performance metrics to assess attributes ranging 
from fundamental (for example, proportion of mapped reads and 
base-level alignment characteristics) to advanced, including splice 
junction detection, read placement around indels and suitability 
of alignments for transcript reconstruction. A detailed descrip-
tion of evaluation metrics is provided in the Supplementary 
Note, and key results are summarized in Supplementary Table 2.  
Unless otherwise noted, evaluation metrics for alignments of 
K562 RNA-seq data were averaged over the six K562 data sets 
(Supplementary Table 1). A subset of K562 samples were not 
processed by PALMapper and ReadsMap (Supplementary 
Table 3). Comparisons with gene annotation were performed 
using the Ensembl annotation that was provided to aligners 
(Supplementary Note).

Treatment of alignment gaps. In the BAM format, alignment 
gaps in read sequences can be described as either deletions or 
introns. Small gaps are typically labeled deletions and longer gaps 
considered introns, but the exact criteria differ among aligners. 
To prevent the introduction of bias from such differences, we 
reclassified deletions and introns where appropriate. Specifically, 
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for the indel results presented in Figure 4 and Supplementary 
Figure 5 and the evaluation of splice accuracy on simulated data, 
an alignment gap in the read sequence was considered a dele-
tion if shorter than 19 bp and otherwise counted as an intron. 
We aimed to select a threshold that would minimize relabeling 
of gaps in the read sequence, and we observed that only three 
methods (BAGET, GSNAP and GSTRUCT) reported a substantial 
frequency of deletions longer than 18 bp from any data set. Up to 
2.0% of the deletions in the output from GSNAP and GSTRUCT 
exceeded 18 bp, compared to 0.16% for BAGET and <0.001% for 
all other methods. The adjustment noticeably affected the results 
for GSNAP and GSTRUCT only.

For alignments of simulated RNA-seq data, accuracy metrics 
were computed by comparison with the alignments produced by 
the simulator. For computation of basewise and indel accuracy, 
ambiguity in indel placement was accounted for18. For example, 
in an alignment of the sequences ATTTA and ATTA, there are 
three equivalent gap placements in the latter sequence (A-TTA, 
AT-TA and ATT-A), all of which were considered correct. A gen-
eral strategy was implemented to handle positional ambiguity for 
indels of any size.

Transcript reconstruction. Transcript assembly was conducted 
with Cufflinks version 2.0.2. The option library-type was set to 
fr-firststrand for the K562 data, which are strand specific, and 
to fr-unstranded for the simulated data, which are not. Default 
values were used for other parameters.

Cufflinks requires spliced alignments to have a SAM format 
tag (XS) indicating the genomic strand (plus or minus) on which 
the transcript represented by the read is likely to be encoded. 
Alignment programs such as TopHat can set the XS tag by using 
information about the library construction protocol (for strand-
specific libraries) or by inspecting sequence at exon-intron 
boundaries. Five of the methods evaluated here (BAGET, GEM, 
ReadsMap, SMALT and STAR) did not provide XS tags; we there-
fore post-processed the alignment output from these methods 
to add them. For the strand-specific K562 data, XS tags were set 
on the basis of alignment orientation and read number (first or 
second in pair), as done by TopHat. For alignments of simulated 
reads, we set XS tags according to the initial and terminal dinu-
cleotides of the inferred introns, which are expected to be GT/AG, 
GC/AG or AT/AC for plus-strand transcripts and CT/AC, CT/GC 
or GT/AT for minus-strand transcripts24. For the XS tag to be 
added to an alignment, at least one exon junction was required 
to have these signals, and conflicting signals among junctions 
were not allowed.

We noted that the annotation-based TopHat2 protocol uses the 
annotation provided to set the XS tag for unspliced alignments  

that overlap annotated exons. As this is a unique feature of 
TopHat2 that might confer an advantage in the evaluation of tran-
script reconstruction, we investigated the effect of removing the 
XS tag from unspliced alignments in the TopHat2 output before 
running Cufflinks. This modification had a negligible effect on 
the Cufflinks accuracy metrics presented here (data not shown), 
demonstrating that provision of XS tags for unspliced alignments 
cannot explain why the annotation-based TopHat2 protocol 
resulted in better Cufflinks performance than other protocols.

For K562 data, exon precision was defined as the fraction of 
predicted exons matching GENCODE annotation, and exon recall 
as the fraction of annotated exons that were predicted. Only exons 
from protein-coding genes were considered when computing 
recall, as some noncoding RNA classes are likely to be under-
represented in the RNA-seq libraries. Results on simulated data 
were benchmarked against simulated gene models, using analo-
gous definitions of precision and recall, such that exon precision 
measures the proportion of predicted exons matching an exon in 
the simulated transcriptome, and transcript precision is the frac-
tion of predicted spliced transcripts matching a simulated spliced 
transcript. To stratify recall by expression, we divided simulated 
transcripts into three groups of equal size according to expression 
level (Fig. 6b). Internal exons were required to be recovered with 
exact boundaries, first and terminal exons were required to have 
correctly predicted internal borders only, and exons constituting 
unspliced transcripts were scored as correct if covered to at least 
60% by a predicted unspliced transcript. For the simulated data, 
only exons of spliced transcripts were required to be placed on the 
correct strand, as the orientation of single-exon transcripts cannot 
be reliably predicted unless RNA-seq libraries are strand specific. 
Spliced transcripts were considered to be correctly assembled if 
the strand and all exon junctions matched.

Program availability. Source code for the evaluations  
performed in this study can be obtained from https://github.com/
RGASP-consortium/.
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