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We screened all intergenic regions in the human genome to identify pseudogenes with a combination of homology
searches and a functionality test using the ratio of silent to replacement nucleotide substitutions (KA/KS). We
identified 19,724 regions of which 95% ± 3% are estimated to evolve neutrally and thus are likely to encode
pseudogenes. Half of these have no detectable truncation in their pseudocoding regions and therefore are not
identifiable by methods that require the presence of truncations to prove nonfunctionality. A comparative analysis
with the mouse genome showed that 70% of these pseudogenes have a retrotranspositional origin (processed), and
the rest arose by segmental duplication (nonprocessed). Although the spread of both types of pseudogenes correlates
with chromosome size, nonprocessed pseudogenes appear to be enriched in regions with high gene density. It is
likely that the human pseudogenes identified here represent only a small fraction of the total, which probably
exceeds the number of genes.

[Supplemental information as well as the sequences identified in this work can be found at http://www.
bork.embl-heidelberg.de/Docu/Human_Pseudogenes/.]

Pseudogenes are complete or partial copies of genes unable to
code for functional polypeptides (for review, see Vanin 1985;
Mighell et al. 2000). According to the theory of neutral evolution
(Kimura 1968), pseudogenes are unconstrained by selection.
Therefore, over time they randomly accumulate mutations (in-
sertions, deletions, and substitutions) that often cause disrup-
tions of the original reading frame. Two types of pseudogenes are
generally formed by independent mechanisms that are believed
to have different implications in gene evolution. “Nonprocessed”
pseudogenes arise usually after partial or complete segmental du-
plication of genes and subsequent loss of function by mutations.
Only a tiny fraction of the duplicated genes will remain func-
tional, yet they are believed to be the major source for the for-
mation of new gene functions or expression profiles (Prince and
Pickett 2002). A small fraction of nonprocessed pseudogenes can
also be due to niche losses or can correspond to null allelic vari-
ants (Menashe et al. 2003). “Processed” pseudogenes are formed
through retrotransposition of mature RNAs. They integrate ran-
domly into the genome and therefore lack upstream promoters.
Because of early termination of the reverse transcription, many
of the processed pseudogenes contain either no or only partial
coding regions (Pavlicek et al. 2002). Nevertheless, a few cases of
expressed intronless genes with a likely retrotranspositional ori-
gin (retrogenes) have been described in several organisms (Bro-
sius 1999). The identification of both types of pseudogenes is of
great importance as it provides the opportunity to determine the
rate and age of gene duplication events. Furthermore, the neutral
character of all pseudogenic regions makes them suitable to de-
termine different forms and rates of neutral sequence evolution
among different regions in the genome and even among differ-
ent organisms. The identification of pseudogenes has also be-
come a necessary component of the primary genome annotation
in Metazoans, mainly because of their significant (up to 20%)
misincorporation into gene collections (International Human
Genome Sequencing Consortium 2001; Mounsey et al. 2002;
Mouse Genome Sequencing Consortium 2002). Although pseu-
dogene analysis was included in some animal sequencing

projects (e.g., mouse and mosquito), the total number of human
pseudogenes and the genomic location for most of them are still
uncertain. Several groups have proposed estimates of the pseu-
dogene content in the human genome from the extrapolation of
analyses of restricted parts of the genome (Goncalves et al. 2000;
Harrison et al. 2002). Although the present annotation of human
Chromosomes 21 and 22 indicates the presence of 59 (Hattori
et al. 2000) and 234 (Collins et al. 2003) pseudogenes, respec-
tively, a detailed analysis of these chromosomes showed the pres-
ence of at least 149 (52% processed) and 244 (46% processed)
pseudogenes using stop codons and frameshifts as indicators of
nonfunctionality (Harrison et al. 2002). This was extrapolated to
a predicted total of ∼20,000 human pseudogenes. In a different
approach, the number of processed pseudogenes identified in a
limited number of human genomic fragments under the same
“presence of truncation” criteria led to an estimate of 23,000–
33,000 processed pseudogenes in humans (Goncalves et al.
2000). Because these numbers were based on the assumption of
75,000–100,000 genes in humans, a lower estimate of 9000–
11,000 total processed pseudogenes would result when consider-
ing only 30,000–35,000 human genes (International Human Ge-
nome Sequencing Consortium 2001). Both approaches have con-
fined the identification of pseudogenes to intergenic regions that
contain either stop codons or frameshifts in their potential cod-
ing regions, predicted by homology to known protein sequences.
Because these truncations are likely to appear as a result of the
random degeneration of the sequence, we believe that this crite-
rion is only applicable to a fraction of all detectable pseudogenes
and cannot evaluate those with apparently intact coding regions,
for example, with replacements of functionally essential amino
acids, or disrupted or missing promoters. Note that even the de-
tection of truncations in this type of analysis does not always
imply the absence of function, as these can be artificially created
as a result of misplacing intron–exon boundaries, or they are
naturally spliced out from the mature RNA.

To be independent of the presence of stop codons or frame-
shifts, we developed a methodology for pseudogene detection
that is based on their neutral rate of evolution. We applied parts
of this methodology to the Drosophila, Anopheles (Zdobnov et al.
2002), and mouse (Mouse Genome Sequencing Consortium
2002) genomes and to human Chromosome 7 (Hillier et al. 2003)
and found a significant fraction of pseudogenes (30%–40%) with
no truncations in their coding regions. Our approach takes into
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account the ratio of silent (synonymous, KS) to amino acid re-
placement (nonsynonymous, KA) substitutions, which indicates
selective constraints on candidate regions (Li et al. 1981). KA/KS

ratios of pseudogenes and those of the vast majority of genes are
generally different, as mutations in genes causing amino acid
replacements with functional consequences are selected against,
in contrast to mutations occurring in pseudogenes.

Here we present the details and recent implementations of
our methodology, and the results of its application to the human
genome. This survey also includes a new and reliable protocol for
the distinction between processed and nonprocessed pseudo-
genes that does not depend on the accuracy of the predicted
coding region (e.g., detection of introns).

RESULTS

Homology Searches
We identified candidate pseudogenic regions using a combina-
tion of homology searches and filters to increase the signal and to
minimize artifacts (Fig. 1). From 1.6 million genomic regions
between predicted genes or common human repeats, we detected
31,359 candidate regions with significant sequence similarity to
known proteins (SpTrEMBL database) using BLASTX (E-value cut-
off = 0.01; Altschul et al. 1997). Of these, we excluded 3868 re-
gions that are likely to have emerged from viral or transposon-
related proteins. The two following steps aimed at the prediction
and discrimination of overlooked genes and pseudogenes that
can be assembled from the local regions with similarity to known
proteins. For this purpose, we identified the boundaries for all
detectable candidate elements by a two-step procedure: First, we
merged neighboring regions that match the same or a similar
reference protein, and then we evaluated the frequency and the
protein regions that can be aligned to each DNA region to delimit
independent (pseudo)genes. This procedure not only reduces
overpredictions due to possible fragmentation of (pseudo)genes,
but also dramatically improves the identification of tandem gene
duplications, even in gene-rich regions. These two steps gener-
ated 42,272 independent genomic regions that mainly contain
pseudogenes and overlooked genes, but also known or predicted
genes (10,344). The latter fraction was inevitably retrieved in
parallel with tandemly duplicated pseudogenes or fused to over-
looked exons detected in the first BLASTX round. After removing
the regions overlapping with ENSEMBL genes, we extracted the
(pseudo)coding sequence of the remaining regions by comparing
them with its most similar protein sequence using GENEWISE
(Birney and Durbin 1997). Additional quality checks were based
on the GENEWISE scores (those lower than 35 were rejected) and
the required consistency of the resulting global alignment with
local BLAST similarity (E-value cutoff = 0.001). The result was a
total set of 19,724 intergenic (pseudo)genes distributed on all
chromosomes.

As all predicted and known genes were excluded from our
analysis, one would expect that most of the regions that we de-
tected are (parts of) pseudogenes. Nevertheless, at this stage we
cannot discount the possibility that a considerable fraction of
overlooked (parts of) genes was also included, because as many as
9927 (50%) of our predictions contain no truncation compared
with their best-matching protein. To test the functionality of all
predicted (pseudo)genes, we analyzed the associated level of se-
lective constraints indicated by their KA/KS ratio.

Obtaining KA/KS Benchmark Collections
There are different factors that can compromise the accuracy of
the KA/KS calculation on any (but particularly a large scale) se-
quence analysis: (1) the number and the selection of the refer-

ence sequences; (2) the quality of their alignment with the test
sequence; (3) the genomic context of the sequence of interest
(Bustamante et al. 2002); (4) the actual protocol for the KA/KS

calculation; and (5) the arguable but inevitable assumption that
synonymous substitutions are always neutral, whereas nonsyn-
onymous substitutions are always deleterious. Consequently one
can expect a certain degree of deviation of the KA/KS ratios cal-
culated on real data from the theoretically expected values (1 for
pseudogenes and �1 for most genes). For this reason, we con-
structed benchmark sets of true genes and pseudogenes to obtain
their representative KA/KS values.

For the benchmark set of true functional genes, we took the
3065 nonredundant (<50% amino acid identity) human cDNAs
from the reviewed section of the RefSeq database (Pruitt and
Maglott 2001). Because there is no available human pseudogene
collection with comparable size and annotation accuracy, we ex-
tracted from our identified candidate regions a subfraction with
clear signs of nonfunctionality, that is, retrotransposed (pro-
cessed) pseudogenes with obvious truncations. The selection of
these sequences is not straightforward, as some of our identified
regions might correspond to single exons.

In previous analyses, processed pseudogenes have been
identified because of the absence of introns, the presence of
downstream poly(A) tracks or flanking inverted repeats (Gon-
calves et al. 2000; Harrison et al. 2001), by measuring their un-
interrupted coverage of the known matching protein (normally
>70%; Venter et al. 2001; Mouse Genome Sequencing Consor-
tium 2002; Zdobnov et al. 2002; Zhang et al. 2002), or by the
presence in the same genome of an intron-containing region
with significant sequence similarity (Goncalves et al. 2000;
Mouse Genome Sequencing Consortium 2002; Zdobnov et al.
2002). Although these criteria can provide reasonable approxi-
mations, they are often inapplicable or inconclusive because of
the respective requirement of (1) a reliable prediction of the
(pseudo)coding sequence; (2) the conservation of the poly(A)
track; (3) the identification of the intron-containing region in
the living paralog; and (4) the annotation of the complete match-
ing protein.

In the context of the annotation of human Chromosome 7
(Hillier et al. 2003), we distinguished retrotransposed from seg-
mentally duplicated regions using an approach that is not con-
strained by the points described above. Here we develop this
approach further. The identification of retrotransposed regions is
based on the comparative analysis with the corresponding or-
thologous region in the mouse genome. The vast majority of the
pseudogenes identified here qualify for this orthology test, as
they were formed after the human–mouse split, that is, they align
better to a different region in human than anywhere in the
mouse genome. The orthology criterion relies on the fact that
retrotransposed mRNAs are expected to integrate randomly into
the genome and are unlikely to be located next to the living
paralogous gene. This is in contrast to the regions with segmen-
tally duplicated genes that are likely either to remain in the prox-
imity of the paralogous gene (tandem duplications), or are not
represented in the orthology maps (interspersed duplications).
By comparing the translations of 15,032 of our candidates lo-
cated within regions with defined mouse orthology with
TBLASTN (E-value cutoff = 10�8), we found no significant se-
quence similarity for 10,511 (70%) of these regions and therefore
considered them as processed. In agreement with these results,
9316 (89%) of these processed regions appear as intronless ac-
cording to the predictions provided by GENEWISE. We then
manually examined the remaining fraction (11%). The vast ma-
jority of these pseudogenes only contain a single putative intron
that cannot be found in the respective parental genes. The re-
spective intron often correlates with transposons or other DNA
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Figure 1 General overview of the strategy for pseudogene search and evaluation. Our analysis can be divided into three different parts: homology
search, analysis of orthology for the selection of KA/KS benchmark sets, and the functionality test based on KA/KS. Green, red, and blue boxes denote the
intermediate steps, the excluded sequences, and the final results for each of the sections, respectively. See text for details.
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that apparently inserted after retrotransposition and GENEWISE
annotates as intron to maximize the similarity to the reference
sequence. Further studies will be needed to try to quantify the
insertion of DNA in time.

As there should be no biases in the regions without defined
mouse orthology and as we, indeed, found no significant differ-
ences as to the length, the number of truncations, and the pres-
ence and number of introns between our candidate pseudogenes
in or out of orthologous blocks, we assume that the same fraction
of retrotransposition events accounts for all 19,724 regions.

From all the candidates predicted to represent processed
pseudogenes, we further selected a subgroup with at least one
truncation in their coding region to define the “pseudogene
benchmark set” comprising 4844 true pseudogenes that will
be used to calibrate the KA/KS values associated with neutrally
evolving regions. Although we cannot exclude the possibil-
ity that a small fraction of nonprocessed pseudogenes might pre-
sent exceptionally low KA/KS values, the vast majority of the
pseudogenes should be represented adequately by this bench-
mark set.

Figure 2 KA/KS distributions of benchmark and candidate sets. The KA/KS distributions (as log KA/KS) associated with the functional (green) and
pseudogenic (red) benchmark sets (A) as well as the test sequence set (B) are shown. An average of 40% of the sequences analyzed in this study satisfied
our requirements for the KA/KS calculation. The subsets of sequences with KA/KS values (1659 for the functional, 1703 for the pseudogenic benchmark
sets, and 3291 for the test set) are expected to be representative for each of the corresponding complete sets, as what determines whether a KA/KS value
can be calculated for a sequence (availability of homologous sequences and restrictions on the KA/KS calculation; see Methods) is likely to equally affect
genes and pseudogenes. By using the least-squares fitting against the benchmark distributions, we evaluated the fraction of pseudogenic (red) and
functional (green) sequences for each of the bins of the test distribution and combined them to determine that up to 95% of the sequences analyzed
correspond to pseudogenes.
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Detecting Nonfunctionality From KA/KS Distributions
After identifying these pseudogenes, the functionality of the re-
maining 14,880 regions (the “final test set”) remained to be
evaluated. We therefore applied a procedure similar to the one
we used for the identification of pseudogenes in the mouse
(Mouse Genome Sequencing Consortium 2002), Anopheles, and
Drosophila (Zdobnov et al. 2002) genomes, as well as in human
Chromosome 7 (Hillier et al. 2003). It consists of evaluating the
level of neutral evolution associated with a particular sequence
set by finding the best fitting of its KA/KS distribution to the
corresponding functional and pseudogenic benchmark KA/KS dis-
tributions. The calculation of the KA/KS ratio for a particular
sequence always requires its comparison to a homologous ref-
erence sequence. Thus, we compared each of our candidate
regions with their ancestral sequence, which was previously in-
ferred using two additional homologous functional sequences
(see Methods for details). It is important to note that like other
approximations that also permit comparisons of more than
two sequences (e.g., codeml; Yang 1997) and in contrast to
direct pairwise comparison approaches, our procedure allows
the calculation of lineage-specific KA/KS ratios. We believe this
is essential particularly when identifying and assigning nucleo-
tide substitutions from the comparison of regions with differ-
ent patterns of evolution (e.g., pseudogenes and functional
genes).

Initially we calculated the KA/KS ratios associated with the
functional and pseudogenic benchmark sets. As expected, the
distributions obtained are distinct and characteristic because
most of the KA/KS values associated with the genes and pseudo-
genes are indicative of higher and lower (absent for the majority)
selective constraints, respectively (Fig. 2A). We further demon-
strate by cross-validation that these two distributions permit a
reliable protocol to estimate the fraction of pseudogenes in-
cluded in any given set of sequences with an associated error
no larger than 3% (see Methods). Thus, after evaluating KA/KS

values for our test set, the comparison of the resulting distribu-
tion (Fig. 2B) with both benchmark distributions using the least-
squares fitting procedure showed an enrichment of 94% � 3%
in neutrally evolving sequences, for example, pseudogenes. By
adding the pseudogenes initially defined as the pseudogene
benchmark set, we estimate that virtually all (95% � 3%) of the
intergenic regions identified in this study are indeed pseudo-
genes.

A classification of the pseudogenes using InterPro domains
(Mulder et al. 2003) did not reveal any particular overrepresented
functional class (see Table 1 for the top 10 classes), but the most
frequent pseudogenes come from multigene families with large

copy numbers. Exceptions, such as GAPDH in rodents, where we
identified ∼400 copies (Mouse Genome Sequencing Consortium
2002), are not observed in humans. The most frequent group is
formed of pseudogenes derived from ribosomal protein genes, for
which we see 1300 copies. This is less than the 2000 pseudogenes
reported in a recent study (Zhang et al. 2002), but as part of a
wider analysis we detected a few more than 600 ribosomal pseu-
dogenes included in the ENSEMBL gene collection (data not
shown).

Distribution of Pseudogenes in the Human Genome
The estimated high specificity of the method allows their further
genome-wide analysis. We also assume that the discrimination
between processed and nonprocessed pseudogenes is not af-
fected, as it not only relies on KA/KS analysis, but also on the
orthology context. Thus, we are able to study the distributions of
both pseudogene types within and across chromosomes (Fig. 3).
The average density of pseudogenes detected is 6.5 per megabase
for the whole genome, which is comparable with the density of
genes (9/Mb). There is little deviation among chromosomes, ex-
cept for Chromosome 19 and the Y-chromosome, where we de-
tected nearly twice as many pseudogenes per megabase: 12 and
11, respectively. Note that whereas Chromosome 19 has the
highest gene-to-pseudogene ratio, the Y-chromosome presents
the lowest.

Processed pseudogenes have a similar distribution pattern
among chromosomes as has been previously described for a sub-
set derived from ribosomal genes (Zhang et al. 2002). We de-
tected a strong correlation between the number of processed
pseudogenes and the size of the chromosomes (r = 0.97), with an
overall density of 4/Mb. Although processed pseudogenes cover
the entire euchromatin, there are regions where they accumu-
late above the average density (see supplemental material avail-
able online at http://www.bork.embl-heidelberg.de/Docu/
Human_Pseudogenes/). Some of these regions are often lo-
cated close to the telomeres. As expected, the position of pro-
cessed pseudogenes does not correlate with gene-rich regions
(r = 0.36).

The number of nonprocessed pseudogenes also correlates
with the size of the chromosomes (r = 0.78) at a similar level
as genes (annotated in ENSEMBL) do (r = 0.67). Despite an un-
expected weak overall correlation between these pseudogenes
and genes (r = 0.34 in a 2-Mb window), they often cluster in
gene-rich regions. This can be illustrated by the annotated T-cell
receptor (TCR) � locus on Chromosome 7. In the 0.7-Mb TCR �

region, we detected 11 of the 19 annotated nonprocessed pseu-
dogenes that are located in between the 74 genes (accession no.
NG_001333). Compared with the average density of 1.7 non-
processed pseudogenes per megabase, this is a 10-fold enrich-
ment.

In agreement with the distribution of pseudogenes derived
from ribosomal protein genes (Zhang et al. 2002), and in contrast
to functional genes (International Human Genome Sequencing
Consortium 2001), we found no significant correlation of the CG
content (measured using 100- and 2000-kb windows) and the
number of processed or nonprocessed pseudogenes (data not
shown).

DISCUSSION
We identified ∼20,000 pseudogenes in the human genome. The
strategy used in this study ensures that each pseudogenic region
represents a single event of gene or exon duplication and that
regions matching to the same protein are fused. Therefore, the

Table 1. Domain-Based InterPro Analysis of
Human Pseudogenes

InterPro Name Occurrences

IPR000276 Rhodopsin-like GPCR superfamily 434
IPR001428 UTPases 388
IPR003006 Immunoglobulin/major

histocompatibility complex
252

IPR000504 RNA-binding region RNP-1 171
IPR001909 KRAB box 153
IPR003593 ATPase 104
IPR000719 Eukaryotic protein kinase 104
IPR001664 Intermediate filament protein 101
IPR001147 Ribosomal protein L21e 96
IPR000910 HMG1/2 (high mobility group) box 78
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number of regions should correspond to the number of (pseudo)-
genes in between annotated genes. Nearly all of the regions ap-
pear as neutrally evolving and therefore nonfunctional according

to their associated KA/KS values. Only
∼1000 regions are estimated to evolve un-
der selective pressure and might corre-
spond to (parts of) functional genes
missed in the first-pass genome annota-
tion, or even to nonprocessed pseudo-
genes that were subjected to prolonged
purifying selection before their pseudo-
genization. Yet we cannot exclude that a
few cases of overlooked genes that are fast
evolving are classified here as neutrally
evolving pseudogenes.

Although nearly all human pseudo-
genes identified here match a mouse ge-
nomic region, the vast majority of them
(92%) align better to another human gene
(likely the functional paralog), indicating
that they formed after the split of human
and mouse. The remaining 8% could be
due to pseudogenes that arose before the
human–mouse split, overlooked genes,
null alleles (Menashe et al. 2003), or to
niche losses. This observation implies that
the genome orthology between mouse
and human can be used to obtain the first
reliable genome-wide discrimination be-
tween detectable processed and nonproc-
essed pseudogenes. This, in turn, is an es-
sential prerequisite to evaluate the impact
of pseudogenes on gene and protein evo-
lution. Of the pseudogenes identified
here, 72% arose through retrotransposi-
tion, whereas 28% were formed by seg-
mental duplication. This last fraction ap-
pears slightly higher than estimated in a
previous analysis of human Chromosome
7 (18% nonprocessed pseudogenes; Hillier
et al. 2003). This difference is probably
due to the higher sensitivity of our study
in regions with clustered genes and pseu-
dogenes, as we implemented a special pro-
cedure for the identification of duplicated
regions (see Methods). Although the num-
ber of both types of pseudogenes corre-
lates with the size of the chromosomes,
their intrachromosomal distribution dif-
fers. Processed pseudogenes are more
abundant in regions adjacent to telo-
meres, and their distribution does not cor-
relate with the distribution of genes
within chromosomes. This is in disagree-
ment with the idea that regions with re-
laxed chromatin, that is, with higher tran-
scriptional activity, are more exposed to
the integration of retrotransposed ele-
ments (Cost and Boeke 1998). Although
there are regions with a higher density of
processed pseudogenes, this cannot be
necessarily coupled to the presence of
genes. The latter effect is much more ap-
parent for nonprocessed pseudogenes that
are enriched in many (but not all) gene-

dense regions. The distinction between the two types of pseudo-
genes enables both the evaluation of the rate and age of gene
duplication events, and the study of the processes leading to the

Figure 3 Distribution of genes and the different types of pseudogenes for each of the human
chromosomes. We have displayed for each human chromosome the number of pseudogenes
(separated in different types; see chart legend for details) and genes per megabase. Chromosomes
have been ordered according to the density of pseudogenes (highest on top).
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formation of new gene functions or expression pro-
files.

Although the discovery of almost 20,000 human pseudo-
genes represents the largest collection so far in any genome, the
real number of human pseudogenes must be considerably
higher. Our approach identifies neither pseudogenes derived
from the duplication of non-protein-coding genes nor copies of
partially retrotransposed mRNAs that include only the 3�-UTR
and no (or little) coding region. The latter seem abundant in the
genome (Pavlicek et al. 2002), and their detection is essential for
a complete study of the retrotransposition of mRNAs. Because we
initially masked all known and predicted genes provided by the
ENSEMBL annotation pipeline, we excluded pseudogenes misan-
notated as genes from our analysis. The current annotation of
genomes can include up to 20% processed and nonprocessed
pseudogenes in their gene collections (International Human Ge-
nome Sequencing Consortium 2001; Mounsey et al. 2002; Mouse
Genome Sequencing Consortium 2002; D. Torrents, M. Suyama,
and P. Bork, unpubl.), which implies that we could have missed
up to 5000 of these regions just by this effect. Masking genes also
excludes pseudogenes located within introns. As ∼10% of the
processed pseudogenes identified in human Chromosome 7 are
located within introns of unrelated genes (Hillier et al. 2003), we
might have missed as many as 2000 intronic pseudogenes. A
small fraction of pseudogenes will be missed by masking identi-
fied human repeats (3% of the annotated pseudogenes in human
Chromosome 22 are located in repetitive regions). Last but not
least, homology detection has its limits, and we don’t see or
include (see filtering in Results and Methods) pseudogenes that
diverged beyond the limits of reliable alignment and statistical
significance for sequence similarity. Obviously, we detect only
the tip of the iceberg with our present methods, and it is reason-
able to speculate that a considerable fraction of the human ge-
nome has evolved from pseudogenes.

Taken together, it is very likely that the number of detect-
able human pseudogenes will exceed 30,000 and thus most likely
also the number of genes in the human genome.

METHODS

Homology Searches
We obtained the human genome DNA sequence (build30) from
NCBI (ftp://ftp.ncbi.nih.gov/genomes/) already masked for com-
mon human repeats and excluded all regions covered by the
known and predicted genes found in the ENSEMBL database
(Hubbard et al. 2002). The initial
homology searches comprised the
comparison of all nonmasked frag-
ments (>100 nt) with a nonredun-
dant protein database comprising
EMBL CDS translations + PDB +
SWISS-PROT + PIR annotations
(NRDB) using BLASTX (Altschul
et al. 1997) with an initial E-value
cutoff of 0.01. We excluded all re-
gions similar to transposon or viral
proteins by analyzing the descrip-
tion lines for all the hits provided
by the database and discarding
those with manually selected char-
acteristic words such as “gag,”
“pol,” reverse transcriptase, trans-
posase, viral protein, and others; as
well as regions with InterPro do-
mains (Mulder et al. 2003) distinc-
tive of transposon or retroviral pro-
teins (e.g., IPR000477 from reverse
transcriptases). The remaining frag-

ments were further processed with the BLAST2GENE protocol
(M. Suyama, D. Torrents, and P. Bork, in prep.), which includes
different steps to identify all similar (pseudo)genes located in
neighboring regions (i.e., in clusters): (1) Within each chromo-
some, all DNA fragments that share common protein hits were
identified; (2) unmasked DNA region located between the first
(upstream) and the last (downstream) of these fragments was
extracted; (3) each of these large regions was compared with the
common protein using BLASTX; (4) starting from the 5�-end of
the DNA and from the N terminus of the protein, the peptide
regions that are consecutively aligned to the DNA were evaluated
to finally delimit subregions of DNA that can be completely or
partially aligned to the protein only once. We next extracted the
corresponding (pseudo)coding sequences included in these re-
gions together with the position of detectable frameshifts and
stop codons by comparing each of the divided regions again with
the same protein using GENEWISE (accepting scores >35). At this
stage we re-evaluated and discarded a possible remaining overlap
with ENSEMBL predicted genes and finally compared each of our
predicted coding regions to the NRDB database with BLASTX, now
accepting E-values < 0.001.

Distinction Between Processed and
Nonprocessed Regions
To differentiate between retrotransposed and segmentally dupli-
cated pseudogenes, we took 217 conserved blocks as the ortholo-
gous correspondence between the mouse and human genomes
(Mouse Genome Sequencing Consortium 2002). These ortholo-
gous blocks have an N50 of 23.2 Mb and cover ∼90% of each
genome. Based on their location, we next assigned the transla-
tion of each of our pseudogenes to the corresponding mouse
DNA block and compared them with TBLASTN (Altschul et al.
1997). We considered it a positive match whenever the associ-
ated E-value was <10�8 for any of the matching subregions.

KA/KS Calculations
Each target sequence (sequence A) was first compared with a
nonredundant protein database (EMBL CDS translations +
PDB + SWISS-PROT + PIR) using BLAST. Peptide and DNA se-
quences were automatically collected for each BLAST hit using
the Sequence Retrieval System 5.0 (Etzold et al. 1996). To ensure
a minimum of divergence among sequences, we compared them
all pairwise and excluded all redundancy above a 95% amino
acid identity. Protein matches identical or with <50% identical
residues to our target sequence were also excluded. We then se-
lected the remaining first and second sequences (sequences B and
C) from the BLAST homologous list (sorted by their E-values) and
performed a BLAST and GENEWISE comparison between each of
them and the target DNA sequence. We chose those regions of A,

Table 2. Cross-Validation for the Discrimination Between Genes and Pseudogenes from KA/KS
Benchmark Distributions

Known test fractions Training set Estimated fractions of pseudogenes

Functional Pseudogene Functional Pseudogene Averagea SDb

1000 0 659 1703 16.1 15
900 100 759 1603 109.6 24.8
800 200 859 1503 205.4 20.5
700 300 959 1403 310.2 23.7
600 400 1059 1303 401.9 19.7
500 500 1159 1203 500.8 21.3
400 600 1259 1103 600.5 24.2
300 700 1359 1003 694.7 24.1
200 800 1459 903 793.2 26.1
100 900 1559 803 893.2 26.4
0 1000 1659 703 983.9 20

aAverage estimation of the 100 iterations.
bStandard Deviation from the complete test set.
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B, and C capable of being aligned by BLAST and GENEWISE to
construct a protein multiple alignment (CLUSTAL W; Thompson
et al. 1994) and removed those regions presenting gaps in any of
the aligned sequences. On the basis of such protein alignment,
we obtained the corresponding codon alignment. We further ex-
cluded all the alignments shorter than 100 nt as uninformative.
Next we reconstructed the hypothetical ancestral nucleotide se-
quence of A, B, and C using PAMP (PAML package; Yang 1997),
which was then used as a reference to infer the synonymous and
nonsynonymous substitutions specific for A using YN00 (PAML
package). Although it is not required for our calculation, in most
of the cases, sequences A and B are closer than A, or B to C. In
parallel we obtained KA/KS values from the protein-based codon
alignment described above using the maximum-likelihood-based
CODEML program (model = 1; PAML package). Generally, the
application of similar protocols in evolutionary studies implies
the comparison of the whole coding region of the problem se-
quence with close paralogs and orthologs (Ohta and Ina 1995).
Because this condition would dramatically limit the number of
sequences in our set suitable for analysis, we used more distant
homologs whenever closest sequences were not available. To par-
tially compensate for a possible loss of sensitivity caused by the
larger evolutionary distance and to avoid uninformative high KS
values, we restricted this analysis to the most conserved regions
among all three sequences. These regions are expected to be un-
der a higher selective pressure in functional genes and hence to
evolve much more slowly. In addition to the filters already in-
cluded in each of the programs we used, we did not accept KA/KS
calculations based on either a high or low number of substitu-
tions (KS > 1 and KS < 0.1), which was expected to equally affect
low (of genes) and high (of pseudogenes) KA/KS values. Less than
10% of the sequences analyzed in this work yielded a KS > 1.
Positive selection, theoretically observed by KA/KS < 1, is sus-
pected in very few cases (Endo et al. 1996) and is therefore not
considered here.

Cross-Validation and Analysis of KA/KS Distributions
We evaluated the fraction of neutrally evolving regions included
in a given set of sequences by comparing the distribution of its
associated KA/KS values with those of the functional and pseudo-
genic benchmark sets. This estimation was applied in the cross-
validation study, as well as in the 14,880 candidate regions as
follows: For a given test distribution, we sequentially set different
combinations of pseudogene (P) and gene (G) fractions (increas-
ing/decreasing by 1). Each P/G distribution was then drawn using
corresponding pseudogenic and functional KA/KS distributions as
a pattern. From all possible P/G combinations, we adopted as the
best estimation the one that best fitted the observed KA/KS dis-
tribution, for example, minimizing the sum of error squares.

This procedure, as well as the discrimination power of both
benchmark distributions, was assessed by cross-validation as fol-
lows: From each benchmark set, we randomly extracted subsets
(1000 sequences in total) of functional and pseudogenic ele-
ments in different and known proportions (iterated 100 times for
each combination) and used them as known test sets. The pseu-
dogene content for each of these test combinations was then
estimated by least-squares fitting using all remaining sequences
as the training set. All estimated and known pseudogene con-
tents were then compared by extracting the associated expected
error, which was <3% for all tested combinations (Table 2).

In addition to our ancestral-based calculation, we also evalu-
ated the distributions of the KA/KS values associated with the
pseudogenic and functional benchmark sets under an approach
based on maximum likelihood (CODEML included in PAML
package) with either three sequences (model = 1) or in pairwise
(model = �2). The distributions derived from the three-sequence
alignment calculation were almost identical to those obtained
with our method (only the associated error provided by the cross-
validation was slightly higher: 4.2%). However, as expected, the
distribution associated with the pseudogenic benchmark set
when the values were obtained from pairwise comparison is
shifted toward lower values (KA/KS median = 0.17, in contrast to

KA/KS median = 0.4 obtained with our method) and overlapped
considerably with the KA/KS distribution of genes.
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