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Abstract technical terminology of biomedicine presents the

This paper presents an approach using syntact nain challenge of applying IE (information extrac-

semantic rules for the extraction of relational infor- ion) to such a corpus (HObbS’ 2003). . .
mation from biomedical abstracts. The results show The goa_ll of our \_/vork IS to extract from biological
that by overcoming the hurdle of technical terminol- a_bstracts |nforn_1at|on on whlqbr.o@emsare respon-
ogy, high precision results can be achieved. Fron’?’Ible for re.gulatlng th_e eXpressiote ranscription
abstracts related to baker’s yeast, we manage to ey trgnslatlon) of whiclgeneson a general organ-
tract a regulatory network comprised of 441 pair- ISM mdepend_e_nt Ievellé in contrast to the I_3|0_Cre-
wise relations from 58,664 abstracts with an accu—AtIVE competition tasksthat aimed at classifying

racy of 83-90%. To achieve this, we made use of fntltles, we thus focus on extracting a specific type

resource of gene/protein names considerably Iarge?f;/?latt'oanPbelilwfenIb'L°|°g'CaI erg't'es' . based
than those used in most other biology related infor- 0s (Natural Language Processing) base

mation extraction approaches. This list of nameSS;Udles ttef‘d tlo_ have been t.fOﬁUSEd (k)an e>t<)t_racj:t|on
was included in the lexicon of our retrained part- oTheven St'n\lloggé% one E.?)r.t'cg art ver 'g't 'T
of-speech tagger for use on molecular biology ab—( omaset al, ) orinhibit (Pustejovskiet al,

stracts. For the domain in question an accurac 002). From a biological point of weyv, the prob-
of 93.6-97.7% was attained on Part-of-speech-tags. > of such an approach are two-fold: 1) the mean-
The method can be easily adapted to other orgarfng of the extracted events will depend strongly
isms than yeast, allowing Us to extract many more" the selectional restrictions and 2) the the same
biologically relevant relations. The main reasonm€aning can be expressed using a number of dif-

for the comparable precision rates is the Ontologi_ferent verbs. In contrast to this and comparable to

cal model that was built beforehand and served as g:rledmaret al, 2001), we instead aim at extracting

guiding force for the manual coding of the syntacto-events related to a specific biological problem only,
semantic rules but attempt to do so for all syntactic variations.

Preliminary results on journal articles from The variety in the biological terminology used

PubMed Central suggest that our rule set perform%O describe regulation of gene expression presents

with equal accuracy when applied to full text rather® Malor hur_dle _to an IE approach; in many cases
than abstracts. the information is buried to such an extent that even

a human reader is unable to extract it unless hav-
ing a scientific background in biology. In this paper
we will show that by overcoming the terminological
A massive amount of biological information is barrier, high precision extraction of entity relations
buried in scientific publications (more than 500,000can be achieved within the field of molecular biol-
publications per year) or comment lines in biologi- ogy. We furthermore show that a rule based sys-
cal databases. Therefore, the need to extract infotem developed for dealing with a particular organ-
mation in the life sciences is drastically increasing.ism, in our case baker’s yeast (details on this system
Most of the ongoing work in the field of compu- are described in (Sdrket al., 2004)), can be easily
tational linguistics is being dedicated to deal with adapted to other organisms with no loss of accuracy.
PubMed abstracts. In the field of text mining the We present as well preliminary results from apply-

ing our method to full text articles. Finally we close

IPubMed is a bibliographic database covering life sciences
with a focus on biomedicine, comprising arouttix 10° arti- 2Critical Assessment of Information Extraction sys-
cles, roughly half of them including abstra&it ¢ p: / / waw. tems in Biology, http://ww. mitre. org/ public/
nchi . nl m ni h. gov/ PubMed/). bi ocreative/

1 Introduction and related work




with a discussion of the ontological issues that haveof ageneis a challenging problem as this fact can be

to be met when automatising the extraction systemexpressed in a variety of ways—possibly mention-
ing neither the biological processxpression nor

2 The biological task and our approach any of the two biological entitiesgénesand pro-

To extract relations, the named entifigavolved  t€in9. Figure 1 shows a simplified ontology provid-
must first be recognised. This is particularly dif- NG an overview of the biological entities involved
ficult in molecular biology where many forms of In gene expression, their or_ltologlcal relationships,
variation frequently occur. Synonymy is very fre- @nd how they can interact with one another. An on-
quent due to lack of standardisation of gene namedClogy is a great help when writing extraction rules,
BYP1, CIF1, FDP1, GGS1 GLC6, TPS1, TSS1  as it immediately suggests a large number of rel-
and YBR126C are all synonyms for the same evant relati(_)ns to extract. I_Examples inclugeo-
gene/protein. Additionally, these names are sub/MOter containsupstream activating sequericand
ject to orthographic variation originating from dif-  transcription regulatorbinds topromotef’, both of
ferences in capitalisation and hyphenation as weIY‘{h'Ch follow from indirect relationships vikinding
as syntactic variation of multiword terms.g. ri-  S'& _
boflavin synthetase beta chain beta chain of ri- It is often not known Whet.he'r the regulat'lon takes
boflavin synthetage Homonymy is frequent too plac_e e_lt the level of _transcrlptlon, transl_atlon, or _by
since a gene and its gene product are usually named indirect mechanism. We thus decided against
identically, causing cross-over of terms between sel’ying to extract how the regulation of expression
mantic classes. Finally, paragrammatical variationd@kes place, however, we strictly require that the ex-
are more frequent in life science publications than irfacted relations provide information about a regula-
common English due to the large number of pub"_tory protein R) regulating the expression of a target
cations by non-native speakers (Netzehl, 2003).  9ene K):
Other difficulties related to OntOIOgical issues like 1. It must be ascertained that the sentence men-
coordination are addressed in a separate section (see tions gene expression. “The proteR acti-
section 5). vatesX” fails this requirement, aR might in-
Extracting that groteinregulates the expression stead activat& post-translationally. Whether
the event should be extracted or not thus de-
pends on the type of the accusative obj¥ct

3Named entities can be considered as instances of concepts.
26 Kda heat shock proteiis thus an instance of the concept

protein. (e.g. geneor gene produdt Without a head
noun specifying the typeX remains ambigu-
—> isa ous and thus the whole relation remains under-
—> partof ~ »| Gene specified and should not be extracted. It should
——> produces el be noted that two thirds of the gene/protein
— bindsto / l A names mentioned in our corpus are ambiguous

for this reason.

Promoter Transcript %88 Stable ] )
- - RNA 2. The identity of the regulatorR) must be

1 T known. “TheX promoter activateX expres-

Binding sion” fails this requirement, as it is not known
site — which protein activates the expression of gene
T T \ X. Linguistically this implies that noun chunks
T of certain semantic types should be disallowed
Upt.stretgm Upstream Transcription as agent.
2;’;&2,‘122 f&rﬁ:ﬁ regulator 3. The identity of the target{) must be known.

T “The transcription factoR activatesk depen-
\ % dent expression” fails this requirement, as it

Transcription Transcription is not know which gene’s expression is de-
activator repressor pendent orR. The semantic types allowed for
theme should thus also be restricted.

Figure 1: A simplified ontology for transcription  The two last requirements are important to avoid
regulation. The background color used for each extraction from non-informative sentences that—
term signifies its semantic role in relations: regu-despite them containing no information—occur
lator (white), target (black ), or either (gray). quite frequently in scientific abstracts.




The ability to genetically modify an organism for occurrences of the terms “Saccharomyces cere-
brings with it an added complication to IE: biolog- visiae”, “S. cerevisiae”, “Baker’s yeast”, “Brewer’s
ical texts often mention what takes place when aryeast”, and “Budding yeast” in the title/abstract or
organism is artificially modified in a particular way. as head of a MeSH tefmThese abstracts were fil-

In some cases such modification can reverse part @géred to obtain the 15,777 that mention at least two
the meaning of the verb: from the sentence “Delenames (see section 3.4) and subsequently divided
tion of R increaseX expression” one can conclude into a training and an evaluation set of 9137 and
thatR represses expression Xf In other cases the 6640 abstracts respectively.

verb will lose part of its meaning: “Mutation d®
increase expression” implies thak regulates ex-
pressionX, but we cannot infer whethd® is an ac- The process of tokenisation consists of two steps
tivator or a repressor. Finally, there are those re{Grefenstette & Tapanainen, 1994). segmentation
lations that should be completely avoided as theyof the input text into a sequence of tokersd the
exist only because they have been artificially intro-detection of sentential boundaries. We use the tok-
duced through genetic engineering. In our extracenizer developed by Helmut Schmid at IMS (Uni-
tion method we address all three cases. versity of Stuttgart) because it combines a high ac-

We have opted for a rule based approach (implecuracy (99.56% on the Brown corpus) with unsu-
mented as cascaded finite state automata) to extragervised learningif. no manually labelled data is
the relations for two reasons. The first is, that a ruleneeded) (Schmid, 2000).
based approach allows us to directly ensure that the The determination of token boundaries in techni-
three requirements stated above are fulfilled for thecal or scientific texts is one of the main challenges
extracted relations. This is desired to attain highwithin information extraction or retrieval. On the
precision on the extracted relations, which is whatone hand, technical terms contain special characters
matters to the biologist. Hence we focus in our eval{like brackets, colons, hyphens, slashes, etc.). On
uation on the semantic correctness of our methodhe other hand, they often appear as multiword ex-
rather than on the grammatical correctness. As longressions which makes it hard to detect the exact left
as grammatical errors do not result in semantic erand right boundaries of the terms. Although a lot of
rors, we do not consider it an error. Converselywork has been invested in the detection of techni-
even a grammatically correct extraction is consid-cal terms within biology related texts (see (Nergadi
ered an error if it is semantically incorrect. et al, 2003) or (Yamamotet al, 2003) for rep-

Our second reason for choosing a rule based agesentative results) this task is not yet solved to a
proach is that our approach is theory-driven andsatisfying extent. As we are interested in very spe-
highly interdisciplinary, involving computational cial terms and high precision results we opted for
linguists, bioinformaticians, and biologists. The multiword detection based on semi-automatical ac-
rule based approach allows us to benefit mordluisition of multivords (see sections 3.4 and 3.5).
from the interplay of §C|ent|sts with d!ﬁerent back- 3.3 Part-of-speech tagging
grounds, as known biological constraints can be ex- "~ _
plicitly incorporated in the extraction rules, which T improve and analyse the improvement of the ac-
is reflected in the ontology. Compared to statisticalcuracy of POS-tagging on PubMed abstracts, Tree-
methods, it is also less prone to being biased by thd@gger (Schmid, 1994) was trained on three differ-
choice of training data set, allowing the method to€nt corpora. Each training results in a specific pa-
better generalise to other corpoeag. different or- ~ rameter file. First, we used the standard english pa-

ganisms or full text papers instead of abstracts. ~ rameter file (Penn Treebahkrained) without ex-
panding the lexicon. A second parameter file was

3  Methods generated by training with the GENIA 3.0 corpus
) ) ) (Kim et al, 2003) with an expanded lexicon con-
Our IE system is organised in cascaded moduleg,ining gene names (see section 3.4) and multiwords

such that the output of one module is the input of(see section 3.5). The third version was generated
the next module. The following sections describe

3.2 Tokenisation and multiword detection

each module in detail. “Medical Subject Headings (MeSH) is a controlled vocabu-
lary for manually annotating PubMed articles.
3.1 The corpus 5This is also referred to as detection of word boundaries,

where a word unit can refer to a multiword likg@stream acti-
The PubMed resource was downloaded on Januar\yating factor ko

19, 2004. 58,664 a_b_StraCtS related to the yéag ®Details on the Penn Treebank can be found in (Marcus
charomyces cerevisiaeere extracted by looking etal, 1993).



from a revised version of GENIA 3.0 described in mantically relevant terms mainly consists of houns
the next paragraph. and verbs, and some few prepositions fikeom or
The GENIA 3.0 corpus consists of PubMed ab-adjectives likedependent . The first main set of
stracts and has 466,179 manually annotated tokensominal terms is classified as follows:
For the last retraining experiment we made three
kind of revisions: The first concerns seemingly
undecidable cases like/or annotated as njcc,
which were split into three tokensn, /, and or
each annotated with its own tag. The second set e Nouns triggering an experimental or artificial
of changes is a refinement of the GENIA tagset contexts likemutation deletion fusion defect
concerning auxiliary verbs to distinguish between etc. (11 entries).
beverbs ¢b. . . ), haveverbs ¢h. . .) and other
verbsvv. . . . The third set of changes removed in-
consistencies liké n annotated abT.

e Nouns representing highly relevant concepts
like gene protein, promoter binding site tran-
scription factor etc. (153 entries).

e Enzyme names likelongasehexokinasgetc.
(569 entries).

e Species/organism names extracted from the
NCBI taxonomy of organisms (Wheelet al,,

To be able to recognise gene/protein names as such, 2004) (20,746 entries).

and to associate them with the appropriate database

identifiers, a list of synonymous names and identi-

fiers in six eukaryotic model organisms was com-

piled from several sourcebt(t p: / / www. bor k.

enbl . de/ synonyns/ ). ForS. cerevisiaspecif-

ically, 51,640 uniquely resolvable names and iden-

tifiers were obtained from Saccharomyces Genome&he second set of verbal terms contains 50 entries

Database (SGD) and SWISS-PROT (Dwightal,  plus inflectional variants. These are crucial for the

2002; Boeckmanet al,, 2003} extraction of relations between entities. The follow-
Before matching these names against the POSng shows the classification according to their rele-

tagged corpus, the list of names was expanded to insance in gene transcription:

clude different orthographic variants of each name. o , ,

Firstly, the names were allowed to have various ® Verbs of activatiore.g. enhanceincrease in-

combinations of uppercase and lowercase letters: ~ duce andpositively regulate

all uppercase, all lowercase, first letter uppercase, o \erbs of repressio.g. block decreasedown-

and (for multiword names) first letter of each word regulate anddown regulate

uppercase. In each of these versions, we allowed _

whitespace to be replaced by hyphen, and hyphen to ® Verbs of regulatiore.g. affecandcontrol

be removed or replaced by whitespace. In addition, e Other selected verbs likeode(or encod@ and

from each gene name a possible protein name was  containwhere given their own semantic tags.
generated by appending the letper The resulting

list containing all orthographic variations comprisesEach of the terms consisting of more than one word
516,799 entries. was utilised for multiword detection.

The orthographically expanded name list was fed \We also have two additional classes of words to
into the multiword detection, the POS-tagger lex-Prevent false positive extractions. One class con-
icon, and was subsequently matched against thi&ins words of negation, likaot, cannot etc. The
POS-tagged corpus to retag gene/protein names &her contains nouns that are to be distinguished
such inpg). To reduce the problem of homonymy, from other common nouns to avoid them being
only matches to words tagged as common noun&écognised as named entitiesy. alleleanddiploid.

(nn) were accepted. 3.6 Extraction of named entities

3.5 Semantic tagging In the preceding steps we classified relevant nouns
according to semantic criteria. This allows us to

In addition to the recognition of the gene and pro- -
tein names, we recognise several other terms an%hunk noun phrases generalising over both POS-

annotate them with semantic tags. This set of seldds a}nd semantic tags. This syntacto-semantic
chunking was performed to recognise named enti-
"Operon names were not taken into account, since no comt!€S USINg cascades of finite state rules implemented

plete list of operon names is available. as a CASS grammar (Abney, 1996). As an example

3.4 Recognising gene/protein names

¢ Relational nouns, like nouns of activatioag.
derepressiormndpositive regulatiol nouns of
repression €.g. suppressioand negative reg-
ulation), nouns of regulationg.g. affectand
control) (69 entries).




we recognise gene noun phrases: GCN4 protein to theSER1 promoter in vitro®

[nm_gene

41 the 4 Results

[nnpg CYCI] Using our relation extraction rules, we were able
[gene gENE to extract 422 relation chunks from our complete
[in iN] _ yeast corpus. As one entity chunk can mention sev-
[yeast S@CCharomyces cerevisjpe eral different named entities, these corresponded to

Other syntactic variants such as “the glucokinasea total of 597 extracted pairwise relations. How-
geneGLK1" are recognised too. Analogously, we ever, as several relation chunks mention the same
detect at this early level noun chunks denoting othepairwise relations, this reduces to 441 unique pair-
biological entities like proteins, activators, repres-wise relations comprised of 126 up-regulations, 90
sors, transcription factors etc. down-regulations, and 225 regulations of unknown
In subsequent cascades, we recognise more corgirection.
plex noun chunks on the basis of the simpler ones, Figure 2 displays these 441 relations as a regu-
such as promoters, upstream activating/repressinkatory network in which the nodes represent genes
sequences (UAS/URS), binding sites, etc. At thisor proteins and and the arcs are expression regula-
point it becomes important to distinguish betweention relations. Known transcription factors accord-
agent and theme forms of noun chunks. A bindinging to the Saccharomyces Genome Database (SGD)
site, for example, is part of a target gene, the namé¢Dwight et al, 2002) are denoted by black nodes.
of this gene or by the name of the regulator proteinFrom a biological point of view, it is reassuring that
that binds to it. It is thus necessary to discriminatethe proteins serving as regulators in our relations
between “binding site of” and “binding site for”. tend to correspond to knows cerevisiag¢ranscrip-
As already mentioned, we have annotated a claséon factors.
of n_ouns that trlgg_ers e?(pe”mental context. Qn _the 81t should be noted that no subordinate clause information
basis of these we identify noun chunks mentioninggets extracted.
for example deletion, mutation, or overexpression
of genes. At a fairly late stage we recognise eventro,__ o
that occur in nominalisations like “expression of”. Mg f

3.7 Extraction of relations between entities o,g
24

This step of processing concerns the recognitior
of three types of relations between the recognises 3
named entities: up-regulation, down-regulation, anc %
(unspecified) regulation of expression. We combine 8:%4\_-@ 50\
syntactic properties (subcategorisation restrictions :
and semantic properties (selectional restrictions) o Q;b
the relevant verbs to map them to one of the thre¢ % =~ 2
relation types. o .
The following shows a reduced bracketed struc-®s, 9%

ture consisting of three parts, a promoter chunk, ¢ ,& % :-
verbal complex chunk, and a UAS chunk (theme): ° , »3%
[ne_prom the ATR1 promoter regign v i '
[contain Contain$ c;‘ O (';
[T)T uas_pt * &
" [at—a & [5s binding sité [f,, for] _
[ne activator the GCN4 activator protejh Figure 2: The extracted network of gene regula-

From this we extract that th&CN4 protein acti- tion The extracted relations are shown as a directed

vates the expression of tiTR1 gene. We iden- graph, in which each node corresponds to a gene
tify passive constructs, toe,g.“RNR1 expression OF protein and each arc represents a pairwise rela-
is reduced byCLN1 or CLN2 overexpression”. In tion. Arcs point from the regulator to the target and
this case we extract two pairwise relations, namelythe type of regulation is specified by the color: up-
that bothCLN1 and CLN2 down-regulate the ex- regulation (green), down-regulation (red), and un-
pression of the(RNR1 gene. We also identify nom- derspecified regulation (blue). Known transcription
inalised relations as exemplified by “the binding of factors are highlighted as black nodes.



made due to artificial constructs since the most com-

Table 1. Results mon reporter gendacZ is itself anE. coli gene.

Organism Abstracts Relations Prec. .
: Secondly, some abstracts are erroneously associ-

E.coli 195,492 321 85%  ated withE. coli hence associating the correct gene

B. subtilis 16,270 89 90% . - . -

S cerevisiae 58 664 383 a3,  names but in the wrong species—this is considered

M. musculus 688',937 1636 g4y,  an error since the same gene names is not guaran-

bubMed central 5.075 158 84% teed to refer to the same gene in different species.

4.2 Entity recognition

41 Evaluation of relation extraction For consiste_ncy, we have also_ evaluated our ability
' to correctly identify named entity at the level of se-
To evaluate the accuracy of the extracted relationmantic rather than grammaticaj correctness. Man-

we manually inspected all relations extracted fromya) inspection of 500 named entities from the evalu-
the evaluation corpus using the TIGERSearch visuation corpus revealed 14 errors, which corresponds
alisation tool (Lezius, 2002). The results are shownyg an estimated accuracy of just over 97%. Surpris-
in table 1. ingly, many of these errors were commited when
The accuracy of the relations was evaluated at th?ecognisingproteins for which our accuracy was
semantic rather than the grammatical level. We thugnly 959. Phrases such as “telomerase associated
carried out the evaluation in such a way that rela‘protein” (WhICh got confused with “telomerase pro-

tions were counted as correct if they extracted theein” itself) were responsible for about half of these
correct biological conclusion, even if the analysis of grrors.

the sentence as not as to be desired from a linguistic Among the 153 entities involved in relations no

point of view. Conversely, a relation was counted asrrors were detected, which is fewer than should
an error if the biological conclusion was wrong.  pe expected from our estimated accuracy on entity
75 of the 90 relation chunks (83%) extracted fromrecognition (99% confidence according to hyperge_
the evaluation corpus were entirely correct, meaningmetric test). This suggests that the templates used
that the relation corresponded to expression reguldor relation extraction are unlikely to match those
tion, the regulatorR) and the regulateeX() were  sentence constructs on which the entity recognition
COI’reCtly |dent|fled, and the direCtion Of I’egulation goes Wrong_ False identiﬁcation Of named entities

(up or down) was correct if extracted. A further are thus unlikely to have an impact on the accuracy
6 relation chunks extracted the wrong direction ofqf relation extraction.

regulation but were otherwise correct; our accuracy ) o
increases to 90% if allowing for this minor type of 4-3 POS-tagging and tokenisation
error. Approximately half of the errors made by We compared the POS-tagging accuracy of three
our method stem from genetic modifications beingparameter files on 24,798 held-out tokens from the
overlooked—the relation being extracted is actuallyGENIA corpus. The best result was achieved us-
mentioned in the sentence, however it is not biologing the parameter trained on the revised GENIA cor-
ically relevant. pus, which correctly tagged 96.4% of tokens. This
To estimate the coverage of our method, wecompares favourably to the 93.6% and 85.7% cor-
looked through 100 of the 44,354 yeast sentenceeect tokens achieved using the parameter file for the
that at least two gene/protein names. These corstandard GENIA corpus and the standard English
tained only 5 relation chunks of the desired type,parameter file respectively.
corresponding to an estimate of 2218 in total. Since Of 1,068 punctuation marks we recognised 995
422 of these were successfully extracted by ourcorrectly as sentences boundaries and all 68 abbre-
method, we estimate the coverage of our method twiations correctly, too. This results in an overall pre-
be around 20%. This corresponds to an F-score igision of 99.5%.
the order of 55%, which is respectable by IE stan- ) o )
dard$. 5 Linguistics and ontologies
A few extraction problems were encounteredin the previous sections we have shown that a rule-
specifically for E. coli, the favoured bacterial based approach can be used to extract from biomed-
species for experiments. Firstly, more errors ardcal abstracts information on regulation of gene
5 expression. This highly relevant biological prob-
eponcul, b noted et ou sppresch does ot 2501em could be addressed for several model organ-
gene/protein name is missed this sentence is not takendnto alSMS With equal accuracy. The main adaptation re-
count for the coverage estimation. quired for this was to replace the list of synonymous




gene/protein names to reflect the change of organ-  promoter region.

isms. These high quality results show that the rules(z) The ATR1 promoter region contains a binding
that have been used reflect an underlying model, * qjie for the GCNA4 activator protein.

which is independent of the organism. This model o )
is — as already introduced — depicted in Figure Fig{3) The binding of GCN4 protein to the SER1 pro-
ure 1. moter in VIvo...

Nonetheles_,s it has to be noted that a major draw- The second layer for ontology-driven IE systems
back from this rule-based IE approach is that thenat has to be taken into account concerns the clear
writing of rules is highly time consuming and scal- ¢onceptualisation in combination with the inferen-
able only to a limited extent. To reduce the temporalk;, power. Example 2 shows a syntactic variant ex-
factor and to increase the scalability of the SySte”bressing the same fact as 1. The advantage from
the development of a a system that allows for (semiz compositional ontology-driven approach is that
Jautomatical interaction between ontological infor-j; aiows to treat different syntactic construction in
mation and a rule-based IE system could prove to bg, 4t they are mapped to the same concepts. Of
highly useful. The process of extracting information course, one can not judge whether example 3 is
from textual data thus should be ontology-driven. - apayt activation or repression of gene expression. A

Another advantage from an ontology-driven ap-conceptind which relates proteins and genes is un-
proach is related to what Schulze-Kremer callsjerspecified with respect to activation or repression.
the communication problem in molecular biology Nonetheless theindingrelation should be specified
[(Schulze-Kremer, 1998)]. Aiming that in & sub- petween proteins and DNA parts as part of the gene
sequent stage the same ontology guides the integraxpression model and thus the binding in example 3

tion of the extracted data one can ensure that Conyoy|d be recognised as part of the gene expression
sistency of data is much more likely than in other ,qdel.

approaches.
To shortly explain what is meant by an ontology- (4) Endotoxin increased NF-kappaB p50/p65 het-
driven IE system two layers have to be distin- erodimer binding.

guished®. One layer regards the interplay between

the ontological concepts and the lexical iterns. ( Example 4 illustrates that in some cases combina-

the words) in a text. To give an example, it has totlons of different semantical issues are concerned.

be ensured that an entity recognised as a protein IikQne ISSUe concerns coordination and app_qsmons,
GCN4in “the GCN4 activator protein” (taken from where the other issues concerns presuppositions. To

1) is not linked to the conceptrotein only, but to correctly associate an ontological concept with the
the even more specific concejpanscription acti- term NF_—kapE[JaB %50/ p(iS Setero]Ejlmerdserllzerls tOf
vator protein Of course, this concept inherits all proggssm_g ?elfsd tav?ho € per Qr;ne .t I sty |
properties oprotein but it has additional properties erodimeris finked to the appropriate ontologica

specified,e.g.that it has the role of activating gene category. This categ_ory COMPrISes |nf(_)rmat|on that
expression. presupposes the existence of two entitteand B,

Even more important, each relational word has tobo'[h of typeprotein as well as the information that

be associated with a relation in the ontology whereA # B. Concernlng the_ coordination a common
the arguments are specified. The arguments of theyStem WOUIQ try to identify these two entities and
ontological relationactivate specify at least two associated W't.h NF-'kapp'aBandB W'th. pS0/p65 .
possible pairs of semantic types. One, where bot nfortunately in ablologlcal' context this can easily
are proteins — and thus being part of the protein-a'l' To determine the meaning correctly the system
protein interactions model — , and a second wher eeqls to knqw that the slash symbo'l IS L.’SEd in bi-
one argument is a protein and the second is a ge,f!il‘oglcal publlcatlon.s to express conJuncfuons, and,
part — and thus being part of the gene expressio at NF-kappaBassigns the type of protein to both
model —. For a sentence like example 1, the nomina'l)50 and65. The correct answer could then compo-

phrasethe ATR1 promoter regiomould be linked ~Siuonally be computed witidl = p50 and3 = pG5.
to thepromoterconcept, which is a part of the non- This example shows that understanding of coordi-

- g nated constructions is based on domain knowledge
coding sequence of thgeneconceptualisation. : ’
g seq P that has to be fed into a NLP system.

(1) The GCN4 activator protein binds tothe ATR1 g  conclusions

197 detailed description of an ontology-driven information W& have de_‘VGIOP?d a method t_hat aIIOV_VS us to ex-
extraction system can be found in (Cimiagtal,, 2004). tract from biomedical abstracts information on reg-



ulation of gene expression. This is a highly relevantFriedman, C., Kra, P., Yu, H., Krauthammer, M., &
biological problem, since much is known about it Rzhetsky, A. (2001). Genies: a natural language
although this knowledge has yet to be collected in processing system for the extraction of molecu-
a database. Also, knowledge on how gene expres- lar pathways from journal articles. Bioinformat-
sion is regulated is crucial for interpreting the enor- ics17 Suppl.174-82.
mous amounts of gene expression data produced bigrefenstette, G. & Tapanainen, P. (1994). What is
high-throughput methods like spotted microarrays a word, what is a sentence? problems of tok-
and GeneChips. enization. inThe 3rd International Conference
Since we developed our method based on an on- on Computational Lexicographyp. 79-87.
tological model for gene expression, our method isHobbs, J. R. (2003). Information extraction from
applicable to several model organisms with com- biomedical text. J. Biomedical Informati35,
parable accuracy. The main adaptation required 260-264.
for this was to replace the list of synonymousKim, J.-D., Ohta, T., Tateisi, Y., & Tsujii, J. (2003).
gene/protein names to reflect the change of organ- GENIA corpus—a semantically annotated corpus
ism. Furthermore, application of the method to for bio-textmining. Bioinformaticsl9 suppl. 1
full text journals gave promising preliminary re-  j180—i182.
sults. We thus intend to systematically apply our_ezius, W. (2002). TIGERSearch—ein Suchw-
rule based method to both abstracts and full text cor- erkzeug fiir Baumbanken. Broceedings der 6.
pora for many more organisms including humans. Konferenz zur Verarbeitung natiirlicher Sprache
Additionally, we are working on expanding therules  (KONVENS 2002)(Busemann, S., ed.) Saar-
on a broader ontological model to also extract other, priicken, Germany.
specific types of interactions between biological enqarcus, M. P., Santorini, B., & Marcinkiewicz,
tities, reusing the many rules responsible for the \ A (1993). Building a large annotated corpus

recognition of named entities. of English: The Penn Treebank. Computational
Linguistics, Special Issue on Using Large Cor-
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