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Abstract

This paper presents an approach using syntacto-
semantic rules for the extraction of relational infor-
mation from biomedical abstracts. The results show
that by overcoming the hurdle of technical terminol-
ogy, high precision results can be achieved. From
abstracts related to baker’s yeast, we manage to ex-
tract a regulatory network comprised of 441 pair-
wise relations from 58,664 abstracts with an accu-
racy of 83–90%. To achieve this, we made use of a
resource of gene/protein names considerably larger
than those used in most other biology related infor-
mation extraction approaches. This list of names
was included in the lexicon of our retrained part-
of-speech tagger for use on molecular biology ab-
stracts. For the domain in question an accuracy
of 93.6–97.7% was attained on Part-of-speech-tags.
The method can be easily adapted to other organ-
isms than yeast, allowing us to extract many more
biologically relevant relations. The main reason
for the comparable precision rates is the ontologi-
cal model that was built beforehand and served as a
guiding force for the manual coding of the syntacto-
semantic rules.

Preliminary results on journal articles from
PubMed Central suggest that our rule set performs
with equal accuracy when applied to full text rather
than abstracts.

1 Introduction and related work

A massive amount of biological information is
buried in scientific publications (more than 500,000
publications per year) or comment lines in biologi-
cal databases. Therefore, the need to extract infor-
mation in the life sciences is drastically increasing.
Most of the ongoing work in the field of compu-
tational linguistics is being dedicated to deal with
PubMed1 abstracts. In the field of text mining the

1PubMed is a bibliographic database covering life sciences
with a focus on biomedicine, comprising around12� 106 arti-
cles, roughly half of them including abstract (http://www.
ncbi.nlm.nih.gov/PubMed/).

technical terminology of biomedicine presents the
main challenge of applying IE (information extrac-
tion) to such a corpus (Hobbs, 2003).

The goal of our work is to extract from biological
abstracts information on whichproteinsare respon-
sible for regulating the expression (i.e. transcription
or translation) of whichgeneson a general organ-
ism independent level. In contrast to the BioCre-
AtIvE competition tasks2 that aimed at classifying
entities, we thus focus on extracting a specific type
of relations between biological entities.

Most NLP (Natural Language Processing) based
studies tend to have been focused on extraction
of events involving one particular verb,e.g. bind
(Thomaset al., 2000) orinhibit (Pustejovskyet al.,
2002). From a biological point of view, the prob-
lems of such an approach are two-fold: 1) the mean-
ing of the extracted events will depend strongly
on the selectional restrictions and 2) the the same
meaning can be expressed using a number of dif-
ferent verbs. In contrast to this and comparable to
(Friedmanet al., 2001), we instead aim at extracting
events related to a specific biological problem only,
but attempt to do so for all syntactic variations.

The variety in the biological terminology used
to describe regulation of gene expression presents
a major hurdle to an IE approach; in many cases
the information is buried to such an extent that even
a human reader is unable to extract it unless hav-
ing a scientific background in biology. In this paper
we will show that by overcoming the terminological
barrier, high precision extraction of entity relations
can be achieved within the field of molecular biol-
ogy. We furthermore show that a rule based sys-
tem developed for dealing with a particular organ-
ism, in our case baker’s yeast (details on this system
are described in (Šarić et al., 2004)), can be easily
adapted to other organisms with no loss of accuracy.
We present as well preliminary results from apply-
ing our method to full text articles. Finally we close

2Critical Assessment of Information Extraction sys-
tems in Biology, http://www.mitre.org/public/
biocreative/



with a discussion of the ontological issues that have
to be met when automatising the extraction system.

2 The biological task and our approach

To extract relations, the named entities3 involved
must first be recognised. This is particularly dif-
ficult in molecular biology where many forms of
variation frequently occur. Synonymy is very fre-
quent due to lack of standardisation of gene names;
BYP1, CIF1, FDP1, GGS1, GLC6, TPS1, TSS1,
and YBR126C are all synonyms for the same
gene/protein. Additionally, these names are sub-
ject to orthographic variation originating from dif-
ferences in capitalisation and hyphenation as well
as syntactic variation of multiword terms (e.g. ri-
boflavin synthetase beta chain= beta chain of ri-
boflavin synthetase). Homonymy is frequent too
since a gene and its gene product are usually named
identically, causing cross-over of terms between se-
mantic classes. Finally, paragrammatical variations
are more frequent in life science publications than in
common English due to the large number of publi-
cations by non-native speakers (Netzelet al., 2003).
Other difficulties related to ontological issues like
coordination are addressed in a separate section (see
section 5).

Extracting that aprotein regulates the expression

3Named entities can be considered as instances of concepts.
26 Kda heat shock proteinis thus an instance of the concept
protein.

Gene

Transcript

Gene
product

Stable
RNA

Promoter

Binding
site

Upstream
activating
sequence

Upstream
repressing
sequence

mRNA Protein

Transcription
regulator

Transcription
activator

Transcription
repressor

is a
part of

produces

binds to

Figure 1:A simplified ontology for transcription
regulation. The background color used for each
term signifies its semantic role in relations: regu-
lator (white), target (black ), or either (gray).

of ageneis a challenging problem as this fact can be
expressed in a variety of ways—possibly mention-
ing neither the biological process (expression) nor
any of the two biological entities (genesand pro-
teins). Figure 1 shows a simplified ontology provid-
ing an overview of the biological entities involved
in gene expression, their ontological relationships,
and how they can interact with one another. An on-
tology is a great help when writing extraction rules,
as it immediately suggests a large number of rel-
evant relations to extract. Examples include “pro-
moter containsupstream activating sequence” and
“ transcription regulatorbinds topromoter”, both of
which follow from indirect relationships viabinding
site.

It is often not known whether the regulation takes
place at the level of transcription, translation, or by
an indirect mechanism. We thus decided against
trying to extract how the regulation of expression
takes place, however, we strictly require that the ex-
tracted relations provide information about a regula-
tory protein (R) regulating the expression of a target
gene (X):

1. It must be ascertained that the sentence men-
tions gene expression. “The proteinR acti-
vatesX” fails this requirement, asR might in-
stead activateX post-translationally. Whether
the event should be extracted or not thus de-
pends on the type of the accusative objectX
(e.g. geneor gene product). Without a head
noun specifying the type,X remains ambigu-
ous and thus the whole relation remains under-
specified and should not be extracted. It should
be noted that two thirds of the gene/protein
names mentioned in our corpus are ambiguous
for this reason.

2. The identity of the regulator (R) must be
known. “TheX promoter activatesX expres-
sion” fails this requirement, as it is not known
which protein activates the expression of gene
X. Linguistically this implies that noun chunks
of certain semantic types should be disallowed
as agent.

3. The identity of the target (X) must be known.
“The transcription factorR activatesR depen-
dent expression” fails this requirement, as it
is not know which gene’s expression is de-
pendent onR. The semantic types allowed for
theme should thus also be restricted.

The two last requirements are important to avoid
extraction from non-informative sentences that—
despite them containing no information—occur
quite frequently in scientific abstracts.



The ability to genetically modify an organism
brings with it an added complication to IE: biolog-
ical texts often mention what takes place when an
organism is artificially modified in a particular way.
In some cases such modification can reverse part of
the meaning of the verb: from the sentence “Dele-
tion of R increasedX expression” one can conclude
thatR represses expression ofX. In other cases the
verb will lose part of its meaning: “Mutation ofR
increasedX expression” implies thatR regulates ex-
pressionX, but we cannot infer whetherR is an ac-
tivator or a repressor. Finally, there are those re-
lations that should be completely avoided as they
exist only because they have been artificially intro-
duced through genetic engineering. In our extrac-
tion method we address all three cases.

We have opted for a rule based approach (imple-
mented as cascaded finite state automata) to extract
the relations for two reasons. The first is, that a rule
based approach allows us to directly ensure that the
three requirements stated above are fulfilled for the
extracted relations. This is desired to attain high
precision on the extracted relations, which is what
matters to the biologist. Hence we focus in our eval-
uation on the semantic correctness of our method
rather than on the grammatical correctness. As long
as grammatical errors do not result in semantic er-
rors, we do not consider it an error. Conversely,
even a grammatically correct extraction is consid-
ered an error if it is semantically incorrect.

Our second reason for choosing a rule based ap-
proach is that our approach is theory-driven and
highly interdisciplinary, involving computational
linguists, bioinformaticians, and biologists. The
rule based approach allows us to benefit more
from the interplay of scientists with different back-
grounds, as known biological constraints can be ex-
plicitly incorporated in the extraction rules, which
is reflected in the ontology. Compared to statistical
methods, it is also less prone to being biased by the
choice of training data set, allowing the method to
better generalise to other corpora,e.g.different or-
ganisms or full text papers instead of abstracts.

3 Methods

Our IE system is organised in cascaded modules
such that the output of one module is the input of
the next module. The following sections describe
each module in detail.

3.1 The corpus

The PubMed resource was downloaded on January
19, 2004. 58,664 abstracts related to the yeastSac-
charomyces cerevisiaewere extracted by looking

for occurrences of the terms “Saccharomyces cere-
visiae”, “S. cerevisiae”, “Baker’s yeast”, “Brewer’s
yeast”, and “Budding yeast” in the title/abstract or
as head of a MeSH term4. These abstracts were fil-
tered to obtain the 15,777 that mention at least two
names (see section 3.4) and subsequently divided
into a training and an evaluation set of 9137 and
6640 abstracts respectively.

3.2 Tokenisation and multiword detection

The process of tokenisation consists of two steps
(Grefenstette & Tapanainen, 1994): segmentation
of the input text into a sequence of tokens5 and the
detection of sentential boundaries. We use the tok-
enizer developed by Helmut Schmid at IMS (Uni-
versity of Stuttgart) because it combines a high ac-
curacy (99.56% on the Brown corpus) with unsu-
pervised learning (i.e. no manually labelled data is
needed) (Schmid, 2000).

The determination of token boundaries in techni-
cal or scientific texts is one of the main challenges
within information extraction or retrieval. On the
one hand, technical terms contain special characters
(like brackets, colons, hyphens, slashes, etc.). On
the other hand, they often appear as multiword ex-
pressions which makes it hard to detect the exact left
and right boundaries of the terms. Although a lot of
work has been invested in the detection of techni-
cal terms within biology related texts (see (Nenadić
et al., 2003) or (Yamamotoet al., 2003) for rep-
resentative results) this task is not yet solved to a
satisfying extent. As we are interested in very spe-
cial terms and high precision results we opted for
multiword detection based on semi-automatical ac-
quisition of multiwords (see sections 3.4 and 3.5).

3.3 Part-of-speech tagging

To improve and analyse the improvement of the ac-
curacy of POS-tagging on PubMed abstracts, Tree-
Tagger (Schmid, 1994) was trained on three differ-
ent corpora. Each training results in a specific pa-
rameter file. First, we used the standard english pa-
rameter file (Penn Treebank6 trained) without ex-
panding the lexicon. A second parameter file was
generated by training with the GENIA 3.0 corpus
(Kim et al., 2003) with an expanded lexicon con-
taining gene names (see section 3.4) and multiwords
(see section 3.5). The third version was generated

4Medical Subject Headings (MeSH) is a controlled vocabu-
lary for manually annotating PubMed articles.

5This is also referred to as detection of word boundaries,
where a word unit can refer to a multiword likeupstream acti-
vating factor.

6Details on the Penn Treebank can be found in (Marcus
et al., 1993).



from a revised version of GENIA 3.0 described in
the next paragraph.

The GENIA 3.0 corpus consists of PubMed ab-
stracts and has 466,179 manually annotated tokens.
For the last retraining experiment we made three
kind of revisions: The first concerns seemingly
undecidable cases likein/or annotated asinjcc,
which were split into three tokens:in, /, and or
each annotated with its own tag. The second set
of changes is a refinement of the GENIA tagset
concerning auxiliary verbs to distinguish between
be verbs (vb...), haveverbs (vh...) and other
verbsvv.... The third set of changes removed in-
consistencies likein annotated asDT.

3.4 Recognising gene/protein names

To be able to recognise gene/protein names as such,
and to associate them with the appropriate database
identifiers, a list of synonymous names and identi-
fiers in six eukaryotic model organisms was com-
piled from several sources (http://www.bork.
embl.de/synonyms/). ForS. cerevisiaespecif-
ically, 51,640 uniquely resolvable names and iden-
tifiers were obtained from Saccharomyces Genome
Database (SGD) and SWISS-PROT (Dwightet al.,
2002; Boeckmannet al., 2003)7.

Before matching these names against the POS-
tagged corpus, the list of names was expanded to in-
clude different orthographic variants of each name.
Firstly, the names were allowed to have various
combinations of uppercase and lowercase letters:
all uppercase, all lowercase, first letter uppercase,
and (for multiword names) first letter of each word
uppercase. In each of these versions, we allowed
whitespace to be replaced by hyphen, and hyphen to
be removed or replaced by whitespace. In addition,
from each gene name a possible protein name was
generated by appending the letterp. The resulting
list containing all orthographic variations comprises
516,799 entries.

The orthographically expanded name list was fed
into the multiword detection, the POS-tagger lex-
icon, and was subsequently matched against the
POS-tagged corpus to retag gene/protein names as
such (nnpg). To reduce the problem of homonymy,
only matches to words tagged as common nouns
(nn) were accepted.

3.5 Semantic tagging

In addition to the recognition of the gene and pro-
tein names, we recognise several other terms and
annotate them with semantic tags. This set of se-

7Operon names were not taken into account, since no com-
plete list of operon names is available.

mantically relevant terms mainly consists of nouns
and verbs, and some few prepositions likefrom, or
adjectives likedependent. The first main set of
nominal terms is classified as follows:� Nouns representing highly relevant concepts

like gene, protein, promoter, binding site, tran-
scription factor, etc. (153 entries).� Nouns triggering an experimental or artificial
contexts likemutation, deletion, fusion, defect,
etc. (11 entries).� Enzyme names likeelongase, hexokinase, etc.
(569 entries).� Species/organism names extracted from the
NCBI taxonomy of organisms (Wheeleret al.,
2004) (20,746 entries).� Relational nouns, like nouns of activation (e.g.
derepressionandpositive regulation), nouns of
repression (e.g. suppressionandnegative reg-
ulation), nouns of regulation (e.g. affectand
control) (69 entries).

The second set of verbal terms contains 50 entries
plus inflectional variants. These are crucial for the
extraction of relations between entities. The follow-
ing shows the classification according to their rele-
vance in gene transcription:� Verbs of activatione.g. enhance, increase, in-

duce, andpositively regulate.� Verbs of repressione.g. block, decrease, down-
regulate, anddown regulate.� Verbs of regulatione.g. affectandcontrol.� Other selected verbs likecode(or encode) and
containwhere given their own semantic tags.

Each of the terms consisting of more than one word
was utilised for multiword detection.

We also have two additional classes of words to
prevent false positive extractions. One class con-
tains words of negation, likenot, cannot, etc. The
other contains nouns that are to be distinguished
from other common nouns to avoid them being
recognised as named entities,e.g. alleleanddiploid.

3.6 Extraction of named entities
In the preceding steps we classified relevant nouns
according to semantic criteria. This allows us to
chunk noun phrases generalising over both POS-
tags and semantic tags. This syntacto-semantic
chunking was performed to recognise named enti-
ties using cascades of finite state rules implemented
as a CASS grammar (Abney, 1996). As an example



we recognise gene noun phrases:[nx_gene[dt the][nnpg CYC1][gene gene][in in][yeast Saccharomyces cerevisiae]]
Other syntactic variants such as “the glucokinase
geneGLK1 ” are recognised too. Analogously, we
detect at this early level noun chunks denoting other
biological entities like proteins, activators, repres-
sors, transcription factors etc.

In subsequent cascades, we recognise more com-
plex noun chunks on the basis of the simpler ones,
such as promoters, upstream activating/repressing
sequences (UAS/URS), binding sites, etc. At this
point it becomes important to distinguish between
agent and theme forms of noun chunks. A binding
site, for example, is part of a target gene, the name
of this gene or by the name of the regulator protein
that binds to it. It is thus necessary to discriminate
between “binding site of” and “binding site for”.

As already mentioned, we have annotated a class
of nouns that triggers experimental context. On the
basis of these we identify noun chunks mentioning
for example deletion, mutation, or overexpression
of genes. At a fairly late stage we recognise events
that occur in nominalisations like “expression of”.

3.7 Extraction of relations between entities

This step of processing concerns the recognition
of three types of relations between the recognised
named entities: up-regulation, down-regulation, and
(unspecified) regulation of expression. We combine
syntactic properties (subcategorisation restrictions)
and semantic properties (selectional restrictions) of
the relevant verbs to map them to one of the three
relation types.

The following shows a reduced bracketed struc-
ture consisting of three parts, a promoter chunk, a
verbal complex chunk, and a UAS chunk (theme):[nx_prom the ATR1 promoter region][contain contains][nx_uas_pt[dt�a a] [bs binding site] [for for][nx_activator the GCN4 activator protein]].
From this we extract that theGCN4 protein acti-
vates the expression of theATR1 gene. We iden-
tify passive constructs, too,e.g.“RNR1 expression
is reduced byCLN1 or CLN2 overexpression”. In
this case we extract two pairwise relations, namely
that bothCLN1 andCLN2 down-regulate the ex-
pression of theRNR1 gene. We also identify nom-
inalised relations as exemplified by “the binding of

GCN4 protein to theSER1promoter in vitro”8

4 Results
Using our relation extraction rules, we were able
to extract 422 relation chunks from our complete
yeast corpus. As one entity chunk can mention sev-
eral different named entities, these corresponded to
a total of 597 extracted pairwise relations. How-
ever, as several relation chunks mention the same
pairwise relations, this reduces to 441 unique pair-
wise relations comprised of 126 up-regulations, 90
down-regulations, and 225 regulations of unknown
direction.

Figure 2 displays these 441 relations as a regu-
latory network in which the nodes represent genes
or proteins and and the arcs are expression regula-
tion relations. Known transcription factors accord-
ing to the Saccharomyces Genome Database (SGD)
(Dwight et al., 2002) are denoted by black nodes.
From a biological point of view, it is reassuring that
the proteins serving as regulators in our relations
tend to correspond to knownS. cerevisiaetranscrip-
tion factors.

8It should be noted that no subordinate clause information
gets extracted.

Figure 2:The extracted network of gene regula-
tion The extracted relations are shown as a directed
graph, in which each node corresponds to a gene
or protein and each arc represents a pairwise rela-
tion. Arcs point from the regulator to the target and
the type of regulation is specified by the color: up-
regulation (green), down-regulation (red), and un-
derspecified regulation (blue). Known transcription
factors are highlighted as black nodes.



Table 1: Results
Organism Abstracts Relations Prec.

E. coli 195,492 321 85%
B. subtilis 16,270 89 90%
S. cerevisiae 58,664 383 83%
M. musculus 688,937 1636 84%

PubMed central 5,075 158 84%

4.1 Evaluation of relation extraction
To evaluate the accuracy of the extracted relation,
we manually inspected all relations extracted from
the evaluation corpus using the TIGERSearch visu-
alisation tool (Lezius, 2002). The results are shown
in table 1.

The accuracy of the relations was evaluated at the
semantic rather than the grammatical level. We thus
carried out the evaluation in such a way that rela-
tions were counted as correct if they extracted the
correct biological conclusion, even if the analysis of
the sentence as not as to be desired from a linguistic
point of view. Conversely, a relation was counted as
an error if the biological conclusion was wrong.

75 of the 90 relation chunks (83%) extracted from
the evaluation corpus were entirely correct, meaning
that the relation corresponded to expression regula-
tion, the regulator (R) and the regulatee (X) were
correctly identified, and the direction of regulation
(up or down) was correct if extracted. A further
6 relation chunks extracted the wrong direction of
regulation but were otherwise correct; our accuracy
increases to 90% if allowing for this minor type of
error. Approximately half of the errors made by
our method stem from genetic modifications being
overlooked—the relation being extracted is actually
mentioned in the sentence, however it is not biolog-
ically relevant.

To estimate the coverage of our method, we
looked through 100 of the 44,354 yeast sentences
that at least two gene/protein names. These con-
tained only 5 relation chunks of the desired type,
corresponding to an estimate of 2218 in total. Since
422 of these were successfully extracted by our
method, we estimate the coverage of our method to
be around 20%. This corresponds to an F-score in
the order of 55%, which is respectable by IE stan-
dards9.

A few extraction problems were encountered
specifically for E. coli, the favoured bacterial
species for experiments. Firstly, more errors are

9It should be noted that our approach does not resolve
anaphoric relations like “this protein”. In addition if a
gene/protein name is missed this sentence is not taken into ac-
count for the coverage estimation.

made due to artificial constructs since the most com-
mon reporter gene,lacZ, is itself anE. coli gene.
Secondly, some abstracts are erroneously associ-
ated withE. coli hence associating the correct gene
names but in the wrong species—this is considered
an error since the same gene names is not guaran-
teed to refer to the same gene in different species.

4.2 Entity recognition
For consistency, we have also evaluated our ability
to correctly identify named entity at the level of se-
mantic rather than grammatical correctness. Man-
ual inspection of 500 named entities from the evalu-
ation corpus revealed 14 errors, which corresponds
to an estimated accuracy of just over 97%. Surpris-
ingly, many of these errors were commited when
recognisingproteins, for which our accuracy was
only 95%. Phrases such as “telomerase associated
protein” (which got confused with “telomerase pro-
tein” itself) were responsible for about half of these
errors.

Among the 153 entities involved in relations no
errors were detected, which is fewer than should
be expected from our estimated accuracy on entity
recognition (99% confidence according to hyperge-
ometric test). This suggests that the templates used
for relation extraction are unlikely to match those
sentence constructs on which the entity recognition
goes wrong. False identification of named entities
are thus unlikely to have an impact on the accuracy
of relation extraction.

4.3 POS-tagging and tokenisation
We compared the POS-tagging accuracy of three
parameter files on 24,798 held-out tokens from the
GENIA corpus. The best result was achieved us-
ing the parameter trained on the revised GENIA cor-
pus, which correctly tagged 96.4% of tokens. This
compares favourably to the 93.6% and 85.7% cor-
rect tokens achieved using the parameter file for the
standard GENIA corpus and the standard English
parameter file respectively.

Of 1,068 punctuation marks we recognised 995
correctly as sentences boundaries and all 68 abbre-
viations correctly, too. This results in an overall pre-
cision of 99.5%.

5 Linguistics and ontologies
In the previous sections we have shown that a rule-
based approach can be used to extract from biomed-
ical abstracts information on regulation of gene
expression. This highly relevant biological prob-
lem could be addressed for several model organ-
isms with equal accuracy. The main adaptation re-
quired for this was to replace the list of synonymous



gene/protein names to reflect the change of organ-
isms. These high quality results show that the rules
that have been used reflect an underlying model,
which is independent of the organism. This model
is – as already introduced – depicted in Figure Fig-
ure 1.

Nonetheless it has to be noted that a major draw-
back from this rule-based IE approach is that the
writing of rules is highly time consuming and scal-
able only to a limited extent. To reduce the temporal
factor and to increase the scalability of the system
the development of a a system that allows for (semi-
)automatical interaction between ontological infor-
mation and a rule-based IE system could prove to be
highly useful. The process of extracting information
from textual data thus should be ontology-driven.

Another advantage from an ontology-driven ap-
proach is related to what Schulze-Kremer calls
the communication problem in molecular biology
[(Schulze-Kremer, 1998)]. Aiming that in a sub-
sequent stage the same ontology guides the integra-
tion of the extracted data one can ensure that con-
sistency of data is much more likely than in other
approaches.

To shortly explain what is meant by an ontology-
driven IE system two layers have to be distin-
guished10. One layer regards the interplay between
the ontological concepts and the lexical items (i.e.
the words) in a text. To give an example, it has to
be ensured that an entity recognised as a protein like
GCN4in “the GCN4 activator protein” (taken from
1) is not linked to the conceptprotein only, but to
the even more specific concepttranscription acti-
vator protein. Of course, this concept inherits all
properties ofprotein, but it has additional properties
specified,e.g.that it has the role of activating gene
expression.

Even more important, each relational word has to
be associated with a relation in the ontology where
the arguments are specified. The arguments of the
ontological relationactivate specify at least two
possible pairs of semantic types. One, where both
are proteins – and thus being part of the protein-
protein interactions model – , and a second where
one argument is a protein and the second is a gene
part – and thus being part of the gene expression
model –. For a sentence like example 1, the nominal
phrasethe ATR1 promoter regionwould be linked
to thepromoterconcept, which is a part of the non-
coding sequence of thegeneconceptualisation.

(1) The GCN4 activator protein binds to the ATR1

10A detailed description of an ontology-driven information
extraction system can be found in (Cimianoet al., 2004).

promoter region.

(2) The ATR1 promoter region contains a binding
site for the GCN4 activator protein.

(3) The binding of GCN4 protein to the SER1 pro-
moter in vivo...

The second layer for ontology-driven IE systems
that has to be taken into account concerns the clear
conceptualisation in combination with the inferen-
tial power. Example 2 shows a syntactic variant ex-
pressing the same fact as 1. The advantage from
a compositional ontology-driven approach is that
it allows to treat different syntactic construction in
that they are mapped to the same concepts. Of
course, one can not judge whether example 3 is
about activation or repression of gene expression. A
conceptbind which relates proteins and genes is un-
derspecified with respect to activation or repression.
Nonetheless thebindingrelation should be specified
between proteins and DNA parts as part of the gene
expression model and thus the binding in example 3
would be recognised as part of the gene expression
model.

(4) Endotoxin increased NF-kappaB p50/p65 het-
erodimer binding.

Example 4 illustrates that in some cases combina-
tions of different semantical issues are concerned.
One issue concerns coordination and appositions,
where the other issues concerns presuppositions. To
correctly associate an ontological concept with the
term NF-kappaB p50/p65 heterodimera series of
processing steps have to be performed. First,het-
erodimer is linked to the appropriate ontological
category. This category comprises information that
presupposes the existence of two entitiesA andB,
both of typeprotein, as well as the information thatA 6= B. Concerning the coordination a common
system would try to identify these two entities and
associateA with NF-kappaBandB with p50/p65.
Unfortunately in a biological context this can easily
fail. To determine the meaning correctly the system
needs to know that the slash symbol is used in bi-
ological publications to express conjunctions, and,
that NF-kappaBassigns the type of protein to both
p50and65. The correct answer could then compo-
sitionally be computed withA = p50 andB = p65.
This example shows that understanding of coordi-
nated constructions is based on domain knowledge,
that has to be fed into a NLP system.

6 Conclusions
We have developed a method that allows us to ex-
tract from biomedical abstracts information on reg-



ulation of gene expression. This is a highly relevant
biological problem, since much is known about it
although this knowledge has yet to be collected in
a database. Also, knowledge on how gene expres-
sion is regulated is crucial for interpreting the enor-
mous amounts of gene expression data produced by
high-throughput methods like spotted microarrays
and GeneChips.

Since we developed our method based on an on-
tological model for gene expression, our method is
applicable to several model organisms with com-
parable accuracy. The main adaptation required
for this was to replace the list of synonymous
gene/protein names to reflect the change of organ-
ism. Furthermore, application of the method to
full text journals gave promising preliminary re-
sults. We thus intend to systematically apply our
rule based method to both abstracts and full text cor-
pora for many more organisms including humans.
Additionally, we are working on expanding the rules
on a broader ontological model to also extract other,
specific types of interactions between biological en-
tities, reusing the many rules responsible for the
recognition of named entities.
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