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Identification and analysis of evolutionarily cohesive
functional modules in protein networks
Mónica Campillos, Christian von Mering, Lars Juhl Jensen, and Peer Bork1

The European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany

The increasing number of sequenced genomes makes it possible to infer the evolutionary history of functional
modules, i.e., groups of proteins that contribute jointly to the same cellular function in a given species. Here we
identify and analyze those prokaryotic functional modules, whose composition remains largely unchanged during
evolution, and study their properties. Such “cohesive” modules have a large number of internal functional
connections, encode genes that tend to be in close proximity in prokaryotic genomes, and correspond to physical
complexes or complex functional systems like the flagellar apparatus. Cohesive modules are enriched in processes
such as energy and amino acid metabolism, cell motility, and intracellular trafficking, or secretion. By grouping
genes into modules we achieve a more precise estimate of their age and find that the young modules are often
horizontally transferred between species and are enriched in functions involved in interactions with the environment,
implying that they play an important role in the adaptation of species to new environments.

[Supplemental material is available online at www.genome.org.]

Functional modules, groups of proteins that work together for
the same cellular function, have been described in a variety of
networks, e.g., as enzymatic pathways in metabolic networks
(Ravasz et al. 2002), as groups of interconnected proteins in pro-
tein interaction networks (Ravasz et al. 2002; Rives and Galitski
2003), or as closely linked clusters in predicted in silico protein
association networks (Snel et al. 2002b; von Mering et al. 2003a).
Functionally linked proteins have been shown to evolve together
(Pellegrini et al. 1999; Ettema et al. 2001, 2003) and proteins with
similar phylogenetic distributions are often components of the
same pathway (Huynen and Bork 1998; Marcotte et al. 1999;
Pellegrini et al. 1999, 2001; Wu et al. 2003). Although algorithms
that identify sets of genes with similar phylogenetic distributions
are able to reconstruct many known pathways (Pellegrini et al.
1999; Date and Marcotte 2003; Wu et al. 2003), a recent study of
the evolutionary modularity of several types of modules indicates
that they show only limited conservation during evolution (Snel
and Huynen 2004).

Nevertheless, some prokaryotic modules do show evolution-
ary cohesion (i.e., their components are frequently gained, trans-
ferred, or lost together); these are often conserved at the operon
level and frequently encode biosynthetic pathways (Snel and
Huynen 2004). Several hypotheses have been put forward to ex-
plain these observations, such as the notion of “selfish operons”
(Lawrence 1997), although only a few operons are stable over
very long evolutionary time scales (Itoh et al. 1999; Lathe III et al.
2000). There seem to be differences in the evolution of cohesive
modules, as some prokaryotic metabolic pathways show a broad
phylogenetic conservation (Peregrin-Alvarez et al. 2003), while
others are more restricted to specific groups of bacteria (Martin et
al. 2003). Some modules are more cohesive than others: Operons
coding for physical complexes such as ribosomal proteins, pro-
ton ATPases, and ABC-type membrane transporters show conser-
vation even at the level of gene order (Mushegian and Koonin
1996; Siefert et al. 1997; Dandekar et al. 1998; Wolf et al. 2001).

However, others have been subjected to more dynamic evolu-
tion, with frequent losses and gains of genes in different phylo-
genetic lineages (Tanaka et al. 2005).

The lack of a quantitative measure of cohesiveness has so far
prevented comparative analysis of the evolutionary properties of
functional modules. Here, we identify modules that appear to be
cohesive during evolution and perform a parsimony analysis to
determine when and why these modules appeared. We first study
topological and functional properties of these modules; we then
classify them into ancestral, intermediate, and young age according
to their inferred first appearance during evolution, and study
functional characteristics of these age classes. Finally, we analyze
the horizontal transfer of cohesive modules in extant species and
the role of this transfer in the adaptation of species to environ-
ments.

Results and Discussion

Quantifying the evolutionary cohesiveness of functional
modules

Defining functional modules

We have previously identified functional modules by clustering
neighbors in protein interaction networks (von Mering et al.
2003a). We used interaction networks that cover multiple organ-
isms at once, with each network node corresponding to an or-
thologous group of proteins (hereafter OG, see Methods). Edges
between the nodes represent functional associations, derived by
combining a variety of different protein interaction data includ-
ing experimentally verified interactions, predicted interactions
based on gene context methods such as gene neighborhood and
fusion, as well as interactions derived from text-mining analysis
(von Mering et al. 2005). As is generally the case for prokaryotes,
the biggest contributors of association information are chromo-
somal neighborhood and text-mining, but the other association
types contribute as well, sometimes even forming the majority of
the interactions in a module (Table S4).

Functional modules derived this way have a high coverage
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and accuracy when benchmarked against manually curated Esch-
erichia coli metabolic pathways (von Mering et al. 2003a) and
they cover a broad range of cellular functions. As they are com-
prehensive and unsupervised (i.e., largely objective), they form a
good basis for a systematic analysis of the evolution of prokary-
otic functional modules. Applying the concept to 102 prokary-
otic species with completely sequenced genomes, a total of 1161
functional modules were identified, containing 3812 out of the
9912 prokaryotic OGs included in these species.

Tracing the evolutionary history of modules

We inferred, for each functional module, the most plausible evo-
lutionary history through parsimony analysis: In a phylogenetic
tree containing 110 species (86 bacteria, 16 archaea, and eight
eukaryotes), the presence or absence of each module component
was inferred for all ancestral nodes in the tree (Fig. 1A). The
evolutionary events that were modeled for this parsimony analy-
sis were (1) gene birth, (2) gene loss, and (3) gene acquisition. We
assigned relative costs to each type of event (see Methods) and
computed for each module which evolutionary scenario incurred
the lowest overall cost (using dynamic programming to screen
scenarios capable of explaining the present-day distribution of
the module). In the cost function, we assumed that multiple
events happening at the same time incurred a somewhat lower
cost than multiple independent events (as long as they were of
the same type; see Methods). Our approach is based on two im-
plicit assumptions: Proteins known to interact today are likely to
have interacted also in the past, and a certain degree of evolu-

tionary dependence between functional partners exists (hence
the lower cost for events happening simultaneously). The latter
assumption is not essential: All results reported below are also
observed when full evolutionary independence is assumed (Fig.
S6).

Scoring and defining evolutionarily cohesive modules

Given the most parsimonious scenario for the evolution of the
genes in a module, we then asked to what extent the module was
“cohesive,” i.e., whether events involving one of the proteins
had an influence on other proteins in the module (more so than
what would be expected for random modules). We assessed how
many events were “joined” (i.e., proteins lost or acquired to-
gether, at the same node in the tree). Together with the cost
function, the “fraction of joined events” provides a measure de-
scribing the evolutionary history of each module. We compared
both measures to values derived from a conservative randomiza-
tion of modules (see Methods) and derived a single P-value
for each module. We chose this approach (i.e., combining parsi-
mony analysis with Monte Carlo P-value computation) because
it explicitly models evolutionary events against the backdrop
of the known species phylogeny, while at the same time it
provides a quantitative measure of cohesiveness that can be
used for ranking and comparing modules. At a cutoff of P < 0.01,
we found 472 of the 1161 functional modules to be cohesive,
in agreement with previous qualitative estimates of the
modularity of functional modules (Snel and Huynen 2004)
(Fig. 1C).

Figure 1. Quantification of evolutionary cohesiveness. (A) A simplified example of the ancestral states of a cohesive functional module (a) and a
noncohesive module (b). The presence of a gene in a species or ancestral state is indicated by a black square. (B) The two evolutionary parameters are
plotted for prokaryotic functional modules and random modules. The “normalized total cost” and the “fraction of joined events” for the cohesive (a)
and non cohesive (b) modules of Figure 1A are indicated. (C) Distribution of total modules and evolutionarily cohesive modules (P < 10�2), by module
size.
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Properties of evolutionarily cohesive functional modules

Cohesive modules are larger and more highly connected

Evolutionarily cohesive modules are frequently large (containing
four or more components, represented here by distinct OGs; Fig.
1C). The size distribution of cohesive modules is globally shifted
towards larger sizes—this is especially visible for module sizes two
and three (Fig. 1C) but is also evident when considering only
modules of size four and larger (P < 0.05; Kolmogorov-Smirnoff
test). This may be partially due to the larger information content
in the phylogenetic profiles of large modules, making any non-
random behavior easier to detect. However, both large and small
modules can be found among the most cohesive modules, indi-
cating that size is not a dominating factor in determining cohe-
siveness. One possible reason for the cohesiveness of large mod-
ules could be an inherent resistance against “break-up” during
evolution, as they tend to have a higher number of internal func-
tional interactions. To test whether the number of interactions
correlates with cohesiveness, we quantified the internal network
connectivity (C) of modules, defined as the number of internal
connections present, divided by the theoretical maximum of all
possible internal connections between OGs in the module. In-
deed, a positive correlation between the evolutionary cohesive-
ness of the modules and internal network connectivity was ob-
served (Fig. 2, top). This correlation is stronger when only con-
sidering neighborhood associations between OGs for the
connectivity measure (Fig. 2, top green). Thus, conserved oper-
ons in particular, or parts of “uber-operons” (i.e., a limited num-
ber of operons that rearrange in a restricted way by using the

same pool of genes [Lathe III et al. 2000]), frequently form cohe-
sive modules. Accordingly, the analysis of associations in relation
to cohesiveness reveals that cohesive modules tend to have a
higher percentage of genome neighborhood associations (al-
though other types of associations are present as well, Fig. S4),
while noncohesive modules are slightly enriched in text-mining
interactions.

Genes encoding cohesive module components rarely duplicate

The high internal connectivity of evolutionarily cohesive mod-
ules also indicates a higher functional dependency between the
genes of such modules; i.e., when one of the genes is disrupted,
the functionality of the others may also be compromised. Like-
wise, gene duplications in a cohesive module should have a lower
chance of survival, particularly when the other genes in the mod-
ules are not duplicated alongside, as has been observed for pro-
tein complexes in eukaryotic genomes (dosage sensitivity) (Veitia
2002; Papp et al. 2003; Yang et al. 2003). We would thus expect
to find a relatively low level of paralogy for cohesive modules
(i.e., such modules should have a tendency to keep a low gene
copy number, maintaining their “gene stochiometry”). Indeed,
we find that cohesive modules have significantly fewer dupli-
cated genes than noncohesive modules (Figs. 2 and S7). Cohesive
modules are significantly enriched in protein complexes (based
on keywords such as “subunit,” “chain,” “complex,” and “com-
ponent,” data not shown), but even modules that do not appear
to encode protein complexes show fewer gene duplications when
they are cohesive. Thus, apart from protein complexes (Yang et
al. 2003) and single copy orthologs (Ciccarelli et al. 2005), cohe-

Figure 2. Properties of evolutionarily cohesive modules. Top: internal connectivity of modules. The internal connectivity is defined here as the number
of actual connections between OGs divided by the number of possible connections. The connectivity of modules is plotted against their cohesiveness
ranking (black), and for comparison the plot is repeated for the same modules but limiting the connections to the neighborhood associations (green,
association score >700). Two examples that illustrate differences in internal connectivity of a cohesive and a noncohesive module are shown. The
cohesive module (P = 10�8) contains genes for cobalamin (vitamin B12) biosynthesis and the genes of noncohesive module (P = 0.34) are implicated
in methionine biosynthesis. Color code for connections: neighborhood, green; gene fusion, red; text-mining, yellow; experiments, violet. Bottom:
average number of paralogs in a module. An example of a cohesive module is shown (plotting the number of paralogous genes for a subset of species;
the module encodes a metabolic pathway involved in the conversion of succinate to propionate: COG1272, COG0427, COG1703, COG1884,
P = 7 · 10�7), as well as an uncharacterized module with a lower cohesiveness (COG1305, COG0714, COG1721, COG1001, COG2252, P = 3 · 10�3).
For both plots, modules were ranked according to evolutionary cohesiveness (P-value, only considering modules of size four or larger) and binned into
groups of 10 modules.
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sive functional modules may also display a degree of dosage sen-
sitivity.

Cohesive modules are frequently found in processes interacting
with the environment

To obtain an overview of the functional capacities of cohesive
network modules, we classified the proteins forming these mod-
ules according to broad functional categories annotated for the
respective OGs (Tatusov et al. 2001). The vast majority of pro-
teins that are singletons (i.e., not grouping into modules) are
uncharacterized (Fig. 3A). However, apart from uncharacterized
modules, the relative coverage of major functional categories (in-
formation storage and processing, metabolism, other cellular
processes including signaling) remains roughly the same be-
tween singletons and modules, i.e., the latter seem not to be
biased toward certain processes in the cell. For example, there are
about twice as many functional modules implicated in metabo-
lism than in translation, both in singletons and in functional
modules (Fig. 3A).

When comparing cohesive and noncohesive modules, those
involved in metabolism and some other cellular processes (e.g.,
cell motility or secretion) are clearly enriched (Fig. 3B). Among
the metabolic categories, the production and conversion of en-
ergy, as well as the transport and metabolism of amino acids are
overrepresented in cohesive modules (Fig. 3B) while within the
other cellular processes, cell motility and intracellular trafficking,
secretion, as well as vesicular transport are found more fre-
quently than expected. Overall, modules in information process-
ing are slightly less cohesive than those in other cellular pro-
cesses. This is somewhat surprising given the well-known con-
servation of translational and transcriptional processes, and
could be indicative of differences in cohesiveness of modules of
different evolutionary ages. The fact that both conserved func-
tions and functions of more recent origin are represented in co-
hesive modules leads us to perform a deeper study of the evolu-

tionary age of cohesive modules and their contribution to ongo-
ing species adaptation.

Distinct properties of ancestral and young modules

Defining the age of modules

We define ancestral modules as having emerged before the split
of bacteria, archaea, and eukaryotes. Young modules have
emerged in only a single species or in the ancestor of a set of
species so closely related that they still retain significant synteny.
Intermediate modules appeared between the ancestral and young
modules. We assigned these age categories to all 472 cohesive
modules by identifying the most ancestral node in the species
phylogeny for which at least 70% of the genes of the module
were found to be present during parsimony analysis (Table S2).
One hundred and twenty-six of these cohesive modules were
classified as ancient, 124 as intermediate, and 151 as young (for
the rest, no clear assignment was possible, see Methods). This use
of modules for age classification—as opposed to classifying genes
individually—has the advantage of potentially guiding the clas-
sification of a gene by its functional partners. Accordingly, we
observe that the functional properties of the age classes (see be-
low) are defined more sharply, i.e., the differences between age
classes are larger than when classifying genes individually. The
signal is also clearer when comparing genes in cohesive modules
versus genes in noncohesive modules (Fig. S5).

Functional differences between ancestral and young modules

Many of the observed differences in module function (with re-
spect to module age) reflect general trends that are also evident
from the genomic background of individual genes: Modules in-
volved in information processing are frequently of ancient ori-
gin, while uncharacterized modules often appear to be young.
However, significant functional enrichments within certain age

Figure 3. Functional characteristics of modules. The high-level categories defined for COGs (Tatusov et al. 2001) were used to assess functional
differences between (A) OGs in modules versus unconnected singleton OGs, (B) cohesive and noncohesive modules, and (C) cohesive modules of
different age classes. The total counts of each set are shown at the bottom. Colors reflect the hierarchical classification of functional categories, as in the
COG database (Tatusov et al. 2001). Statistically significant functional enrichments of cohesive over noncohesive modules are marked with asterisks
(P-values <10�2, calculated using a hypergeometric distribution with Bonferroni correction). In part (C), the statistical significance of functional
enrichments was computed for each age class (asterisks), using the hypergeometric distribution as above.
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classes are visible exclusively within cohesive modules (Figs. 3C
and S5)—these we discuss below.

Ancient and intermediate cohesive modules are often in-
volved in metabolism (Fig. 3C). Large, ancestral metabolic mod-
ules include widespread energetic complexes like ATPases, oxi-
doreductases, and dehydrogenase complexes (Table S3). The rarer
formylmethanofuran dehydrogenase and Acetyl-CoA decarbon-
ylase/synthase complexes of the Euryarchaeota and the Metha-
nosarcina subgroup of Archeabacteria appear to belong to the
intermediate age category, together with the photosynthetic
complexes of Cyanobacteria (Table S3). Other ancestral meta-
bolic modules include the majority of amino acid biosynthesis
pathways and amino acid transporters of the ABC type, although
some of the latter are also found in the intermediate age group.
In general, the ancestral metabolic modules are among the best
conserved during evolution (Kunin and Ouzounis 2003).

When considering cell motility, around half of the compo-
nents of bacterial flagella are ancestral, while pilus, secretion sys-
tems of type II, III, and IV, and conjugation systems appear to be
of intermediate or young age. Although functionally different, a
phylogenetic relationship between flagellar and a type III secre-
tion system has been suggested (Galan and Collmer 1999; Mac-
nab 1999; Nguyen et al. 2000) based on structural and sequence
similarities. These data suggest that young modules may have
evolved from older ones by a whole module duplication mecha-
nism.

In general, young modules are responsible for the majority
of the functions related to communication with the environ-
ment. Although we cannot exclude that some of these modules
might turn out to be older when more genomes become se-
quenced, some of these functions have likely evolved recently
and help to adapt to new environments.

Enrichment of uncharacterized younger modules

The high number of uncharacterized or poorly characterized co-
hesive modules, most of them of intermediate or young age, is
striking and hints at a variety of complex functions still to be
discovered. It includes a few large and widespread modules, e.g.,
one with as many as 16 components conserved in many bacteria
(Table S3). It is probably involved in the reaction to external

factors as one of the proteins is predicted to be coregulated with
hemolysin and another is involved in temperature-dependent
secretion. Most of the cohesive modules are, however, restricted
to a limited number of species or environments and thus might
be horizontally transferred between organisms.

Horizontal transfer of modules

To study the horizontal transfer of modules and how it contrib-
utes to the evolution of species, we used our parsimony recon-
struction to quantify the number of modules likely transferred
recently (i.e., classified as “gained” in an extant species, but not
in any of its next relatives in the species phylogeny). As many as
447 instances of recent module gain were observed (assumed to
be horizontal acquisitions; see Methods for details). Similarly,
480 module losses were observed and the respective cohesive
modules were assigned to functional categories (Tatusov et al.
2001).

Frequent horizontal transfer of younger cohesive modules

Horizontal transfer of intermediate and young cohesive modules
seems a likely scenario as they usually have a conserved operon
structure (Table S2), whereas ancestral modules are often en-
coded by several operons that are subject to frequent rearrange-
ment and gene exchange (so-called “uber-operons”; [Lathe III et
al. 2000]). The uber-operon structure of ancient modules may be
explained by the fact that they contain, on average, more pro-
teins than intermediate and young modules (Fig. 4B), which is in
accordance with finding that longer amino acid synthesis path-
ways exhibit lower rates of changes in pathway structure than
shorter ones (Rutter and Zufall 2004). We find that only very few
ancestral operons have been retained, corresponding to physi-
cally interacting products, as has been observed before (Itoh et al.
1999). The closer genome proximity of the genes constituting
young modules should simplify the horizontal transfer of entire
processes.

Transferred cohesive modules are selected positively in big genomes

In order to assess whether gains and losses of cohesive modules
are due to positive selection or neutral evolution, we studied

Figure 4. Properties of ancestral, intermediate, and young modules. (A) Correlation of genome size with proportion of ancestral modules. For each
prokaryotic species, the proportion of OGs in ancestral, intermediate, young, and undefined age modules are plotted against genome size (R2 values
of the ancestral, intermediate, young, and undefined age classes are 0.85, 0.71, 0.41, and 0.69, respectively). The genome size is measured as number
of OGs per species. An example of the number of modules in each age class in a large species (Escherichia coli O157: H7) and in a small species
(Ureaplasma Parvum) is depicted. (B) Distribution of module size per age class.
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whether gain or loss correlates with genome size and/or elapsed
time and examined the functions of the corresponding genes.
We found that the number of modules lost correlates with time
(Fig. S3). The functions of the 480 modules that have been lost
are very similar to the range of functions represented in cohesive
modules in general (compare Fig. 3B and Fig. 5A) with the ex-
ception of genes involved in information storage and processing,
which are almost never lost. Together, this indicates a rather
clock-like behavior and hints at module loss being a largely neu-
tral process. Indeed, many reduced genomes correspond to obli-
gate intracellular parasites, which have gradually lost a vast va-
riety of modules that are not needed in their highly specialized
environment.

In contrast, the number of modules gained correlates with
genome size (Fig. S3), suggesting that these modules are selected
for adaptation purposes as has been observed for individual genes
in archaeal and proteobacterial genomes (Snel et al. 2002a). It is
primarily young and intermediate modules that are gained,
whereas the number of ancestral modules increases only slightly
with genome size (Fig. 4A). Three functional categories are over-
represented among the modules gained, when compared against
all genes gained: energy production and conversion, protein se-
cretion systems, and unknown functions. These functional biases
of transferred modules agree with previous studies of transferred
genes (Rivera et al. 1998; Daubin et al. 2003; Nakamura et al.
2004). Certain functions enriched in large genomes and among
transferred genes, such as regulatory functions (van Nimwegen
2003; Konstantinidis and Tiedje 2004; Nakamura et al. 2004), are
not found among the frequently transferred modules detected
here, in accordance with the lower evolutionary cohesiveness of
this type of modules (Snel and Huynen 2004).

Transferred modules contribute to complex phenotypes

To analyze the benefits of module gain, we studied the pheno-
typic properties of the respective species. For this purpose, we
used terms describing phenotypic characteristics for 91 bacteria
that were extracted from the literature (Korbel et al. 2005). They
were assigned to the 20 species that have gained the most mod-
ules. Seventy percent of the most significant 30 terms associated
with these species could be classified into two main general pro-
cesses: degradation and communication/defense (Fig. 5C). The
same procedure applied randomly to 20 species does not report
any term related to the two categories (data not shown). Terms
such as “biofilm,” “lactamases,” “degrader,” and “cefoxitin” sug-
gest that bacteria that acquired the most modules live in com-
petitive environments (high species density, antibiotics, etc.)
with varying and stressful external conditions (e.g., limited water
supply, presence of xenobiotics). In fact, a high level of conju-
gative gene transfer has been reported in biofilms (Hausner and
Wuertz 1999) and several cohesive modules have been reported
to be involved in the degradation of xenobiotic compounds (van
der Meer et al. 1998; Smejkal et al. 2001; Johnson et al. 2002).
Taken together, both the gain and the loss of entire functional
modules seem to contribute to bacterial diversification, enabling
fast adaptation to new niches.

Conclusions

In summary, we quantified the degree of evolutionary cohesive-
ness of functional modules in protein interaction networks. Al-
though there is a continuum from extremely conserved to rap-
idly changing modules, we have been able to detect largely co-
hesive modules by tracing the evolution of their components

Figure 5. Relationship between module gain and specific phenotypes. (A) The functional categories of the OGs in modules that have been lost or
gained in the 102 prokaryotic species are shown. A module is considered to be lost or gained when 70% or more of its OGs are lost or gained. Statistically
significant functional enrichments of genes in cohesive modules over all genes are marked with asterisks (P-values < 10�2, calculated using a hyper-
geometric distribution with Bonferroni correction). (B) The number of OGs in the three age categories of the modules that are gained or lost is
represented. (C) Phenotypic properties of species that have gained a higher number of modules. Species were sorted by the number of modules that
have been gained since speciation from the closest relative in the tree, divided by total number of OGs in the species (see Table S5 for the species list).
Phenotypic terms associated to the 20 species that have gained more modules among the 30 first terms significantly associated (P < 10�3) (one-tailed
probability of the �2 distribution, one degree of freedom), to these species are shown.
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and by developing a statistical scoring function. We consider
∼40% of the 1161 modules analyzed as evolutionarily cohesive;
they represent a mix between ancient, large, often ubiquitous
modules involved in information storage processes, and younger
modules that perform functions which enable adaptation to di-
verse environments. Cohesive modules are frequently acquired
as units and contribute considerably to the phenotypic diversity
of extant species.

Methods

Orthologous groups and functional modules
Groups of orthologous genes (OGs) with at least one gene present
in prokaryotic genomes were extracted from STRING, version 5.1
(von Mering et al. 2003b, 2005), a database that integrates and
extends the widely used clusters of orthologous groups (COG)
database (Tatusov et al. 2001). Within the STRING framework,
novel orthologous groups have been automatically created for
gene families not yet covered in the COG database; these are
called NOGs (non-supervised orthologous groups). Where these
appeared in modules of interest, we classified and annotated
them manually, using the same classification scheme as in the
COGs database. In order to avoid artifacts introduced by poorly
resolved orthologous groups, we excluded groups (COGs or
NOGs) that contained, on average, more than four distinct pro-
teins per species (this excluded less than 3% of OGs). In total,
9913 groups in 102 prokaryotic species were considered. From
the STRING database, we also imported functional association
data, linking these groups into a network; the associations were
based on conserved gene neighborhood, gene fusion, experimen-
tal data (such as affinity purifications/yeast-two-hybrid screens),
knowledge databases (such as the MIPS collection of annotated
complexes), and text-mining. We chose not to consider associa-
tions based on microarray data (which are sparse and sometimes
noisy in prokaryotes) and associations based on co-occurrence
(the latter assume evolutionary cohesiveness and could possibly
lead to circular reasoning). Functional modules were defined
by clustering the association network using UPGMA (un-
weighed pair group method with arithmetic mean) using a cutoff
association score of 0.400 as described before (von Mering et al.
2003a).

Parsimony analysis: Inferring ancestral module states
We based the parsimony analysis on a phylogenetic species tree
consisting of 86 bacteria, 16 archaea, and eight eukaryotes, all of
which have been completely sequenced. The tree is based on a
manual integration of a variety of phylogenies: gene order trees
(Blanchette et al. 1999; Snel et al. 1999), genome content trees
(Snel et al. 1999), and the NCBI taxonomy.

In order to infer ancestral states of a module, we first re-
corded the presence or absence of each gene (i.e., orthologous
group) in each of the 110 extant species. Then, the most parsi-
monious scenario (Fitch 1971; Hartigan 1973) of presence/
absence of all the genes at all ancestral nodes of the tree was
predicted, using an in-house C++ program that calculates the
scenario with the lowest evolutionary cost. In cases where several
equivalent scenarios were possible, one of them was chosen ran-
domly. The relative costs of the evolutionary events were esti-
mated after parameter exploration as follows: two cost units for
gene birth or gene acquisition, and one cost unit for gene loss.
This 2:1 ratio of costs (gain penalty) has been estimated by others
(Snel et al. 2002a; Kunin and Ouzounis 2003) and results in a
higher enrichment of modules having genes in the same func-

tional category than is the case for gain penalty 1, a parameter
that has been suggested as well (Mirkin et al. 2003) (results re-
ported in this study are reproducible with both settings, Fig. S6).
For cases in which several genes underwent the same change at
the same time (gain or loss), all but the first event were assigned
only half the cost, reflecting the known tendency of functionally
linked systems to evolve together (Pellegrini et al. 1999; Ettema et
al. 2001, 2003). We decided to add this initial assumption of
evolutionary cohesiveness into the scoring scheme, because the
main goal of this study is to reliably rank and study the highly
cohesive modules, not to prove that cohesiveness as such exists.
Due to the high computational cost of predicting ancestral states
of modules of size 16 or larger, we applied an approximation
algorithm for these. The approximation consisted of collapsing
equal phylogenetic profiles, assuming that identical phyloge-
netic profiles have identical evolutionary histories, and also par-
titioning the module in smaller submodules when needed. For
these cases, the ancestral states of all module genes were then
reconstructed manually from the simplified scenarios.

It should be noted that our approach is distinct from a tra-
ditional phylogenetic profile analysis, because it explicitly takes
into consideration the known species phylogeny and models the
past states of a module. As a result, it can better determine which
profiles contain the most evolutionary “signal,” i.e., require the
largest number of evolutionary events to explain the present-day
patterns.

Classifying functional modules by evolutionary age
All internal nodes in the phylogenetic species tree were classified
into one of three age categories: Ancestral nodes are (1) the root
of the tree, and the respective last common ancestors of (2) eu-
bacteria, (3) archaea, and (4) eukaryotes. Nodes in the young
category are those whose descendents still have retained signifi-
cant genome synteny (syntenic groups were delineated manually
using STRING). All remaining nodes were classified as interme-
diate (Fig. S2). To assign the putative age of a given module, we
asked at what time point in evolution the majority of its com-
ponents had appeared (based on the parsimony analysis). Mod-
ules for which 70% or more of the OGs appeared in a single age
category were assigned to that category; modules whose genes
appeared in several categories, without a clear majority, were
assigned into the category undefined.

Scoring scheme for quantifying cohesiveness of modules
The evolutionary history of each module is represented by two
parameters: the summed cost of the most parsimonious evolu-
tionary events (total cost) and the relative fraction of events af-
fecting more than one gene at a time (fraction of joined events).
The cost measure is higher for larger modules (simply because
they contain more genes), so we also introduced a normalized
measure which corrects for module size (normalized total cost,
i.e., total cost divided by the number of OGs in the module).
Because the currently available set of completely sequenced ge-
nomes is highly biased (e.g., for pathogens), and because some
areas of phylogeny have very few completed genome sequences
while others have very many, it is difficult to directly assess the
significance of any given cohesiveness measurement. We, there-
fore, performed a randomization of the modules, in order to es-
timate the likelihood of observing a particular cohesive behavior
by chance. For each module size class, 107 random modules were
generated by randomizing the OGs membership in modules (we
simply populated the modules by repeatedly drawing, with re-
placement, from the total set of OGs; this approach is very con-
servative as we did not shuffle the species profiles of the OGs
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themselves, nor did we change the size distribution of OGs). We
recorded the distribution of the two cohesiveness measures for
the randomized data, by plotting their densities in a two-
dimensional plane defined by both measures. A visual inspection
of this density showed that, with the exception of modules of
size two and three, the density can be modeled with high accu-
racy by the two dimensional multivariate normal distribution
(Fig. S1) where x1 is the normalized total cost and x2 the fraction
of joined events:

f�x1,x2� =
1

2��1�2�1 − �2
exp� −1

2�1 − �2�
��x1 − �1�2

�12

+
�x2 − �2�2

�22 − 2�
�x1 − �1��x2 − �2�

�1�2 ��
The center of the covariance ellipse (µ1, µ2), angle (�) and the
standard deviations (�1, �2) were adjusted independently for
each module size (see Table S1) by minimizing the sum of the
difference between the density values and the values predicted by
the function for points of the evolutionary history parameters
using the quasi-Newton method. For modules of size two and
three, we directly used the empirical density where available and
only used the approximation function (multivariate distribution)
for areas in which the density was zero. For modules of this small
size, our measurements of cohesiveness are probably underesti-
mated, because small modules may, to some extent, appear co-
hesive by pure chance. This will be rectified as soon as more fully
sequenced genomes become available—currently our cohesive-
ness estimate is a lower limit of the actual cohesiveness.

The evolutionary cohesiveness of a real module is then cal-
culated using the following cumulative equation, where N is the
module size and x1 and x2 are values of total cost and fraction of
joined events whose density is lower than the one of the module.

Score = �
x1

�

�
x2

�

fN�x1,x2�dx1dx2
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