An improved statistical method for detecting heterotachy in nucleotide sequences

Guy Baele*°, Jeroen Raes°[¶], Yves Van de Peer°, and Stijn Vansteelandt*

- * Department of Applied Mathematics and Computer Science, Ghent University, Krijgslaan 281 S9, B-9000 Ghent, Belgium
- ° Department of Plant Systems Biology, Ghent University, Technologiepark 927, B-9000 Ghent, Belgium
- Present address: Computational and Structural Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany

Abbreviations: RAS, rates across sites; FDR, false discovery rate; SSRV, site-specific rate variation; SSU, small subunit;

Key words: heterotachy, covarion, false discovery rate, bootstrap support, ribosomal RNA, eukaryotes

Address for correspondence: Yves Van de Peer, Technologiepark 927, B-9052 Ghent, Belgium. E-mail: yves.vandepeer@psb.ugent.be

Abstract

The principle of heterotachy states that the substitution rate of sites in a gene can change through time. In this article, we propose a powerful statistical test to detect sites that evolve according to the process of heterotachy. We apply this test to an alignment of 1289 eukaryotic rRNA molecules to (1) determine how widespread the phenomenon of heterotachy is in ribosomal RNA, (2) to test whether these heterotachous sites are non-randomly distributed, i.e. linked to secondary structure features of ribosomal RNA, and (3) to determine the impact of heterotachous sites on the bootstrap support of monophyletic groupings. Our study revealed that with 21 monophyletic taxa, approximately two thirds of the sites in the considered set of sequences is heterotachous. While the detected heterotachous sites do not appear bound to specific structural features of the small subunit rRNA, their presence is shown to have a large beneficial influence on the bootstrap support of monophyletic groups. Using extensive testing, we show that this may not be due to heterotachy itself, but merely due to the increased substitution rate at the detected heterotachous sites.

Introduction

It has been extensively shown that the introduction of rates across sites (RAS) models can offer vast improvements in reconstructing phylogenies (Olsen 1987; Yang 1996; Van de Peer et al. 1996, 2000). Such models postulate that the substitution rate of a site (i.e. a nucleotide in a nucleic acid sequence) is constant through time (i.e. in all lineages), but allow this rate to vary between sites. This usually happens by letting a gamma distribution express the variability of the substitution rates (Yang 1996), eventually leading to so-called slow and fast evolving sites. It has been argued that the site-specific selective constraints which lie at the origin of RAS may also vary in time and between lineages. Indeed, Fitch and Markowitz (1970) observed that the evolutionary rate of a particular site in coding sequences can be variable across the phylogeny, due to the fact that sites critical with respect to the function of a macromolecule may change within the nucleotide sequence over time. Specifically, their covarion hypothesis postulates that, at any given time, only a fraction of the sites can accept substitutions. Those sites are called concomitantly variable codons (covarions) and their relative occurrence is assumed constant over time. To this end, when a substitution is accepted, it is assumed that another site becomes invariable and vice versa. The underlying biological argument goes that, as mutations are fixed at some sites in a gene, the functional constraints at other sites may change.

Recently introduced tests have convincingly confirmed, using real data, that the substitution rate of a site is not always constant through time (Lockhart et al. 1998; Gu 1999), but did not validate the covarion model as a sufficient explanation of sequence evolution. This is partly because a constant percentage of covarions in the covarion hypothesis may be overly restrictive (Steel, Huson and Lockhart 2000). A related process, called heterotachy, that enables greater generality, allows for site-specific rate variation regardless of the possible presence of covarions. Under such process, the evolutionary rate at a site may be different in different parts of the tree (Philippe and Lopez 2001). Specifically, evolutionary rates may change over time for each site separately. Thus, heterotachy is a site property that allows the ratio of substitution rates on different branches of the tree to vary across sites (Lockhart et al. 2006; Lockhart and Steel 2005). One specific form of heterotachy, which assumes that the rate of change between substitution rates is constant over sites, can be modelled by superimposing a continuous rate switching process (Galtier 2001) upon Yang's RAS model (Yang 1996) to allow the rate at a given site to vary over time. The model of Galtier (2001) allows site-specific rate variation at independent sites.

Evolutionary models that describe the covarion or heterotachy hypothesis may provide a better description of the data than models that do not allow constraints to change over time (Fitch and Markowitz 1970; Fitch 1971; Tuffley and Steel 1998; Huelsenbeck 2002). Indeed, Huelsenbeck (2002) used likelihood ratio tests to show that the covariotide model of Tuffley and Steel (1998) provides a better explanation of evolution at several genes than a model that does not allow rates of substitution to change over time (Huelsenbeck 2002). Further, Lockhart et al (1996) showed that inference of evolutionary trees under models that do not allow site-specific rate variation can be biased in the presence of covarion patterns of change. These results are suggestive of the importance of detecting heterotachous sites in an alignment since the presence of such positions might influence the choice of an evolutionary model (with/without heterotachy). Furthermore, knowing which sites evolve under time-varying rates could provide important insights into evolutionary processes.

While tests for unveiling heterotachous sites have been proposed in the past (Lopez, Forterre and Philippe 1999), we argue in this article that existing tests are restrictive because (a) they may incorrectly detect many non-heterotachous sites as a result of multiple testing errors; and (b) results may be highly sensitive to the number of sites in the sequence and to the number of sequences. To accommodate these problems, we have developed a new statistical test to detect heterotachy, which corrects for multiple testing by controlling the false discovery rate (FDR) (Benjamini and Hochberg 1995; Storey and Tibshirani 2003). We have applied this test to a large number of eukaryotic small subunit ribosomal RNA (SSU rRNA) sequences and estimated that heterotachy is present in 66% of all sites of our alignment. Identifying which sites are heterotachous is more demanding. Controlling the false discovery rate at 5%, we could identify 29% of all sites as being heterotachous with good confidence. We have used the results to investigate whether the presence of site-specific rate variation is related to specific monophyletic groups or to secondary structure features of the SSU rRNA. Further, we have examined the impact of heterotachous sites on the bootstrap support of certain monophyletic groups. As in the study of Lockhart et al. (1998) on covariotide substitution, we observe that the removal of heterotachous sites decreases bootstrap support under evolutionary models that do not acknowledge site-specific rate variation. We clarify the possible causes for such a decrease through extensive testing.

Materials and Methods

Data Collection

Small subunit ribosomal RNA (SSU rRNA) sequences were extracted from the European Ribosomal RNA Database (Wuyts, Perriere and Van de Peer 2004). The extracted sequences were aligned, taking into account the secondary structure information derived by comparative sequence analysis of thousands of sequences. Sites which contained gaps for some monophyletic groups were removed, as well as sequences that could not be aligned properly. Monophyletic groups containing fewer than 15 sequences were removed. This resulted in a dataset of 1289 unique sequences with a length of 968 nucleotides, divided over 21 monophyletic groups: Acanthamoeba (17), Acanthocephala (21), Annelida (85), Apicomplexa (47), Arthropoda (80), Ascomycota (59), Bacillariophyta (41), Bangiophyceae (33), Basidiomycota (81), Chlorophyta (81), Chordata (60), Ciliophora (75), Cnidaria (76), Cryptomonadaceae (18), Embryophyta (87), Euglenida (48), Florideophyceae (89), Kinetoplastida (53), Mollusca (82), Platyhelminthes (75) and Zygomycota (81).

Test of Heterotachy

To detect heterotachy at a given site, the number of substitutions for each site in each monophyletic group was predicted using a combination of neighbour-joining and maximum likelihood. First, a neighbour joining tree was calculated using PAUP* (Swofford 1998). Based on this tree, the parameters for the general time-reversible evolutionary model (GTR) with among-site rate variation were estimated using maximum likelihood. Finally, trees were computed for each of the monophyletic groups separately using neighbor joining, using the parameters estimated by maximum likelihood. The substitution rates for each site were calculated with PAML (Yang 1997) and used to predict substitution numbers. As such, a 21 (corresponding to 21 monophyletic groups) by 968 (length of the sequence alignment) matrix of substitution numbers was created. We use O_{ij} , $i = 1 \dots n = 21$, $j = 1 \dots 968$ to refer to the predicted number of substitutions at site j in group i.

We define a site to be homotachous (i.e. not heterotachous) when the expected number of substitutions at that particular site in each lineage i is proportional to the overall substitution rate λ_i of that lineage, as measured for instance by the tree length. To test whether a given position j is heterotachous, we propose the following chi-square test:

$$\chi_j^2 = \sum_{i=1}^n \frac{(O_{ij} - E_{ij})^2}{E_{ij}},$$
 (equation 1)

where

$$E_{ij} = \frac{\lambda_i}{\sum_{k=1}^n \lambda_k} \cdot \sum_{k=1}^n O_{kj}$$

is the expected number of substitutions in the ith group under the null hypothesis of homotachy. Equation (2) is obtained upon noting that under the null hypothesis, the expected number of substitutions is proportional to the overall substitution rate λ_i in that group. The test statistic (1) builds upon the chi-square test of Lopez, Forterre, and Philippe (1999), but differs from it in the sense that the tree lengths are not considered as an independent column of data, but as constants used for comparison purposes. A desirable consequence is that our test statistic does not change when the overall rates change proportionally and hence the decision whether a given site is heterotachous is not affected by the number of sites in the alignment (which itself affects the tree length). Such changes would not be allowed because proportional changes of the overall evolutionary rates do not modify the null hypothesis (i.e. the definition of homotachy).

It can be shown that the modified test-statistic (1) follows a chi-square distribution with n degrees of freedom in large samples. Because the asymptotic distribution of the chi-square test is unreliable with low cell values (i.e. substitution numbers), we have chosen to use permutation tests. In each of 100,000 permutations, the substitutions for each site were redistributed over the monophyletic groups in the following way: we kept the tree lengths for the different groups fixed and chose the probabilities of assigning substitutions to a monophyletic group proportional to the average rate (or the tree length) of that group (see Appendix C). The latter assures that the data are generated under homotachy. By comparing the chi-square statistics of the original dataset to the chi-square statistics of each of the permutations, a p-value is assigned to each site (Roff and Bentzen 1989), indicating the degree of evidence against the presence of homotachy.

Multiple testing problem

Since the chi-square test (1) is used for each of the 968 sites in our alignment separately, the overall risk of false detections is high. While Bonferroni correction can be used to control the risk of at least one false detection over all sites, it aims to control errors in the unrealistic situation where there is no heterotachy at any site. Furthermore, Bonferroni correction tends to be conservative and hence underpowered. We have therefore chosen to control the false discovery rate (Benjamini and Hochberg 1995), which is defined in our

setting as the proportion of false results among the sites which were detected to be heterotachous.

The FDR can be controlled below 5% by rejecting the null hypothesis at all sites with q-value (Storey 2003; Storey and Tibshirani 2003) less than 5%. The latter is the smallest FDR at which the test would still reject and, similar to the p-value, expresses the amount of evidence against the null hypothesis (smaller indicating more evidence against the null hypothesis).

Assumption of uniform p-values

The calculation of q-values (Storey and Tibshirani 2003; see Appendix B) requires knowing the proportion of truly homotachous positions (Storey 2003). Storey and Tibshirani (2003) propose to estimate this by calculating, for a range of λ -values in]0,1[, the observed number of p-values greater than λ , divided by the expected number of p-values greater than λ under the null hypothesis. Assuming that p-values are uniformly distributed under the null hypothesis, this is:

$$\hat{\pi}_0(\lambda) = \frac{\#\{p_i > \lambda; i = 1, \dots, m\}}{m.(1-\lambda)}.$$
 (equation 3)

This equation is then used to approximate the proportion of truly homotachous sites $\hat{\pi}_0(1)$.

Because cell values (i.e. substitution numbers) are low, the assumption that p-values are uniformly distributed under the null hypothesis is invalid and hence equation (3) is not applicable. The exact distribution of p-values under the null hypothesis therefore needs to be determined. To this end, 2000 permutations of the original dataset were calculated using a similar process as explained above. Next, the mean number of p-values greater than λ was determined for each site, with λ ranging from 0 to 1, and subsequently substituted in the denominator of $\hat{\pi}_0(\lambda)$. Figure 1 illustrates the effect this has on the estimation of $\hat{\pi}_0(\lambda)$. It can be concluded from Figure 1 that not adjusting for the non-uniform p-values would make our method too conservative and hence underpowered. Figure 1 additionally shows that the proportion of truly heterotachous (homotachous) sites $1 - \hat{\pi}_0(1)$ ($\hat{\pi}_0(1)$) is estimated to be 66.3% (33.7%).

Results

Test of Heterotachy

On a sequence alignment of 1289 eukaryotic SSU rRNA sequences of 968 sites, our method identified 283 (or 29.2%) heterotachous sites (i.e. sites at which the null hypothesis of homotachy is rejected and thus have a q-value below 5%) while controlling the FDR at 5%. These sites were subdivided into five categories, from strong evidence in favour of heterotachy (q-value below 2.5%) to moderate evidence (q-value between 2.5% and 5%) (see Table 1). The remaining sites, i.e. the sites that are not rejected and thus have a q-value above 5%, will be labeled as homotachous sites below.

As reported above, the test of Lopez, Forterre and Philippe (1999) considers the tree lengths as a column of independent data. By doing so, this method identifies different (numbers of) sites as being heterotachous sites depending on whether one compares substitution numbers with the tree length or proportional measures of it. Using the tree length, 366 sites were classified as heterotachous by the method of Lopez, Forterre and Philippe (1999), as compared to 378 using the average number of substitutions (i,e. the tree length divided by the number of sites). For other proportional measures, such as 10 or 100 times the average, this method classified 361 and 321 sites as being heterotachous. Results from our test are more reliable because the same 283 sites were detected to be heterotachous regardless of the measure used.

Phylogenetic groups

After the identification of heterotachous sites in our dataset, we determined which phylogenetic groups were primarily responsible for heterotachy at a given site. Therefore, the contribution of each monophyletic group to the chi-square statistic (1) of a site was calculated. To conclude that a given monophyletic group is responsible for heterotachy at a given site, such a contribution must be significantly elevated compared to its expectation under the null hypothesis. We therefore estimated the 95% percentile of each contribution under the null hypothesis using 10,000 permutations. Contributions exceeding this percentile were taken as evidence that heterotachy was caused by the evolutionary rate being unexpectedly high in this group (when $O_{ij} > E_{ij}$), in which case we labelled them 'positive', or being unexpectedly low (when $O_{ij} < E_{ij}$), in which case we labelled them 'negative'. As seen in Figure 2, Euglenida, Ciliophora, Platyhelminthes and Annelida are the monophyletic groups that contribute the most to the presence of heterotachy, oftentimes due to sites evolving faster than expected.

Function-structure analysis

In Figure 3, the heterotachous sites were mapped on the secondary structure of the yeast *Saccharomyces cerevisiae*. We tested the distribution of the heterotachous sites over the different regions of the secondary structure such as stems, hairpin-loops, internal loops, branching loops and single-stranded regions (bulge loops and pseudo-knots were not considered since they rarely occur). Percentages of heterotachy were: 27.9% in stem regions, 30.5% in hairpin-loops, 34.6% in the internal loops, 29.5% in branching loops and 27.6% in the single-stranded regions. In line with previous studies (Philippe and Lopez 2001; Lopez, Casane and Philippe 2002), a chi-square test of homogeneity revealed no evidence for an uneven distribution of heterotachy between regions (p-value: 0.87).

In the past, substitution rates of eukaryotic and bacterial SSU rRNAs have been superimposed on the secondary structure of *Saccharomyces cerevisiae* (Wuyts, Van de Peer and De Wachter 2001) and both the secondary and tertiary structure of *Thermus thermophilus* (Van de Peer, Chapelle and De Wachter 1996). Inspection of the substitution rates showed that structurally interacting sites in an RNA molecule evolve very similarly in virtually every case, apart for few exceptions. This is due to compensatory mutations and to the constraint of maintaining the secondary structure of the rRNAs (Higgs 2000). A mutation on one side of a pair within a helical region disrupts the structure and is slightly deleterious, unless a second mutation of the other side of the pair restores the pairing ability (Savill, Hoyle and Higgs 2001).

To investigate whether sites at opposing sides of a stem evolve according to the same principle (heterotachy or homotachy), 220 base pairs (i.e. all the nucleotide pairs within the stem regions) in the secondary structure were evaluated. One hundred and sixty five (or 75%) evolved according to the same principle (both heterotachy or both homotachy), while 55 (or 25%) evolved according to a different principle. To assess the significance of this result, one must acknowledge that a significant proportion γ_0 of pairs may evolve according to the same principle just by chance (i.e. even when heterotachous sites are randomly distributed over the alignment). With π being the probability of observing a heterotachous site within the 220 pairs (i.e. the percentage of heterotachous sites among the 440 sites which make up the 220 base pairs), it can be shown that this proportion equals $\gamma_0 = \pi^2 + (1 - \pi)^2$. For our data we estimated $\pi = 27\%$, suggesting that paired evolution happens by chance in 61% of all pairs. To assess whether the observed chance γ of paired evolution ($\hat{\gamma} = 75\%$) is significantly elevated, we used the Delta method to acknowledge that γ_0 is itself estimated (see Appendix

A) and found a p-value of 1.3×10^{-6} , suggesting highly significant evidence for paired evolution.

Degree of support

While in the absence of a molecular clock the general time-reversible evolutionary model (GTR) used for fitting the data does not prohibit sites to have different evolutionary rates in different lineages, the combination of heterotachous and homotachous sites in an alignment may generate inaccuracies in phylogenetic inference, due to the heterogeneity of the sites (Moreira and Philippe 2000). One might therefore expect that the bootstrap support will tend to increase after removing heterotachous sites, creating a more homogeneous alignment and reducing model violations (Philippe and Germot 2000). Due to computational constraints, a random subset of 10 sequences of each monophyletic group was used to calculate the bootstrap supports with and without the removal of heterotachous sites. Comparing these bootstrap supports for the clustering of specific monophyletic groups revealed a surprising and unexpected systematic decrease for most monophyletic groups when heterotachous sites were removed, as is shown in Table 2. A similar result was observed in a covarion study by Lockhart et al. (1998). Likewise, using simulation studies, Penny et al. (2001) have shown that the chance of recovering a correct tree topology increases when sites that are unchangeable for part of the time are present. Their results are therefore also suggestive of decreased bootstrap supports when removing "covarion" sites.

To acknowledge that this decrease in bootstrap support could be merely due to the decrease in number of available sites, regardless of the presence of heterotachy, control experiments are necessary to correctly determine the impact of the removal of heterotachous sites (Inagaki et al. 2004). To this end, we simulated N=100 alignments from the original alignment, randomly removing an equal number (i.e. 283) of sites on each occasion. For each alignment a bootstrap tree was constructed based on 5000 bootstrap replications, using the same procedure we used for obtaining the original trees. For each tree, the bootstrap value in each monophyletic group was determined. These bootstrap values were then ordered from smallest to largest: $M_{(1)} \leq ... \leq M_{(N)}$. To acknowledge simulation error due to using a finite number N of trees, we calculated an approximate 95% confidence interval for the 5% percentile as $[M_{(L)}, M_{(U)}]$ (Nettleton and Doerge 2000), where

$$L = \left| 0.05N - \Phi^{-1}(0.975) \left(N(0.95) 0.05 \right)^{\frac{1}{2}} \right|$$

and

$$U = \left[0.05N + \Phi^{-1}(0.975) \left(N(0.95)0.05 \right)^{\frac{1}{2}} \right],$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x, and we verified whether the number N of simulated alignments was sufficient to produce unambiguous results (Nettleton and Doerge 2000). Bootstrap values below the lower bound of this confidence interval are unexpected and therefore suggestive of the decrease in bootstrap support not just being due to the random removal of sites.

In some cases (i.e. for some removals of 283 random sites), some monophyletic groups could not be recovered and hence their bootstrap value was not obtainable from standard software. To cope with this missing information, we constructed two confidence intervals as in a worst-case/best-case analysis. In the former, we imputed 0 for the missing bootstrap support. In the latter, we chose the minimal bootstrap support encountered for the given monophyletic group across all available trees (a low bootstrap value is realistic since the group could not be reconstructed, i.e. bootstrap support was very low). Table 2 shows that the bootstrap supports for the different groups, after removal of heterotachy, were systematically lower than $M_{(L)}$. We therefore conclude that the decrease in support after removal of heterotachy is not just due to the removal of random sites. It follows that, in addition to the removal of sites, another process must be responsible for the decrease in bootstrap support.

To investigate whether the decrease in bootstrap support is the result of a different variability at heterotachous sites than others, we subsequently constructed N=300 alignments from an alignment from which random sites with the same variability were removed from the dataset. To randomly select sites with the same variability, we first subdivided sites into different classes containing at least 10 different sites of similar variability, as measured by the number of substitutions at the considered site. Next, for each heterotachous site in each variability class, we randomly drew a (homotachous or heterotachous) site from the same variability class. From the results in Table 2, we conclude that the decrease in bootstrap support may well be caused by the increased variability at detected heterotachous sites (which may itself be due to the increased power of our test at sites with high variability). This is seen because the bootstrap supports are systematically higher than $M_{(U)}$. Note that for some groups (e.g. Platyhelminthes), there was no decrease in bootstrap support when removing the heterotachous sites. Other groups (e.g. Mollusca and Apicomplexa) may require further

testing since their initial bootstrap support (when constructing the tree using all sites) was considered insufficient (i.e. < 70%).

Discussion

Since the introduction of models that aim to incorporate the covarion hypothesis (Tuffley and Steel 1998), there has been an increasing amount of research on both covarion and heterotachy processes. Recent work includes the comparison between the performance of maximum parsimony, maximum likelihood and Bayesian MCMC using simulated data sets containing heterotachy (Kolaczkowski and Thornton 2004; Spencer, Susko and Roger 2005). However, given the complexity of such evolutionary processes, limited research has been conducted to assess the impact on phylogenetic inference under biologically plausible models (Steel 2005). In this respect, we believe that our results, being based on real data, provide valuable insights into the actual patterns of heterotachy, as they have occurred through evolution in SSU rRNAs, and into their influence on the support of phylogenetic inference.

It is well known that the changes at the two sides of a stem region in RNA are correlated with each other due to the constraint of maintaining the secondary structure (Higgs 2000). Our method to detect heterotachous sites significantly confirms such a correlation, which is suggestive of its adequate performance. We expect this similarity to be even more pronounced in reality. This is because the maximum likelihood approach used for inferring the evolutionary rates, treats sites within base pairs as independent. While this approach is known for its robustness when violating interdependencies of sites, it remains to be investigated whether results would modify if rates were inferred using base-pair models such as a 16-state Markov model (Schöniger and von Haeseler 1994), a 7-state (Tillier and Collins 1998) or 6-state model (Tillier and Collins 1995). Note also that there may always be base pairs containing one heterotachous site on one side and one homotachous site on the other side of the stem. This may happen in a situation with 2 Watson-Crick pairings (A-U and G-C) and one non-Watson-Crick interaction (G-U) (Gutell et al. 1992), as in the model of Tillier and Collins (Tillier and Collins 1995). Indeed, it is possible that in a given monophyletic group the transition from G-C to G-U has occurred several times, but that the base pair mutates back to G-C instead of selecting the compensatory mutation to A-U. This could imply that sites at opposing sides of the stem show differences in variability, which could result (accumulated over different groups) in the detection of heterotachy instead of homotachy (or vice versa) at opposing sites of a stem region (Fig. 3).

In our analysis of the secondary structure of the SSU rRNA, we found no immediate correlation of heterotachy and structure-function for SSU rRNA. While it has been shown that modelling of heterotachy may provide higher likelihoods in the reconstruction of phylogenetic trees (Galtier 2001), the role of the heterotachy process in structural and functional research still remains unclear.

Future work

Similar to other approaches for detecting heterotachy, our method detects heterotachy between different evolutionary lineages (Lopez, Casane and Philippe 2002; Kolaczkowski and Thornton 2004). However, the definition of heterotachy allows evolutionary rates to change more generally through time, i.e. across the phylogeny. This means that a rate switch can occur anywhere in the phylogenetic tree and not only at the internal nodes between kingdoms or major phylogenetic clades. Our heterotachy test cannot be used to detect rate switches at a chosen branch of the tree. Adaptations which allow more flexibility will likely lead to increased power for the heterotachy test. Further, preliminary analyses have shown that the tree length of each monophyletic group is an adequate measure for the overall evolutionary rate (i.e. an adequate choice of λ_i) for our chi-square test. Nonetheless, other measures might prove useful for certain data sets and possibly lead to greater power for the heterotachy test. Regardless of how one measures the overall evolutionary rate λ_i , it will typically be based on estimated substitution numbers. It remains to be investigated how the resulting uncertainty about λ_i may impact our test results. As in other research studies concerning evolutionary rates, computational constraints make this currently prohibiting, however.

Recent studies have focused on modeling covarion and site-specific rate variation (i.e. heterotachy), but current evolutionary models for these processes are limiting. The covarion hypothesis is usually modeled by superimposing two stochastic processes: a two-state Markov process that acts as a switch, turning sites "on" (variable) and "off" (invariable), and a standard substitution process for sites in "on"-state, corresponding to an evolutionary model of choice (Tuffley, and Steel 1998; Huelsenbeck 2002). Likewise, heterotachy has been modeled by superimposing a continuous rate-changing process onto the among-site rate variation nucleotide process (Galtier 2001). Both models were found to provide equally well or better fits to the data in most cases, as compared to nucleotide models which do not allow site-specific rate variation. However, these models assume site-independent evolution, an assumption that contradicts the covarion hypothesis as formulated by Fitch and Markowitz (1970). It thus remains to be investigated how one can model the typical behavior of

covarions, i.e. when a mutation gets fixed at a certain position, another position becomes variable.

Conclusion

In this study, we have proposed a statistical method to uncover heterotachy in an alignment involving a priori identified monophyletic groups. In a dataset of 1289 aligned eukaryotic SSU rRNA sequences, we estimated that heterotachy is present at 66.3% of the sites. In addition, our method identified 29.2% of the sites to be heterotachous when controlling the false discovery rate at 5%. No evidence was found that these sites were heterogeneously distributed along the SSU rRNA; that is, there is no evidence that the secondary structure directly affects the probability for a position to be heterotachous. We showed that sites at opposing sides in the stem regions evolve similarly, as expected for stem regions within RNA. We extensively investigated the effect of heterotachous sites on the support for certain branchings within trees reconstructed using evolutionary models without site-specific rate variation. We observed that the removal of heterotachous sites leads to decreased bootstrap supports and showed that this may be explained by the increased variability at heterotachous sites.

Acknowledgements

We would like to thank Joseph P. Bielawski, Ziheng Yang, Joseph W. Thornton and Jan Wuyts for helpful comments. We would also like to acknowledge the Associate Editor and 3 anonymous reviewers for helpful comments and valuable suggestions which improved our manuscript.

Downloaded from http://mbe.oxfordjournals.org at Europaisches Laboratorium fuer Molekularbiologie, Bibliothek on March 17, 2010

Appendix A

Let Y_i equal 1 in the case of heterotachy at position i (i.e. position i has a q-value below 5%), 0 in the case of homotachy (i.e. position i has a q-value above 5%). Let X_i equal 1 when there is similar evolution base pair i (i.e. if both paired sites have either a q-value below 5% or they both have a q-value above 5%), 0 otherwise. Using Y and X, the following estimators for γ and π were constructed:

$$\hat{\gamma} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 and $\hat{\pi} = \frac{\sum_{i=1}^{n} Y_i}{2n}$.

The test statistic that we used to assess whether $\gamma \neq \pi^2 + (1 - \pi)^2$ is defined as:

$$\hat{\theta} = g(\hat{\gamma}, \hat{\pi}) = \hat{\gamma} - \hat{\pi}^2 - (1 - \hat{\pi})^2$$

where $g(\gamma, \pi) = \gamma - \pi^2 - (1 - \pi)^2$ and $(\hat{\gamma}, \hat{\pi})$ has the following approximate distribution: $(\hat{\gamma}, \hat{\pi}) \sim N((\gamma, \pi), \Sigma)$

where

$$\sum = \begin{pmatrix} \frac{\gamma(1-\gamma)}{n} & \operatorname{cov}(\hat{\gamma}, \hat{\pi}) \\ \operatorname{cov}(\hat{\gamma}, \hat{\pi}) & \frac{\pi(1-\pi)}{n} \end{pmatrix}$$

and

$$\operatorname{cov}(\hat{\gamma}, \hat{\pi}) = \frac{\sum_{i=1}^{n} \operatorname{cov}(X_i, Y_i)}{(2n)^2} = \frac{\operatorname{cov}(X_i, Y_i)}{2n}$$

Using the delta method (see for instance Wasserman 2004), we then find that approximately

$$\hat{\theta} = g(\hat{\gamma}, \hat{\pi}) \sim \mathcal{N}(g(\gamma, \pi), g'(\gamma, \pi)^T \sum g'(\gamma, \pi))$$

under the null hypothesis that $\gamma = \gamma_0$.

For our data, we find that $\hat{\theta} = 0.14$ and that $\hat{\theta} \sim N(0; 9.47.10^{-4})$ under the null hypothesis. This gives a p-value of 1.3.10⁻⁶, indicating significant evidence for paired evolution.

Appendix B

In this appendix, we provide the general algorithm for estimating q values from a list of p values, as it appeared in Storey and Tibshirani (2003):

1. Let $p_{(1)} \le p_{(2)} \le ... \le p_{(m)}$ be the ordered p values. This also denotes the ordering of the features in terms of their evidence against the null hypothesis.

2. For a range of λ , say $\lambda = 0, 0.01, 0.02..., 0.95$, calculate $\hat{\pi}_0(\lambda) = \frac{\#\{p_j > \lambda\}}{m(1-\lambda)}$. When the

p -values are not uniformly distributed under the null hypothesis, one should instead use our approach from the section 'Assumption of uniform p -values'.

3. Let \hat{f} be the natural cubic spline with 3 df of $\hat{\pi}_0(\lambda)$ on λ .

4. Let the estimate of π_0 be $\hat{\pi}_0 = \hat{f}(1)$.

5. Calculate
$$\hat{q}(p_{(m)}) = \min_{t \ge p_{(m)}} \frac{\hat{\pi}_0 m \cdot t}{\#\{\mathbf{p}_j \le t\}} = \hat{\pi}_0 p_{(m)}$$
.

6. For i = m - 1, m - 2, ..., 1, calculate the estimated q value for the i th most significant feature to be $\hat{q}(p_{(i)}) = \min_{t \ge p_{(i)}} \frac{\hat{\pi}_0 m \cdot t}{\#\{p_j \le t\}} = \min\left(\frac{\hat{\pi}_0 m \cdot p_{(i)}}{i}, \hat{q}(p_{(i+1)})\right).$

Appendix C

Here, we provide an artificial example of how the substitutions can be redistributed over the different monophyletic groups and sites during a permutation. The table below contains substitutions for 4 sites (1 through 4) within 3 groups, as well as their totals.

Site	1	2	3	4	Tree lengths
Group 1	5	7	2	3	17
Group 2	2	4	0	4	10
Group 3	1	0	1	0	2
Total	8	11	3	7	29

Original substitutions:

To redistribute the substitutions, we proceed from left to right, starting with 8 substitutions to redistribute over the 3 different groups. Since we wish to keep the tree length fixed, the first substitution has a chance of 17/29 = 59% to be assigned to group 1, 10/29 = 34% to be assigned to group 2 and 2/29 = 7% to be assigned to group 3. Generating a random number between 1 and 29 indicates to which group a first substitution should be assigned: if the number is between 1 and 17 the substitution is assigned to the first group, if it is between 18 and 27 the substitution is assigned to the second group and if the number is 28 or 29 the substitution is assigned to the third group. After each assignment of a substitution be assigned to the first group, the tree length of that group is decremented. For example, should the first substitution be assigned to the first group, the tree length of that group would be decremented to 16. Next, we proceed to the following substitution. This way, both tree lengths and the total amount of substitutions per site will remain fixed, resulting in a possible permutation as illustrated below.

Permutation:

Site	1	2	3	4	Tree lengths
Group 1	8	5	1	3	17
Group 2	0	5	2	3	10
Group 3	0	1	0	1	2
Total	8	11	3	7	29

References

Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B **57**(1):289–300.

Fitch, W. M. and E. Markowitz. 1970. An improved method for determining codon variability in a gene and its application to the rate of fixation of mutations in evolution. Biochem. Genet. **4**:579–593.

Fitch, W. M. 1971. Rate of change of concomitantly variable codons. J. Mol. Evol. 1:84-96.

Galtier, N. 2001. Maximum-likelihood phylogenetic analysis under a covarion-like model. Mol. Biol. Evol. **18**(5):866-873.

Gu, X. 1999. Statistical methods for testing functional divergence after gene duplication. Mol. Biol. Evol. **16**(12):1664–1674.

Gutell, R. R., A. Power, G. Z. Hertz, E. J. Putz, and G. D. Stormo. 1992. Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods. Nucleic Acids Res. **20**(21):5785–5795.

Higgs, P. G. 2000. RNA secondary structure: physical and computational aspects. Quarterly Reviews of Biophysics **33**(3):199–253.

Huelsenbeck, J. P. 2002. Testing a covariotide model of DNA substitution. Mol. Biol. Evol. **19**(5):698-707.

Inagaki, Y., E. Susko, N. M. Fast, and A. J. Roger. 2004. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1 α phylogenies. Mol. Biol. Evol. **21**(7):1340-1349.

Kolaczkowski, B. and J.W. Thornton. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature **431**:980–984.

Lockhart, P. J., A. W. D. Larkum, M. A. Steel, P. J. Waddell, and D. Penny. 1996. Evolution of chlorophyll and bacteriochlorophyll: the problem of invariant sites in sequence analysis. Proc. Natl. Acad. Sci. **93**:1930–1934.

Lockhart, P., P. Novis, B. G. Milligan, J. Riden, A. Rambaut, and T. Larkum. 2006. Heterotachy and tree building: a case study with Plastids and Eubacteria. Mol. Biol. Evol. **23**(1):40-45.

Lockhart, P., and M. Steel. 2005. A tale of two processes. Syst. Biol. 54(6):948-951.

Lockhart, P. J., M. A. Steel, A. C. Barbrook, D. H. Huson, M. A. Charleston, and C. J. Howe. 1998. A covariotide model explains apparent phylogenetic structure of oxygenic photosynthetic lineages. Mol. Biol. Evol. **15**(9):1183–1188.

Lopez, P., P. Forterre, and H. Philippe. 1999. The root of the tree of life in the light of the covarion model. J. Mol. Evol. **49**:496–508.

Lopez, P., D. Casane, and H. Philippe. 2002. Heterotachy, an important process in protein evolution. Mol. Biol. Evol. **19**(1):1–7.

Moreira, D. and H. Philippe. 2000. Molecular phylogeny: pitfalls and progress. Internatl. Microbiol. **3**:9-16.

Nettleton, D. and R. W. Doerge. 2000. Accounting for variability in the use of permutation testing to detect quantitative trait loci. Biometrics **56**:52–58.

Olsen, G. J. 1987. Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Spring Harbor Symposia on Quantitative Biology **52**:825-837.

Penny, D., B. J. McComish, M. A. Charleston, and M. D. Hendy. 2001. Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J. Mol. Evol. **53**:711-723.

Philippe, H. and A. Germot. 2000. Phylogeny of Eukaryotes based on ribosomal RNA: longbranch attraction and models of sequence evolution. Mol. Biol. Evol. **17**(5):830-834.

Philippe, H. and P. Lopez. 2001. On the conservation of protein sequences in evolution. Trends Biochem. Sci. **26**:414–416.

Roff, D. A., and P. Bentzen. 1989. The statistical analysis of mitochondrial DNA polymorphisms: χ^2 and the problem of small samples. Mol. Biol. Evol. **6**(5):539-545.

Savill, N. J., D. C. Hoyle, and P. G. Higgs. 2001. RNA sequence evolution with secondary structure constraints: comparison of substitution rate models using maximum-likelihood methods. Genetics **157**:399–411.

Schöniger, M. and A. von Haeseler. 1994. A stochastic model for the evolution of autocorrelated DNA sequences. Mol. Phylogenet. Evol. **3**:240–247.

Spencer, M., E. Susko, and A. J. Roger. 2005. Likelihood, parsimony and heterogeneous evolution. Mol. Biol. Evol. **22**(5):1161–1164.

Steel, M., D. Huson, and P. J. Lockhart. 2000. Invariable sites models and their use in phylogeny reconstruction. Syst. Biol. **49**:225–232.

Steel, M. 2005. Should phylogenetic models be trying to 'fit an elephant'? Trends in Genetics **21**(6):307-309.

Storey, J. D.. 2003. The positive false discovery rate: a bayesian interpretation and the q-value. The Annals of Statistics **31**(6):2013–2035.

Storey, J. D. and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. **100**(16):9440–9445.

Swofford, D. L. 2001. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

Tillier, E. R. M. and R. A. Collins. 1995. Neighbour joining and maximum likelihood with rna sequences: addressing the interdependence of sites. Mol. Biol. Evol. **12**(1):7–15.

Tillier, E. R. M. and R. A. Collins. 1998. High apparent rate of simultaneous compensatory base-pair substitutions in ribosomal RNA. Genetics **148**:1993–2002.

Tuffley, C. and M. A. Steel. 1998. Modelling the covarion hypothesis of nucleotide substitution. Math. Biosci. **147**:63–91.

Van de Peer, Y., S. A. Rensing, U.-G. Maier, and R. De Wachter. 1996. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae. Proc. Natl. Acad. Sci. **93**:7732-7736.

Van de Peer, Y., S. Chapelle, and R. DeWachter. 1996. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. **24**(17):3381–3391.

Van de Peer, Y., A. Ben Ali, and A. Meyer. 2000. Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. Gene **246**:1-8.

Wasserman, L. 2004. All of Statistics: A concise course in statistical inference. Springer, New York.

Wuyts, J., Y. Van de Peer, and R. De Wachter. 2001. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Res. **29**(24):5017–5028.

Wuyts, J., G. Perriere, and Y. Van de Peer. 2004. The European ribosomal RNA database. Nucleic Acids Res. **32**:D101–D103.

Yang, Z. 1996. Among-site rate variation and its impact on phylogenetic analysis. Trends Ecol. Evol. **11**:367–370.

Yang, Z. 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. **13**:555-556 (http://abacus.gene.ucl.ac.uk/software/paml.html).

Tables

Table 1: **Classification of sites according to their q-values.** The 968 sites of our alignment are classified into 5 categories, according to their q-value. Q-values lower than 5% indicate evidence in favour of heterotachy (q-values lower than 2.5% indicate strong evidence) and q-values higher than 5% indicate lack of evidence in favour of heterotachy.

	Category (q-level)	Positions
heterotachy	< 2.5%	123
]2.5%, 5%]	160
]5%, 7.5%]	134
]7.5%,10%]	112
	> 10%	439

Table 2: **Significance assessment of decreased bootstrap values.** Bootstrap values for specific monophyletic groups (1st column) under different conditions. 2nd column: using all sites; 3rd column: after removal of detected heterotachous sites; 4th column: after random removal of an equal number of sites (95% confidence intervals for 5% percentile; WC: Worst Case; BC: Best Case); 5th column: after random removal of an equal number of sites with similar variability (95% confidence intervals for 5% percentile).

Group	All pos.	HT rem.	Rand. WC	Rand. BC	Variable WC	Variable BC	
Platyhelminthes	100	100	[99-]	100]	[98-100]		
Euglenida	99	51	[65-	.85]	[31-50]		
Cnidaria	99	78	[81-	.89]	[68-77]		
Ascomycota	95	43	[51-63]		[0-42]	[19-42]	
Ciliophora	92	36	[43-68]		[0-0]	[18-18]	
Mollusca	56	38	[0-0]	[8-8]	[0-0]	[8-8]	
Apicomplexa	56	21	[0-0]	[21-21]	[0-0]	[17-17]	

Figures and Figure legends

Figure 1: Exact distribution of p-values decreases conservativeness. Fitted splines before (top spline, '+'-symbols) and after (bottom spline, triangular symbols) correcting for non-uniform p-values are used to approximate the proportion of null hypotheses ($\pi_0(1)$). While the overall trend is very similar, the difference at the ending points becomes important. Since a prediction at $\lambda=1$ is required, not correcting for non-uniformity could result in seriously overestimated q-values.

Figure 2: Significant contributions to heterotachy. Graphical representation of the number of significant contributions to the chi-square statistics of the heterotachous sites, per monophyletic group. Red, orange and yellow stacks indicate evolutionary rates that are significantly faster than would be expected if there were no heterotachy, red indicating strong evidence for faster evolution and yellow indicating weak evidence. Green, blue and purple stacks indicate evolutionary rates that are significantly slower than would be expected if there were no heterotachy, purple indicating strong evidence for slower evolution and green indicating weak evidence.

40

39

33

Chordene -

40

15

36

10

Arthropode Asconycola

Apicompleta

Annelida

22

Bacillariophyra

Bangionhy Ceae Basidion y Cora Chlorophyse

120

100

80

00

40

20

0

31

Acanthocephala

amoeba

15

52

Figure 3: **Distribution of heterotachy mapped on the SSU rRNA secondary structure of** *Saccharomyces cerevisiae*. The sites have been subdivided into 5 categories, expressing the degree of evidence in favour of heterotachy or homotachy. The heterotachous positions with the lowest q-values (below 2.5%) are coloured in red, the other heterotachous sites in orange. Remaining sites are in yellow (i.e. q-value between 5% and 7.5%), green (i.e. q-value

between 7.5% and 10%) and blue (i.e. q-value above 10%). Sites in grey were not present in our final alignment and could thus not be tested.