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Abstract 

 

We introduce a novel computational approach to predict effective genome size (EGS 

– a measure that includes multiple plasmid copies, inserted sequences and 

associated phages and viruses) from short sequencing reads of environmental 

genomics (or metagenomics) projects. We observe considerable EGS differences 

between environments and link this with ecological complexity as well as species 

composition (i.e. eukaryotes). For example, we estimate EGS in a complex, 

organism-dense farm soil sample at about 6.3 Mb whereas that of the bacteria 

therein is only 4.7 Mb; for bacteria in a nutrient-poor, organism-sparse ocean surface 

water sample, EGS is as low as 1.6 Mb. The method also permits evaluation of 

completion status and assembly bias in single-genome sequencing projects.
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Background 

 

Because of its direct link with the functional repertoire, microbial genome size is an 

important ecological parameter, which is believed to be closely coupled to the 

functional complexity and environmental niche of an organism[1-4]. For over three 

decades, numerous studies have provided estimates of average microbial genome 

size for various environments, but results vary greatly. Estimates of the average DNA 

content per cell (converted to megabases (Mb) for comparison) range from 1.5 to 8.0 

Mb for soil and from 1.5 to 9.5 Mb for aquatic environments (see [5, 6] for an 

overview of estimates). However, the diversity of techniques and parameters used 

(e.g. sample filtering, DNA staining and cell counting) greatly hampers the 

interpretation and comparison of these results. All currently used methods also have 

several important drawbacks: For instance, they have difficulties discriminating 

between the different ploidy levels of cells[7-9], so any technique measuring DNA 

content does not necessarily measure genome size. In addition, DNA binding of 

stains used in the majority of these studies (e.g. DAPI) is not always specific, and 

important biasing factors (GC content, permeability, salinity, influence of debris etc.) 

have hardly been compensated for [7, 10-12]. Finally, some estimates have been 

obtained in studies using cultured isolates only (e.g.[8, 13]), which does not reflect 

the actual environmental species composition. 

Because of all these difficulties, the average genome size of microorganisms living in 

particular environments is still uncertain, and the influence of environments on 

genome size remains a matter of speculation. Recently however, several studies 

have provided unprecedented insights into the microbial DNA content of complete 

ecosystems using massive random shotgun sequencing of environmental 

samples[14-16]. Through comparative metagenomics, various aspects of ecological 

complexity can now be studied[15, 17-20]. Here, we use these data to study the 

relationship between environment and microbial genome size. 

 

Results and Discussion 

 

The concept of effective genome size (EGS). An assembled, sequenced genome 

is a non-redundant representation of the naturally occurring amount of base pairs 

that a cell supports. It neither reflects actual copy number of inserted elements and 

plasmids nor the amount of associated phages and viruses. However, the total 

amount of DNA replicated per cell division is what determines the metabolic cost and 
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what has to be balanced against the full functional spectrum of genes available to a 

given organism. To estimate this latter, ecologically more meaningful measure of 

genome size (subsequently referred to as “Effective Genome Size (EGS)”), we have 

developed a novel computational approach to predict EGS directly from raw shotgun 

sequencing data, thereby avoiding experimental biases such as mentioned above. 

When applied to metagenomics data, our method measures the average EGS of 

organisms living in the sampled environment. 

  

Deriving a method for EGS prediction. In brief, we use a set of marker genes that 

typically occur only once per genome, to extrapolate the average genome size from 

the density of these genes found in the total set of sequence reads. Even in complex 

metagenomics data, the total number of marker genes should be proportional to the 

number of genome equivalents (i.e. individuals) present, and the marker gene 

density (i.e. number of marker genes divided by the number of sequenced base 

pairs) should thus be inversely correlated to the average size of the genomes in the 

sample. This approach would also be able to normalize, unlike previous DNA 

measurements, for intermittent episodes of polyploidy (for example in the case of 

fast-growing microbes that may replicate multiple concurrent copies of their 

genomes); in these situations our marker genes themselves are present in multiple 

copies and their density does not change.  

Previous studies have shown that genes involved in translation, ribosome structure 

and biogenesis generally show a low number of duplicates per genome and their 

number does not expand much with genome size[2, 21-24], and thus would 

constitute suitable marker genes to estimate the number of individuals in a sample, 

irrespective of their genome size. However, when applying orthologous group (OG) 

categories for identifying such genes, we still observed a slight positive correlation 

between genome size and the number of translation-related genes (Figure 1a). 

Therefore, we selected a universally occurring set of marker genes (largely 

overlapping with the ones used in [25]) that only very rarely occur as duplicates, such 

that the total marker gene count remains constant with increasing genome size 

(Figure 1a; Materials and methods). The selected marker genes (most of them, but 

not all, involved in translation) can be considered to be both essential for cellular life 

and very ancient; they evolve at a slow rate and are members of basal cellular 

processes, showing little variation across phyla. To identify the relationship between 

the density (count per megabase (Mb)) of the combined set of these selected 

markers and genome size, we calibrated our method on simulated shotgun reads 

from 154 completely sequenced bacterial and archaeal genomes (see Materials and 
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methods). Indeed, although the relationship between the true number of occurrences 

of each marker gene and the number of individuals (and thus the relationship 

between their density and average genome size) is simple, the relationship between 

the number of BLAST-observable instances of a combined set of marker genes in 

incomplete environmental shotgun data and the number of individuals is not so 

straightforward. In addition, the length of sequencing reads can seriously influence 

the likelihood of successfully detecting a marker gene using BLAST (data not 

shown). Therefore, we performed a three-dimensional calibration relating marker 

gene density x, read length L and genome size (Figure 1b; Materials and methods), 

resulting in the relationship 

x

Lba
EGS

c−
×+

=  (with a=21.2, b=4230, c=0.733) 

to predict genome size (in Mb) from the two other parameters. This formula indeed 

shows the inverse relationship between EGS and marker gene density, however 

corrected by a read-length-dependent factor following a power law. An analysis of 

sources and magnitudes of errors in predicted genome sizes showed that 

inaccuracies stem mostly from finite sequencing depth, from uncertainties associated 

with identification of marker gene sequences using BLAST, and from residual 

biological variation in genomic marker gene count (see additional file 1). The error 

contribution from finite depth is small when more than ~4× the average genome size 

was sequenced (additional file 7; this is the case in the environmental shotgun-

sequenced samples currently available). On the whole, the median unsigned 

prediction error on the simulated shotgun data was 5.3% (standard deviation (SD) 

8.7%), largely independent of genome size and read length (additional file 7).  

As marker genes are equally present in all species, our method should work well on 

complex, mixed samples (a theoretical proof can be found in additional file 1). We 

further support this by performing simulations mixing species and readlengths. For 

mixtures, the contribution of each species should weighted by the fraction (in 

numbers of genomes) it takes up in the sample. E.g., for a mixture of 2 species of 

4Mb (90% of genomes) and 12Mb (10% of genomes), we should get EGS=0.9*4Mb 

+ 0.1*12Mb. Our simulations show that this is indeed this case (see Materials and 

methods, additional file 1 and additional file 8). 
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Method validation on real shotgun data and detection of sequencing artifacts. 

To confirm that simulated data represent a valid approximation of real sequencing 

reads, we measured the prediction error on publicly available sets of microbial whole-

genome raw shotgun sequencing reads (Figure 2; Note that only 32 such datasets 

were present in NCBI’s trace archives at the time of analysis - a larger training set of 

whole-genome sequencing reads should allow to further improve the method). The 

analysis of this prediction error on ‘real’ reads showed a systematic shift of predicted 

versus known genome sizes by 15.9%, most likely reflecting unequal representation 

of certain genomic regions in sequencing libraries (‘cloning bias’ due to library 

preparation, toxicity, restriction site biases etc). After correction for this bias (which 

leads to an adjustment of the values for a and b in formula 1, see Materials and 

methods), the median error on real shotgun data is as low as ~7.8% (standard 

deviation 14.4%; Figure 2; Materials and methods). The two outliers with larger errors 

can be linked to anomalies in the deposited reads, caused by contamination 

(Wolbachia) or collapsing of repeated insert sequences (Dehalococcoides) (Figure 

2). The latter example illustrates that the EGS predicted by our method is not just 

reflecting the principal, non-redundant chromosome, but indeed considers the actual 

copy number of inserted elements and plasmids. The importance of this additional 

genomic repertoire (‘mobilome’; [26]) is not to be underestimated. For example, a 

20% variation in chromosome length was described for different isolates of 

Escherichia coli[27]. 

 

Since these cases indicate that our approach can identify assembly artifacts or 

incomplete cloning material, we applied the method to unfinished genome 

sequencing projects that have not been updated recently, and might have had a 

problematic project history (additional file 5). Our method seems to yield plausible 

results on the whole, as in the majority of cases our predictions stay within the error 

ranges of previous estimates based on e.g. pulse-field gel electrophoresis. In a few 

cases, our method reveals a larger genome size than was initially anticipated, which 

might explain problems in achieving sufficient sequence coverage (e.g. for the 

Chloroflexus aurantiacus genome); here our predictions can provide guidance as to 

the amount of sequence data needed for genome completion. This is expected to be 

particularly useful in sequencing projects that utilize the recently developed low-cost 

sequencing techniques[28, 29], which produce short reads and are thus more difficult 

to assemble.  
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Characterizing prokaryotic genome sizes as comparable subsets of samples. In 

complex environmental samples, the proportion of eukaryotic DNA present may have 

a large impact on EGS measurements. Because of their disproportionally bigger 

genome size, even a minor fraction of eukaryotes in the sample could inflate EGS. 

Thus, the relationship between organism complexity, EGS and environment becomes 

difficult to interpret, even though eukaryotes are a valid part of an environmental 

sample and a higher proportion of eukaryotes should go hand in hand with a higher 

degree of complexity.  

In order to better understand these effects, we adapted the method to measure EGS 

specifically for only the bacterial or archaeal fraction of the sample (see Materials and 

methods). To do this, we divide the number of hits to marker genes of 

bacterial/archaeal origin (as determined by the best BLAST hit in the STRING 

database [30]) by the number of hits to any bacterial/archaeal gene. Calibration of 

this domain-specific marker gene density on known genomes shows that, as 

expected, it scales inversely linear to genome size. The error is readlength-

independent and is not influenced by genome size. Median prediction error for real 

bacterial shotgun reads is 8.0% (standard deviation 14.6%) for the bacteria-specific 

measure (see additional files 1, 10 and 11). The archaea-specific measure is 

associated with a higher prediction error (see Materials and methods) due to the 

small number of genomes available for calibration and will improve when more 

genomes become available for this domain. 

 

Measuring EGS of real environments using metagenomics data. Having 

established methods for measuring EGS, we applied them to twelve publicly 

available environmental sequence data sets: five communities that were sampled 

without particle size filtering (a soil community, an acidophilic underground biofilm 

(‘acid mine drainage’) and three deep sea whale carcass scavenger communities 

(‘whale falls’)[14, 15]), and also seven Sargasso Sea water samples of different cell 

size fractions (sea water was pumped through two consecutive filters: a first ‘prefilter’ 

to remove larger organisms and debris and a second ‘collection filter’ for sampling. 

Therefore, each Sargasso Sea sample should be interpreted with the corresponding 

organismal size range in mind [16, 31] ).  

Measurements of the EGS in the samples shows that the Soil sample has the largest 

EGS, together with two of the Sargasso Sea samples of large cell size fractions, 

while the other Sargasso Sea samples have very low EGS estimates (Table 1). In 

order to test whether these values reflect functional complexity of the micro-

organisms in the sample or only reflect phylogenetic composition of the samples we 
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applied our method of measuring bacterial/archaeal EGS. The comparison of the 

latter with the general EGS measure shows that in a number of the samples 

analyzed here, the presence of eukaryotes indeed has an important effect on the 

estimated EGS. For example, the value for soil is reduced by ~25% when eukaryotes 

are excluded. However, the most drastic differences are seen in the Sargasso 

samples 5 and 6 (the two largest cell size fractions), which are reduced by more than 

75 and 50%, respectively, now causing all Sargasso size fractions to become 

statistically indistinguishable and converge to an average bacteria-specific EGS of 

1.6 Mb (sample 1 excluded – see below; Table 1; Figure 3). In addition, the fact that 

the samples originate from four different sampling sites in the Sargasso Sea (stations 

11/13, 3, 13 and S), and were taken at different time points [16] suggests that micro-

environmental differences are not influencing genome size or, alternatively, that there 

are very little differences in the bacterial populations of these sites. Indeed, water 

currents can allow for a rapid and continuous homogenization of communities and 

previous studies showed very little variation in GC content between samples with 

similar filtering treatment [32], arguing for the latter explanation. 

The only outlier in these estimates is that of sample 1 (station 13/11), which has a 

bacterial-specific EGS of 3.4Mb, i.e. about twice as large as all other samples (Table 

1). However, for this sample, contamination with Shewanella and Burkholderia, two 

terrestrial species, has been proposed [19, 33], which could explain the EGS 

differences. 

The acid mine drainage dataset derived from a biofilm at pH 0.83 [14] provides a first 

large-scale glimpse of genomic properties of free-living extremophiles. When only 

considering the bacterial EGS for the acid mine drainage sample, our results show 

an increase of 50% compared to the overall measure (3.2Mb vs 2.1Mb; Table 1; 

Figure 3). This might be explained by the presence of small genome archaea 

(Ferroplasma acidarmanus fer1 and Ferroplasma type II), which (as estimated by 

BLAST-based phylotyping, data not shown) seem to dominate the deposited reads. 

Indeed, the calculated EGS of archaea in this sample (1.8Mb) is perfectly in line with 

the genome sizes of the two assembled species. Intriguingly, the bacterial-specific 

EGS in the acid mine drainage sample (3.2Mb) is more than twice as large as the 

average parasite/symbiont genome size[34] and is thus in conflict with the proposed 

theory that genome evolution patterns of free-living extremophiles are similar to those 

of intracellular pathogens or symbionts[35].  
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EGS correlates with environmental complexity. Although the Sargasso Sea 

samples are separated into size fractions, the convergence of all samples to a 

narrow common average bacterial EGS of ~1.6Mb suggests that this value gives a 

correct general EGS of bacteria living in this environment. When considering only the 

bacterial fraction, we can hence compare these samples with the other (unfiltered) 

samples in order to investigate the influence of environmental factors on genome 

size. Our results show that soil bacterial EGS is significantly larger than that of the 

pooled non-contaminated Sargasso samples (p=5.5×10-6 after correction for multiple 

comparisons) and marginally significantly larger than AMD (p=0.04) and the pooled 

whale falls (p=0.053). Although the genomes of fully sequenced soil-dwellers were 

already noted to have a tendency to be larger than others [1, 21], we provide here for 

the first time conclusive evidence for this hypothesis based on an unbiased sampling 

of thousands of soil bacteria. Soil is a very challenging environment, because of 1) 

the high organism density leading to strong competition for nutrients as well as 

complex communication and cooperation strategies, and 2) the highly variable living 

conditions (e.g. seasons, weather)[36]. Therefore, a broad functional repertoire is 

needed in order to survive competition and adapt to ever-changing conditions. 

Together with the fact that only about 50% of the predicted soil genes have a match 

in current protein databases, our results imply a wide variety of novel functions and 

processes in soil, potentially including biotechnologically relevant ones such as 

defense (antibiotics), biosynthesis and biodegradation.  

 

The EGS of the Sargasso Sea samples is significantly smaller than that of all other 

samples. The explanation could lie in the lower organism density in Sargasso surface 

waters (about 3 orders of magnitude smaller than soil[16, 37]), which would allow 

organisms to shed the functional repertoire presumably needed for survival in 

densely populated, substrate-bound habitats or, alternatively, ‘genome streamlining’ 

to optimize replication under limiting nutrient resources, as was seen for Pelagibacter 

ubique[34], a member of the SAR11 clade, and Prochlorococcus[38-40], which 

dominate oceanic surface waters. Our estimated EGS is consistent with the genome 

sizes of these organisms (1.3Mb for Pelagibacter and 1.6Mb for the Prochlorococcus 

high-light-adapted ecotype[34, 39]) and the previously reported low GC content of 

Sargasso sequences[32], as GC content scales with genome size[1].  

As expected, AMD and whalefall EGS estimates are in between both extremes, in 

accordance with their densely populated substrate-bound lifestyle, but under 

relatively stable environmental conditions[14, 15].  
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Conclusions 

 

Using a novel computational approach, we have shown how effective genome size 

can be directly determined from raw sequencing reads, either for single species or 

entire organismal communities. EGS can be reliably estimated for complex 

environments as a whole, but also for bacterial or archaeal subcommunities in a 

sample. Applying this method to diverse environmental data sets, we could establish 

a relationship between genome size and environment, suggesting a clear correlation 

between environmental complexity and the diversity of the cellular repertoire that is 

required to cope with various external challenges. As EGS directly reflects the 

functional diversity of a community, it will not only serve as a useful ecological 

parameter but might also play a role in the search for novel biological activities.  

Furthermore, an accurate estimate of average genome sizes for different 

environments is paramount for other approaches to understand the totality of 

ecosystem composition and functioning. For example, widely-used techniques such 

as DNA reassociation kinetics help to understand ecosystem species composition 

and biodiversity as a whole[37, 41], but they require knowledge of the average 

genome size to translate genetic diversity into species diversity. Even environmental 

cell counts (used for various applications) heavily depend on the selection of a 

reference species with a genome size comparable to the sampled ecosystem 

average[42]. For the analysis of metagenomics data, the average genome size 

allows to calculate early on in a pipeline the amount of sequencing necessary for 

completion of the most dominant species[15] and is needed for the deduction of 

community structures from assembly data[43]. Currently, our method is limited to 

predicting only the average EGS, without describing the distribution of genome sizes 

within the sample. However, improvements in phylogenetic separation of 

metagenomic sequences should allow the adaptation of our method to predict 

genome size distributions in the future.  

The applications above illustrate the importance of this parameter (together with the 

functional and phylogenetic characterization of samples) in the process of 

understanding ecosystem properties from metagenomics data. The Effective 

Genome Size, as predicted here, is thus applicable to a broad range of questions 

and techniques ranging from genomics via population genetics to ecology. 
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Materials and methods 

 

Detection of marker genes. We used a set of 35 OGs that are widely conserved 

(present in most species), rarely occur as duplicate genes in known genomes, are 

not subject to horizontal gene transfer, and do not scale with genome size as marker 

genes (set largely overlapping with the one used in [25]; Figure 1; additional file 2). 

Marker gene counts were carried out using an approach similar to the one described 

previously[15], based on comparisons to known proteins. In brief, DNA sequence 

reads (or alternatively, randomly generated genome fragments) were searched 

against the extended database of proteins assigned to OGs in the latest STRING 

release (6.3)[30], using BLASTX[44], and an OG was called present when a hit 

matching one of its proteins occurred (with a BLAST score of at least 60 bits). Note 

that this procedure is largely independent on varying annotation qualities across 

genomes, and avoids biases owing to lower gene prediction quality on short 

sequences[17], such as the reads used in this study. In order to avoid potential 

biases introduced by any uneven phylogenetic representation within the reference 

set of known proteins, all BLASTX matches exceeding an overall protein identity of 

50% were discarded. This latter step is needed to avoid artefacts introduced by the 

occasional organism in the sample that happens to be closely related to a known 

organism in the BLAST database. For such an organism, even marker genes 

contained only partially on a read can be detectable by BLAST due to their high 

sequence identity to known genes. In contrast, most environmental genes have low 

sequence identity to known genes, so fragmented marker genes often escape 

detection. Thus, without the above threshold, marker gene counts would be higher 

for well-known organism, biasing the results (note that the threshold does not select 

against well-known organisms either – their genes will still generate hits with other 

organisms in the database, with identities below 50%, and will thus be counted like 

any other environmental marker gene). Query sequences were allowed to map to 

several OGs, provided these overlapped by no more than 50% of the shortest 

assignment. BLASTX was run using the BLOSUM62 matrix, and low-complexity 

filtering was enabled. Marker gene density x was then defined as the number of 

matches to reference genes, divided by the total number of Mb surveyed.  

 

Calibrating marker gene density with genome size, and genome size 

prediction. To determine the relationship between the occurrence of marker genes 

and genome size we used fully sequenced genomes for calibration. We simulated 
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the widely used whole genome shotgun (WGS) sequencing process by randomly 

extracting ‘reads’ of variable readlength from 154 previously completely sequenced 

bacterial and archaeal genomes (EBI Genome Reviews release 17). In total, 50 

genomes were randomly chosen per readlength bin (300, 400, 500, 600, 700, 800, 

900, 1000, 1100, 1200bp), and reads were sampled until 3x coverage was achieved 

(see additional file 3 for a list of genomes). We did not distinguish between plasmid 

and chromosomal DNA; i.e. each DNA fragment of a completely sequenced genome 

was equally likely to be considered.  

We determined the occurrences of marker genes among these ‘reads’ as described 

above. On these counts, we based a three-dimensional calibration, relating known 

genome size to the parameters read length and marker gene density. Because the 

total number of marker genes per genome does not vary with genome size, we 

expect that genome size increases proportionally to the inverse marker gene density 

1/x at any given read length L: EGS = c(L) / x, where c(L) is a read-length dependent 

calibration factor. The exact form of c(L) is determined not only by the read-length 

dependence of the probability of sequencing a portion of a marker gene, but also by 

the probability of identifying a read as a marker gene. Because the latter depends on 

sequence features of individual marker genes, it is not easily possible to specify the 

analytical form of c(L) a priori. Based on manual comparison of a variety of possible 

functional forms, we found that c(L) is well approximated by a power law, c(L) = a + b 

L-c. This is indeed the best (R2=0.97) ‘simple’ 3-parameter formula relating genome 

size to marker gene density and read length, as confirmed using the TableCurve3D 

v.4.0 package; a ‘simple’ equation is defined here as a three parameter equation 

consisting of a constant and two coefficients which multiply a function of x or L. This 

resulted in the prediction formula  

  [1]  
x

Lba
EGS

c−
×+

=   

We estimated the parameters of this formula with a non-linear least-squares fit, as 

implemented with the nls function in the R programming environment[45]. First, we 

randomly selected half of the species in the simulated data. Their complete sets of 

simulation results (marker gene densities x at specified read lengths L), together with 

the known genome sizes z, were used as calibration data (the remaining data was 

later used for detailed error estimation, see additional file 1 and additional file 7). 

Parameters a, b and c were chosen such as to minimize the weighted sum of 

squares ((a + b × L-c)/x – z)2/z. This led to the parameter estimates a=21.2, b=4230, 

c=0.733. 
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Because Eq.(1) is linear in the inverse marker gene density x-1, it can be 

directly applied to mixtures of genomes, which was supported by our simulations. In 

the case of species mixtures, the estimated mean EGS is the number of megabases 

per genome present in the sample; i.e., effective genome sizes of different species 

are weighted by their genome count, not by their contribution to the number of 

sequenced base pairs. As Eq.(1) is further approximately linear in the inverse read 

length L-1, it can also be applied to sequence datasets with mixed read lengths (For a 

full discussion and simulation of EGS prediction in mixtures, see additional file 1 and 

additional file 8). 

So far, calibration was based on simulated reads from fully sequenced 

genomes, ignoring potential biases introduced, e.g., by cloning. To test our 

predictions on actual sequencing data, we downloaded and analyzed shotgun data of 

completed genomes from the NCBI and Ensembl trace repositories 

(ftp://ftp.ncbi.nih.gov/pub/TraceDB/; ftp://ftp.ensembl.org/traces/), excluding those 

projects where sequencing coverage was low (<1.5×; additional file 4). In order to 

ensure consistency, we applied a uniform quality clipping method to all 32 datasets, 

rather than using the provided coordinates of each sequencing centre (phred quality 

cut-off score of 15, using a perl script kindly provided by Jarrod Chapman (JGI); 

clipped reads with less then 100 nucleotides remaining were discarded). We found 

that Eq.(1) overestimates genome size on average by 15.9%. This reflects a strong 

bias against the marker genes, likely resulting from the fact that these 35 OGs were 

chosen for their strongly conserved single-copy distribution across genomes, and 

hence introduction of additional genes into the cloning vector is often lethal. Removal 

of this bias by an additional scaling factor  (excluding the outliers Wolbachia and 

Dehalococcoides ethenogenes 195 as discussed in the main text) results in the new 

parameter values a = 18.26 and b = 3650 for Eq.(1). 

 

Species mixture simulations. In order to generate species mixtures, we first 

randomly picked 60 out of the entire list of completely sequenced cellular genomes, 

and simulated WGS sequencing for all 60 genomes using readlength bins from 600 

to 900 as described in the Materials and methods. We then generated 1000 

simulated metagenomes, by repeating the following procedure 1000 times:  

(1.) A random numberi of species were picked, with 1<i≤60.  
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(2.) For each of the i species its contributing nucleotides ni was randomized, using the 

following condition regarding the total number of nucleotides in the metagenome: 

 [2]  
∑ =
i total

i

n

n
1

.  

(3.) A readlength was randomly picked from the available 600, 700, 800, or 900 bp.  

(4.) A 'large' metagenome was generated (total sequence ≈40 Escherichia coli K12 

sized genomes) by randomly extracting reads from each of the i contributing species, 

using the readlength randomly picked in step (3.) 

(5.) The theoretical genome size T of the simulated metagenome is calculated from 

the  actual contributions ci and from the genome sizes si of the given species, using 

the following equations: 

 [3] 
∑∑∑ ===
i

i

i

i

i

i

i

ii
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us

n
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i
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n
u

. 

 

(6.) The effective genome size for the simulated metagenome is predicted from the 

randomly extracted reads as described in the main text (formula for estimating the 

EGS). 

(7.) Errors e are calculated using:  

  [4] T

TEGS
e

−
=

. 

 

Results are given in additional file 8. 

 

Mixed read lengths simulations. We further generated datasets with mixed read 

lengths. Namely, we applied the following procedure 1000 times: 

(1.) A species S was randomly picked from the pool of completely sequenced 

genomes. 

(2.) A random number j of readlengths with 1<j≤4 were picked. 

(3.) A ‘large’ metagenome was randomly generated (total sequence ≈40 Escherichia 

coli K12 sized genomes), consisting only of species S (with genome size s). 

(4.) Genome size is predicted as described in the main text (formula for estimating 

the EGS). 

(5.) Errors e are calculated using:  

 [5] s

sEGS
e

−
=

. 
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Results are given in additional file 8. 

 

 

 

EGS estimation restricted to bacteria. For EGS estimation restricted to only the 

bacteria in the sample, we calculate a domain-specific marker gene density xbacteria, 

by dividing the number of hits to marker gene OGs (n) by the number of hits to any 

OG (ntotal), with the limitation that an OG mapping is only counted if the best BLAST 

hit of that read region to STRING is a bacterial protein. This way, only reads of 

bacterial origin are considered. Because marker gene density is now estimated per 

read rather than per base pair, this measure requires a new calibration analogous to 

the one described above. Again, we found Eq.(1) to be the best fitting simple formula 

for simulated data (R2=0.93), with parameter estimates a=0.0389, b=0.81, and 

c=0.78 from a weighted fit to a training dataset consisting of data for half of the 

included genomes.  

Performance was tested on the remaining data as for the general measure (See 

additional file 1 and additional files 10 and 11). Comparison to real reads as above 

revealed an average bias of 5.2%, which lead to adjusted parameter values of 

a=0.0370 and b=0.770. After correction, we found an unsigned median error of 8.0% 

(standard deviation 14.6%). An analogous procedure was also performed to estimate 

EGS restricted to archaeal genomes in the sample. However, currently only very few 

archaea are fully sequenced, and hence there was insufficient data for a full fit and 

error estimation. To allow at least an approximate analysis of the archaeal fraction in 

the AMD sequences (see below), we obtained a rough measure by scaling Eq.(1) 

with the bacterial parameter set to fit simulated data from the available fully 

sequenced archaea. This resulted in the parameter estimates a=0.045, b=2.91, and 

c=0.78 for archaea (R2=0.87). Median unsigned error on the simulated data was 

14.7%, and standard deviation was 15.8%. 

 

Before comparing bacterial EGS estimates across environments, we first confirmed 

that there were no significant differences among the three whalefall samples and 

among the 6 Sargasso Sea samples (excluding sample 1), by calculating a z-score 

and P-value (Additional file 1; all pairwise raw P>0.05). We then pooled all whalefall 

samples, and separately all Sargasso Sea samples, to reduce the total number of 

comparisons to be made. Statistical significance of differences in EGS was then 
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estimated by calculating z-score and P-value in all remaining pairwise comparisons, 

and correcting the resulting raw P-values for multiple comparisons[46]. 

 

Environmental sequencing data. The same data was used as in [32], with the 

exception of the Sargasso Sea data, where now all samples were used. Reads were 

trimmed as described above. Additional file 6 gives an overview of sequence data 

after trimming.  

 

Scripting, statistical analyses and parameter estimation was performed using the R 

environment for statistical computing[45] and perl[47]. 
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Additional data files 

 

 

Additional file 1: Supplemental Materials and methods 

Additional file 2: List of orthologous group markers 

Additional file 3: Randomly selected genomes and read lengths used for calibration 

Additional file 4: Shotgun sequencing projects used to estimate cloning bias. 

Additional file 5: Estimated genome sizes for available unfinished genomic 

sequencing project datasets. 

Additional file 6: Data statistics for available environmental shotgun sequencing 

datasets (measured after quality clipping) 

Additional file 7: Error distribution for EGS prediction on simulated reads. 

Additional file 8: EGS predictions work well when analyzing mixtures of different 

species or read lengths. 

Additional file 9: Error distribution for EGS prediction on real reads. 

Additional file 10: Error distribution for EGS prediction on simulated reads, using the 

bacterial-specific version of the prediction formula. 

Additional file 11: Error distribution for EGS prediction on real reads, using the 

bacterial-specific version of the prediction formula. 
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Table 1: Predicted EGS on environmental samples (in Mb±SD) 

 

Sample        
EGS (complete 

sample) 

EGS (only 

bacteria)    

   

AMD        2.11 ± 0.30 3.16 ± 0.46 

Soil        6.29 ± 0.91 4.74 ± 0.69 

Whalefall 1 ('agzo')   3.42 ± 0.49 3.39 ± 0.49 

Whalefall 2 ('ahaa')   4.50 ± 0.65 4.02 ± 0.59 

Whalefall 3 ('ahai')  3.35 ± 0.48 3.24 ± 0.47 

   

Sargasso sample 1    3.25 ± 0.47 3.39 ± 0.49 

Sargasso sample 2    1.48 ± 0.21 1.46 ± 0.21 

Sargasso sample 3    1.68 ± 0.24 1.57 ± 0.23 

Sargasso sample 4    1.59 ± 0.23 1.50 ± 0.22 

Sargasso sample 5    6.20 ± 0.89 1.71 ± 0.25 

Sargasso sample 6    4.04 ± 0.58 1.94 ± 0.28 

Sargasso sample 7    1.32 ± 0.19 1.35 ± 0.20 
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Figure legends 

 

Figure 1: Predicting effective genome size from marker gene density  

(a) Gene counts for various functional classes[48] and their relationship with genome 

size. While counts of genes belonging to the categories T (Signal transduction 

mechanisms), K (Transcription) and J (translation, ribosome structure and 

biogenesis) scale (to a greater or lesser extent) with genome size, the set of 35 

universal, single-copy genes used in this study, does not.  

(b) Calibration plane used to identify the relationship between marker gene density, 

read length and genome size. The calibration was based on a simulated shotgun 

dataset of randomly extracted ‘reads’ from the sequenced genomes (see Materials 

and methods), as insufficient raw shotgun sequence data is currently available in the 

trace archives to allow a robust calibration based on ‘real’ data. Circles represent 

shotgun datasets. Circle fill color indicates the goodness of fit to the plane (blue: 

<1SD, green: <2SD, yellow: <3SD, red: >3SD). Circle border indicates position 

relative to plane (blue: above, red: below).  

 

 

Figure 2: Prediction error and identification of sequencing artifacts 

Distribution of the prediction error ((predicted – known genome size) / known genome 

size) of 32 complete genome shotgun datasets downloaded from the NCBI’s trace 

archive (see additional file 4 for a list). The majority of predictions have an error 

estimate <20%, with a median value of ~9%. 

There are, however, two exceptions in which the error is significantly larger. The first 

is the Wolbachia endosymbiont of Drosophila melanogaster. The marker OG density 

in the simulated reads is considerably higher than in the real shotgun data, leading to 

a 70% difference in predicted genome size. After further investigation of the raw 

reads, we noticed that this difference was caused by an important contamination of 

the dataset by reads originating from the organisms host, Drosophila, that were 

filtered out during the assembly of the genome, but that are still present in the 

shotgun data available at the trace archive. The second exception is the genome of 

the PCE-dechlorination bacterium Dehalococcoides ethenogenes. Also here, the 

marker OG density in the shotgun data is lower than in the simulated dataset. 

Mapping of the publicly available reads to the genome sequence showed a peak of 

read density in a region that was identified to be an integrated element that is 

believed to exist in variable copy numbers in different individuals but was only 

included once in the published genome sequence [49]. 



 20

 

 

Figure 3: Predicted effective genome sizes for environments. (a) Comparison of 

predicted EGS for total samples vs. the bacterial fraction. AMD: Acid Mine Drainage; 

WF; Whale fall deep sea samples.; S; Sargasso sea samples. Error bars indicate 

standard deviation for total (horizontal) and bacteria-specific (vertical) estimate. 

(b) Overview of cell size in the different Sargasso sea samples due to filtering during 

sampling. 



 21

References 

 

1. Bentley SD, Parkhill J: Comparative genomic structure of prokaryotes. Annu Rev 
Genet 2004, 38:771-792. 

2. van Nimwegen E: Scaling laws in the functional content of genomes. Trends 
Genet 2003, 19:479-484. 

3. Mira A, Ochman H, Moran NA: Deletional bias and the evolution of bacterial 
genomes. Trends Genet 2001, 17:589-596. 

4. Gregory TR, DeSalle R: Comparative genomics in prokaryotes. In The Evolution of 
the Genome. Edited by Gregory TR. San Diego: Elsevier; 2005: 585-675 

5. Loferer-Krossbacher M, Witzel K-P, Psenner R: DNA content of aquatic bacteria 
measured by densitometric image analysis. Arch Hydrobiol Spec Issues Advanc 
Limnol 1999, 54:185-198. 

6. Torsvik V: Total bacterial diversity in soil and sediment communities - a review. 
J Industr Microb 1996, 17:170-178. 

7. Button DK, Robertson BR: Determination of DNA content of aquatic bacteria by 
flow cytometry. Appl Environ Microbiol 2001, 67:1636-1645. 

8. Christensen H, Bakken LR, Olsen RA: Soil bacterial DNA and biovolume profiles 
measured by flow-cytometry. FEMS microbiology ecology 1993, 102:129-140. 

9. Bakken LR, Olsen RA: DNA-content of soil bacteria of different cell size. Soil Biol 
Biochem 1989, 21:789-793. 

10. Weinbauer MG, Beckmann C, Hofle MG: Utility of green fluorescent nucleic acid 
dyes and aluminum oxide membrane filters for rapid epifluorescence 
enumeration of soil and sediment bacteria. Appl Environ Microbiol 1998, 64:5000-
5003. 

11. Kepner RL, Jr., Pratt JR: Use of fluorochromes for direct enumeration of total 
bacteria in environmental samples: past and present. Microbiol Rev 1994, 
58:603-615. 

12. Zweifel UL: Total counts of marine bacteria include a large fraction of non-
nucleoid-containing bacteria (ghosts). Appl Environ Microbiol 1995, 61:2180-2185. 

13. Torsvik V, Salte K, Sorheim R, Goksoyr J: Comparison of phenotypic diversity and 
DNA heterogeneity in a population of soil bacteria. Appl Environ Microbiol 1990, 
56:776-781. 

14. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev 
VV, Rubin EM, Rokhsar DS, Banfield JF: Community structure and metabolism 
through reconstruction of microbial genomes from the environment. Nature 
2004, 428:37-43. 

15. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, 
Short JM, Mathur EJ, Detter JC, et al: Comparative metagenomics of microbial 
communities. Science 2005, 308:554-557. 

16. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, 
Paulsen I, Nelson KE, Nelson W, et al: Environmental genome shotgun 
sequencing of the Sargasso Sea. Science 2004, 304:66-74. 

17. Tringe SG, Rubin EM: Metagenomics: DNA sequencing of environmental 
samples. Nat rev genet 2005, 6:805-814. 

18. Schloss PD, Handelsman J: Metagenomics for studying unculturable 
microorganisms: cutting the Gordian knot. Genome Biol 2005, 6:229. 

19. DeLong EF: Microbial community genomics in the ocean. Nat Rev Microbiol 2005, 
3:459-469. 

20. Foerstner KU, von Mering C, Bork P: Comparative analysis of environmental 
sequences: potential and challenges. Philos Trans R Soc Lond B Biol Sci 2006, 
361:519-523. 

21. Konstantinidis KT, Tiedje JM: Trends between gene content and genome size in 
prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 2004, 
101:3160-3165. 

22. Ranea JA, Buchan DW, Thornton JM, Orengo CA: Evolution of protein 
superfamilies and bacterial genome size. J Mol Biol 2004, 336:871-887. 

23. Taylor JS, Raes J: Duplication and divergence: the evolution of new genes and 
old ideas. Annu Rev Genet 2004, 38:615-643. 



 22

24. Gevers D, Vandepoele K, Simillon C, Van de Peer Y: Gene duplication and biased 
functional retention of paralogs in bacterial genomes. Trends Microbiol 2004, 
12:148-154. 

25. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward 
automatic reconstruction of a highly resolved tree of life. Science 2006, 
311:1283-1287. 

26. Ou HY, Smith R, Lucchini S, Hinton J, Chaudhuri RR, Pallen M, Barer MR, 
Rajakumar K: ArrayOme: a program for estimating the sizes of microarray-
visualized bacterial genomes. Nucleic Acids Res 2005, 33:e3. 

27. Bergthorsson U, Ochman H: Distribution of chromosome length variation in 
natural isolates of Escherichia coli. Mol Biol Evol 1998, 15:6-16. 

28. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM, Wang 
MD, Zhang K, Mitra RD, Church GM: Accurate multiplex polony sequencing of an 
evolved bacterial genome. Science 2005, 309:1728-1732. 

29. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, 
Braverman MS, Chen YJ, Chen Z, et al: Genome sequencing in microfabricated 
high-density picolitre reactors. Nature 2005, 437:376-380. 

30. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M, Jouffre N, 
Huynen MA, Bork P: STRING: known and predicted protein-protein associations, 
integrated and transferred across organisms. Nucleic Acids Res 2005, 33:D433-
437. 

31. Remington KA, Heidelberg K, Venter JC: Taking metagenomic studies in context. 
Trends Microbiol 2005, 13:404. 

32. Foerstner KU, von Mering C, Hooper SD, Bork P: Environments shape the 
nucleotide composition of genomes. EMBO Rep 2005, 6:1208-1213. 

33. Falkowski PG, de Vargas C: Genomics and evolution. Shotgun sequencing in the 
sea: a blast from the past? Science 2004, 304:58-60. 

34. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, 
Richardson TH, Noordewier M, et al: Genome streamlining in a cosmopolitan 
oceanic bacterium. Science 2005, 309:1242-1245. 

35. Cases I, de Lorenzo V, Ouzounis CA: Transcription regulation and environmental 
adaptation in bacteria. Trends Microbiol 2003, 11:248-253. 

36. Daniel R: The metagenomics of soil. Nat Rev Microbiol 2005, 3:470-478. 
37. Torsvik V, Ovreas L, Thingstad TF: Prokaryotic diversity--magnitude, dynamics, 

and controlling factors. Science 2002, 296:1064-1066. 
38. Dufresne A, Garczarek L, Partensky F: Accelerated evolution associated with 

genome reduction in a free-living prokaryote. Genome Biol 2005, 6:R14. 
39. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, 

Coleman M, Hauser L, Hess WR, et al: Genome divergence in two 
Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 2003, 
424:1042-1047. 

40. Strehl B, Holtzendorff J, Partensky F, Hess WR: A small and compact genome in 
the marine cyanobacterium Prochlorococcus marinus CCMP 1375: lack of an 
intron in the gene for tRNA(Leu)(UAA) and a single copy of the rRNA operon. 
FEMS Microbiol Lett 1999, 181:261-266. 

41. Gans J, Wolinsky M, Dunbar J: Computational improvements reveal great 
bacterial diversity and high metal toxicity in soil. Science 2005, 309:1387-1390. 

42. Glavin DP, Cleaves HJ, Schubert M, Aubrey A, Bada JL: New method for 
estimating bacterial cell abundances in natural samples by use of sublimation. 
Appl Environ Microbiol 2004, 70:5923-5928. 

43. Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M, Salamon P, Felts B, 
Nulton J, Mahaffy J, Rohwer F: PHACCS, an online tool for estimating the 
structure and diversity of uncultured viral communities using metagenomic 
information. BMC Bioinformatics 2005, 6:41. 

44. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search 
tool. J Mol Biol 1990, 215:403-410. 

45. R: a Language and Environment for Statistical Computing [http://www.R-
project.org] 



 23

46. Benjamini Y, Hochberg Y: Controlling the False Discovery Rate: a Practical and 
Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society B 
1995, 57:289 -300. 

47. Perl [http://www.perl.com] 
48. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov 

DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al: The COG database: an 
updated version includes eukaryotes. BMC Bioinformatics 2003, 4:41. 

49. Seshadri R, Adrian L, Fouts DE, Eisen JA, Phillippy AM, Methe BA, Ward NL, Nelson 
WC, Deboy RT, Khouri HM, et al: Genome sequence of the PCE-dechlorinating 
bacterium Dehalococcoides ethenogenes. Science 2005, 307:105-108. 

 

 



Marker gene density

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

G
e
n

o
m

e
 s

iz
e
 [

n
u

c
le

o
ti

d
e
s
]

Readlength [nucleotides]

0

100

200

300

400

500

600

700

0 2e+06 4e+06 6e+06 8e+06

Genome size [nucleotides]

N
u

m
b

e
r 

o
f 

g
e

n
e

s
 i

n
 c

a
te

g
o

ry

Transcription (OG category K)

Signal transduction mechanisms (OG category T)

Translation (OG category J)

Selected Marker OGs

a

b

2.5e-05
5e-05

7.5e-05
0.0001

0.000125
0.00015

11001000900800700600500400300

Figure 1



Dehalococcoides (95%)

Wolbachia (70%)

Relative error

N
u

m
b

e
r 

o
f 

g
e

n
o

m
e

s

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

Figure 2



E
G

S
 (

b
a
c
te

ri
a
l 
fr

a
c
ti
o
n
)

Effective Genome Size (total sample)

soil

amd
s1

s2

s3

s4

s5
s6

s7

wf1
wf2

wf3

S
a

rg
a

s
s

o
s

iz
e

 f
ra

c
ti

o
n

s

mm20.00.80.220.1 3.0 10.01.0

s1
s2
s3
s4 s5

s6

s7

a

b

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Figure 3



Additional files provided with this submission:

Additional file 1: raes_etal_genomebiol_supplementary_methods.pdf, 124K
http://genomebiology.com/imedia/8515386441244730/supp1.pdf
Additional file 2: raes_etal_GB_add_t1.pdf, 41K
http://genomebiology.com/imedia/2104562741136246/supp2.pdf
Additional file 3: raes_etal_GB_add_t2.pdf, 55K
http://genomebiology.com/imedia/3496901781136246/supp3.pdf
Additional file 4: raes_etal_GB_add_t3.pdf, 52K
http://genomebiology.com/imedia/3023147361136246/supp4.pdf
Additional file 5: raes_etal_GB_add_t4.pdf, 87K
http://genomebiology.com/imedia/3801944241136246/supp5.pdf
Additional file 6: raes_etal_GB_add_t5.pdf, 52K
http://genomebiology.com/imedia/5888620111136246/supp6.pdf
Additional file 7: raes_etal_GB_add_f1.pdf, 90K
http://genomebiology.com/imedia/1240440371113624/supp7.pdf
Additional file 8: raes_etal_GB_add_f2.pdf, 70K
http://genomebiology.com/imedia/3661808821136246/supp8.pdf
Additional file 9: raes_etal_GB_add_f3.pdf, 65K
http://genomebiology.com/imedia/1310973751113624/supp9.pdf
Additional file 10: raes_etal_GB_add_f4.pdf, 65K
http://genomebiology.com/imedia/4535539631136246/supp10.pdf
Additional file 11: raes_etal_GB_add_f5.pdf, 66K
http://genomebiology.com/imedia/1117484638113624/supp11.pdf


	Start Of Article
	Figure 1
	Figure 2
	Figure 3
	Additional files

