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The gap between the amount of genome information released by genome sequencing projects
and our knowledge about the proteins’ functions is rapidly increasing. To fill this gap, various
‘genomic-context’ methods have been proposed that exploit sequenced genomes to predict
the functions of the encoded proteins. One class of methods, phylogenetic profiling, predicts
protein function by correlating the phylogenetic distribution of genes with that of other genes
or phenotypic characteristics. The functions of a number of proteins, including ones of
medical relevance, have thus been predicted and subsequently confirmed experimentally.
Additionally, various approaches to measure the similarity of phylogenetic profiles and to
account for the phylogenetic bias in the data have been proposed. We review the successful
applications of phylogenetic profiling and analyse the performance of various profile
similarity measures with a set of one microsporidial and 25 fungal genomes. In the fungi,
phylogenetic profiling yields high-confidence predictions for the highest and only the highest
scoring gene pairs illustrating both the power and the limitations of the approach. Both
practical examples and theoretical considerations suggest that in order to get a reliable and
specific picture of a protein’s function, results from phylogenetic profiling have to be

combined with other sources of evidence.

Keywords: gene co-occurrence; phylogenetic profiles; genome evolution; genomic context;
protein—protein interactions; pathway evolution

1. INTRODUCTION

The approach of modern biology to understand the
complexity of organisms is to analyse the cooperation of
their individual components. Nevertheless, extensive
experimental studies are necessary just to identify the
function of a single protein in its cellular context.
Owing to this, even for well-studied model organisms,
the functions of many proteins are yet unknown. For
example, even for the economically and scientifically
important budding yeast, Saccharomyces cerevisiae,
approximately 20% of the open reading frames are
completely uncharacterized (Saccharomyces Genome
Database, January 2007; Cherry et al. 1998) and for
many other proteins, we have only knowledge of certain

*Author for correspondence (huynen@cmbi.ru.nl).

Electronic supplementary material is available at http://dx.doi.org/
10.1098/rsif.2007.1047 or via http://journals.royalsociety.org.

Received 15 March 2007
Accepted 5 May 2007

aspects of their function, like their subcellular location,
or the phenotype after knockout of its gene.

Owing to the wealth of data accumulating in
databases and by means of powerful algorithms, e.g.
for aligning sequences and inferring evolutionary
relations between them, it becomes increasingly inter-
esting to predict protein functions in a comparative
approach. This comparative approach is essentially
based on the observation that homologous proteins
retain aspects of their function over long evolutionary
times. This allows for a homology-based function
prediction, i.e. the transfer of knowledge about the
function between homologous proteins. However,
although homology frequently implies a conservation
of mechanistic aspects of function, it provides less
information about the functional context, i.e. about
the processes a protein is involved in. For example,
homologous enzymes may catalyse similar reactions,
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but the substrates and products involved in this reaction
may be part of different pathways. The function of a
protein can only be fully understood if both its
mechanistic and contextual aspects are considered.
Hence, homology-based function prediction can be
complemented by context-based function prediction
that focuses on how a protein is linked to other proteins
and that uses the ‘guilt by association’ principle (Aravind
2000) to transfer knowledge between non-homologous
proteins, i.e. the function of a protein can be predicted by
linking it to proteins of known function. As the examples
discussed in this review show, the links predicted by
context-based methods like phylogenetic profiling are not
very specific and generally do not provide information on
the exact role of the protein in a process but frequently
they are decisive to guide further analysis.

The full predictive power of the guilt by association
principle unfolds with high-throughput data on co-
expression, or genetic and physical interaction. For
instance, for about 90% of the genes of S. cerevisiae,
associations to other genes have been found (BioGRID,
v. 2.0.20; Stark et al. 2006). Nevertheless, comparison
with information from the literature and comparison of
different protein—protein interaction datasets indicate
that despite this good coverage in terms of proteins, the
coverage in terms of the interactions between proteins
is low (Han et al. 2005; Reguly et al. 2006). Further-
more, high-throughput data have been suggested to
contain considerable levels of noise (Bader & Hogue
2002; von Mering et al. 2002). Again, the comparative
approach proved to enhance the data quality, for
example by considering the evolutionary conservation
of co-expression (Stuart et al. 2003; van Noort et al.
2003; Bergmann et al. 2004; Snel et al. 2004).

The so-called genomic-context methods are stricter in
their use of the comparative approach because they
exclusively rely on comparing sequenced and annotated
genomes to predict functional associations. A functional
link between genes is suggested by gene fusion and fission
events (Rosetta stone method; Enright et al. 1999;
Marcotte et al. 1999); conservation of gene neighbour-
hood (Dandekar et al. 1998; Overbeek et al. 1999; Korbel
et al. 2004) correlating evolutionary rates (mirror tree
method; Pazos & Valencia 2001) or correlating gene
occurrence (phylogenetic profiling; Gaasterland & Ragan
1998; Huynen & Bork 1998; Pellegrini et al. 1999; Date &
Marcotte 2003). Gene fusion and fission are relatively rare
genomic events that indicate functional links with high
reliability and usually affect genes that are functionally
tightly coupled (Yanai et al. 2001; von Mering et al.
2003a). Conservation of gene neighbourhood uses the
genomic proximity of genes that, in particular in
prokaryotes, suggests co-regulation (Yanai et al. 2002;
von Mering et al. 2003a).

Since its invention, phylogenetic profiling diversified
into a large number of related approaches and no
systematic attempt has yet been made to sort this
diversity. The original form of phylogenetic profiling
uses binary vectors—the phylogenetic profiles or phy-
letic patterns (Tatusov et al. 1997)—that indicate in
which species a homologue is present or absent
(Gaasterland & Ragan 1998; Huynen & Bork 1998;
Pellegrini et al. 1999). The idea is that genes that are
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functionally related are gained and lost together from
genomes during evolution, which results in a correlation
of their occurrence vectors. Nevertheless, despite the
obvious simplicity and straightforwardness of the
concept, it is, as so often in bioinformatics, not
immediately obvious how to optimally translate the
concept into an algorithm that gives the best
performance. For instance, in a variant of the method,
a phylogenetic profile is defined as a vector of similarities
of a query gene from a query genome to its highest
scoring hit in a number of subject genomes (Date &
Marcotte 2003), which, in turn, is related to the mirror
tree method that correlates matrices of pair-wise
similarities (Pazos & Valencia 2001). Here, we first
give an overview of successful applications that
illustrate the principle and role of phylogenetic profiling
in a simple and intuitive way and classify phylogenetic
profiling as a trait correlation method. Subsequently, we
describe the different variants of phylogenetic profiling
and how to account for the non-independence of profile
values due to the evolutionary relation between species.
This discussion is concluded by pointing out links of
phylogenetic profiling to similarity-based methods such
as the mirror tree method (Pazos & Valencia 2001).
Finally, we discuss the assumptions and limitations of
phylogenetic profiling and relate them to the structure
and evolution of protein function and their interac-
tions. Although some limitations have been overcome
by recent technical advances others, such as a hetero-
geneous distribution of evolutionary modularity over
different cellular processes (Snel & Huynen 2004;
Campillos et al. 2006), may inherently limit the coverage
of the method. Furthermore, these limitations underpin
the importance of integrating results from phylogenetic
profiling, as a versatile and easily applicable method,
with other types of evidence for functional associations
to get a comprehensive picture of cellular systems.

2. SUCCESSFUL APPLICATIONS OF
PHYLOGENETIC PROFILING

The predictions made by phylogenetic profiling usually
hint at the functional role of a protein without giving
precise information about the molecular mechanisms or
the nature of the functional association (Huynen et al.
2000). Frequently, complementary evidence from other
context-based, homology-based or experimental
methods is consulted to get more specific predictions.
A number of predictions concerning various cellular
processes have been made by phylogenetic profiling and
were experimentally confirmed (table 1). They under-
score that the role of phylogenetic profiling is frequently
a pinpointing of genes that could be involved in a
process about which we have only incomplete knowl-
edge. For example, phylogenetic profiling identified
enzymes of the MEP/DOXP pathway, which in plant
chloroplasts, apicomplexa, cyanobacteria and a num-
ber of other bacteria produces the building blocks of
isoprenoids. Cunningham et al. (2000) determined the
occurrence profiles of the first five known enzymes in
the MEP/DOXP pathway and found two other
proteins that co-occurred with the pathway, LytB and
GcepE. Although the involvement of LytB in the
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pathway was supported by experimental evidence,
eventually further genetic experiments were necessary
to determine the exact positions of LytB and GcepE
within the pathway (Altincicek et al. 2001a,b). An
alternative approach to phylogenetic profiling stems
from the observation that a gene may be substituted
during evolution by another gene of the same or similar
function. Such a non-orthologous gene displacement
(Koonin et al. 1996) leads to an anti-correlation of the
displaced and the substitute gene’s occurrence profiles.
This is illustrated by the folate-dependent thymidylate
synthase ThyA and its flavin-dependent counterpart
ThyX (Thyl). Dynes & Firtel (1989) showed that thyX
complements thymidine prototrophy in Dictyostelium
discoideum but a thymidylate synthase function could
not be formally proven because the exact nature of
the mutation in the D. discoideum strain they used
was unknown. An additional hint on the function of
thyX came from the observation that the occurrence
profile of thyX is complementary to that of the known
folate-dependent thymidylate synthase gene thyA
(Galperin & Koonin 2000). Subsequently, further
complementation experiments and a biochemical
(Myllykallio et al. 2002) and structural (Kuhn et al.
2002) characterization showed that ThyX is indeed a
new class of flavin-dependent thymidylate synthases.

In many cases, we are not even aware of specific gaps
in our knowledge about a cellular system. For example,
a physical complex can have a different composition
depending on the cellular state and an experimental
exploration of all possible conditions remains imprac-
tical. Here, phylogenetic profiling can suggest new
functional links. This was done, for instance, for
NADH: ubiquinone oxidoreductase (Complex I), an
energy-transducing multi-protein complex located in
the mitochondrial inner membrane. Several of its
members have paralogues that are members of
Complex I itself or of other mitochondrial complexes.
Gabaldon et al. (2005) noted that Complex I member
N7BM (B17.2) and its paralogue B17.2L have similar
occurrence profiles and were lost together from multiple
independent lineages. Unfortunately, the function of
N7BM within the complex was unknown and thus the
co-occurrence- and homology-based link to this protein
and to Complex I did not provide information on the
specific function of B17.2L. It was an experimental
study of Complex I assembly that showed that B17.2L
is an assembly factor involved in this process and that
its mutation can lead to a Complex I deficiency
associated with a progressive encephalopathy in
human patients (Ogilvie et al. 2005).

Generally, the examples illustrate that phylogenetic
profiling derives most of its power from a large-scale
approach that allows using it as an explorative method
while being relatively easy to implement. After
narrowing down the search space to a reasonable
number of candidates, additional lines of evidence are
needed. These may include results from other genomic-
context methods, like gene order conservation, from
published high-throughput experiments or from small-
scale studies. In this process, towards the goal of
discovering good candidates for further experiments, all
these different sources should be considered and
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phylogenetic profiling is one of them. Notably, a
number of web-based databases such as PREDICTOME
(Mellor et al. 2002), PLEX (Date & Marcotte 2005) or
STrRING (von Mering et al. 2007) integrate results from
genomic context as well as small-scale and high-
throughput experiments into unified, easily accessible
interfaces and thus ease the process of gathering
information for a broad public.

3. THE LINK TO THE PHENOTYPE

In contrast to what may be suggested by the previous
examples, co-occurrence profiling can be applied to any
genotypic or phenotypic trait that can be coded as
binary indicator vector. Examples of alternative geno-
typic traits are protein domains (Rodionov et al. 2002;
Pagel et al. 2004; Liu et al. 2006), signal sequences (Haft
et al. 2006), regulatory sites (Rodionov & Gelfand 2005)
and restriction sites (Gelfand & Koonin 1997). Geno-
type/phenotype correlation has thus, for example, been
applied to identify genes associated with pathogenicity
(Huynen et al. 1997), hyperthermophily (Makarova
et al. 2003; Jim et al. 2004), respiratory tract tropism, pili
assembly (Jim et al. 2004), Gram-negativity, oxidative
respiration, endospore formation, intracellular patho-
genicity (Slonim et al. 2006) as well as eukaryotic and
prokaryotic flagella (Jim et al. 2004; Li et al. 2004;
Slonim et al. 2006). Similar to linking genes to each other
via their co-occurrence in genomes, linking genes to
phenotypes implicates them in a biological process.
However, it does not require prior knowledge about the
involvement of other genes in that process.

The link between genotype and phenotype was well
exemplified by a study of the eukaryotic flagellum and
basal body, which eventually identified BBS5 as a new
disease gene. Li et al. (2004) selected three species—
human, the aflagellate plant Arabidopsis thaliana and the
flagellate alga Chlamydomonas reinhardtii. BLAST
searches identified genes present in human and the alga
but lacking from the plant. This corresponds to a simple
set union and intersection procedure that selects genes
that have the same occurrence profile as the trait ‘having
flagella and basal bodies’ (figure 1). Indeed, the resulting
gene set included 88% of the known flagella and basal
body genes of C. reinhardtii. Nevertheless, 92% of the
resulting gene set was not known to be related to the
flagellum and thus the reduction was not sufficient to
draw conclusions about individual genes. A further
intersection with a set of about 230 genes contained in a
genomic locus associated with Bardet-Biedl syndrome
(BBS), a deficiency of the basal body, resulted in a
dramatic reduction to only two genes. Indeed, other
evidence supports that one of these genes, BBS5, is
related to the disease. This includes mutations that lead
to premature termination of transcription of the BBS5
gene in four patients and cell-biological assays which
show that that BBS5 localizes to basal bodies in flagellate
cells of Caenorhabditis elegans.

Phenotype/genotype profiling illustrates the
principle of phylogenetic profiling from a new perspec-
tive by linking the environment of an organism to its
molecular evolution. The environment and its change
are important factors that drive the evolution because
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Chlamydomonas
reinhardtii
flagella
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C. reinhardtii 1 b1 1
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Figure 1. Genotype/phenotype profiling as exemplified by the study of the eukaryotic flagellum by Li et al. (2004).

they induce more or less specific adaptations in the
organism. Examples of specific adaptation that involve
changes of only few proteins are the resistance to
pentachlorophenol by recruitment of proteins into a new
degradative pathway in Sphingomonas chlorophenolica
(Copley 2000), the agglutination of lactobacilli to
budding yeast, which is based on a single mannose-
dependent adhesin protein that was discovered by
comparing the lactobacilli’s phenotypes to their genomes
(Pretzer et al. 2005), or the presence of specific
metabolites, such as C9-methylated glucosylceramides
in fungi (Ternes et al 2006). In contrast, other
environmental factors, e.g. stress induced by extreme
temperature, require adaptation of various unrelated
cellular processes (Felsenstein 1985). This suggests that
the diversity, specificity and correlation structure of
environmental factors active on a branch of the
phylogeny will determine the value of coordinated gene
gains and gene losses on this branch for phylogenetic
profiling and that by increasing the resolution of the
phylogenetic tree also the resolution in terms of selective
factors is increased. This may be one reason for the
observed improvement of results from phylogenetic
profiling both by increasing the number of species and
by a balanced choice of species (Sun et al. 2005). The
value of genotype/phenotype profiling will increase with
the availability of detailed phenotypic information for
many species from, for instance, literature mining
(Korbel et al. 2005; Liu et al. 2006). Furthermore, the
combination of phenotypic information with genotypic
data from metagenomic studies (e.g. Tyson et al. 2004;
Venter et al. 2004; Tringe et al. 2005) or microarrays
(e.g. Pretzer et al. 2005) will probably improve the
prediction of functional links not only for already
sequenced model organisms but also for organisms that
cannot be cultivated under laboratory conditions.

4. CO-OCCURRENCE METHODS

Most of the above presented success stories only
considered identical profiles or used a simple distance
measure, such as the number of occurrence values
differing between two profiles. These ‘naive’ distance
measures, however, ignore that the occurrence of a
homologue in one species is not independent from its
occurrence in another, probably closely related species.
A number of ‘model-based’ approaches have been
developed to account for this non-independence of profile
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values. Model-based phylogenetic profiling uses explicit
models of evolution to infer gene gain and gene loss events
and correlates the evolutionary processes rather than
static absence/presence patterns. A complete overview
and classification of all variants of phylogenetic profiling
and of related methods discussed in this review is given in
figure 2. For a discussion of similarity-based methods and
a number of further extensions, such as methods that
predict triples of functionally related genes instead of
gene pairs or that focus on local regions on proteins, we
refer to §85 and 6, respectively.

4.1. Naive co-occurrence profiling methods

In the first application of co-occurrence profiling,
Pellegrini et al. (1999) used Hamming distance between
two profile vectors as similarity measure. The Ham-
ming distance is the number of species that do not have
the same absence/presence value. It is a member of a
family of distance measures that also includes the
Euclidean distance (§8.4.6). Notably, although these
measures differ in magnitude, they produce the same
order of profile pairs: if a profile pair is the Nth-closest
with Hamming distance, it will also be the Nth-closest
pair with Euclidean distance or any other L,-norm.
Alternatively, profiles can be compared by statistical
correlation measures, such as the Pearson correlation
coefficient (Glazko & Mushegian 2004), Fisher’s exact
test (Barker & Pagel 2005) or mutual information
(Huynen et al. 2000; Wu et al. 2003). The Pearson
correlation coefficient quantifies the degree of linearity
of two factors and is only zero if there is no linear
correlation. In contrast, mutual information is a general
correlation measure that detects any kind of corre-
lations (Steuer et al. 2002) and measures the average
amount of information that one profile conveys about
the other and vice versa (MacKay 2005). Fisher’s exact
test and mutual information have been specifically
designed for categorical data such as occurrence
profiles. An alternative approach is taken by Wu
et al. (2003, 2006) who have derived a formula for the
co-occurrence probability of two genes. Note that anti-
correlating profiles are treated differently by the
different similarity measures: for instance, L,-norms
assign particularly high distances to complementary
profiles while Pearson correlation gives them a negative
correlation coefficient. In contrast, mutual information
in principle does not distinguish anti-correlating from



156 Review. Protein prediction by phylogenetic profiling P. R. Kensche et al.

= o q . .

S &  sequence co-evolution gene family evolution
111 .
111 >
s & & similarity matrix similarity vector occurrence vector
E\ 154 ;>» (Goh et al., 2000) (Marcotte et al., 2000) (Tatusov et al., 1997)
< = o

matrix alignment mutual information Lp-norms (Pellegrini ez al., 1999)
linear matrix correlation ~ (Pate and Marcotte, 2003)
(l(;eftz et "lwlzozog&) Jaccard (Glazko et al., 2004; Yamada er al., 2004)
amani ef al.,
S  'mirror tree method' . .
T N mutual information (Huynen et al., 2000)
(Pazos and Valencia, 2001) co-occurrence probability (Wu et al., 2003)
partial correlation Pearson correlation (Glazko et al., 2004)
__‘é’ (Sato et al., 2006) Fisher’s test (Barker and Pagel, 2005)
g linear matrix correlation ~ mutual information tree-guided mutual information
5 (gatzos tet lal.é g(())é))S; (Enault e al., 2003) (von Mering et al., 2003)
ato et al.,
differential parsimony
g (Liberles et al., 2002; Barker et al., 2007)
§ parsimony interval (Zhou et al., 2006)
g) Bayesian tree-kernel (Vert, 2002)
g maximum likelihood
(Barker and Pagel, 2005; Barker et al., 2007)

= 5 mutual information Lp-norm (Pagel et al., 2004)

3 (]I<<_1m "‘tndlsélggg)mmamv 2006; domain co-occurrence links proteins indirectly

—_— 1m et at.,

g | mutual information

)
g %I) = (Bowers et al., 2004; Zhang et al., 2006)
A

Figure 2. Overview of published phylogenetic profiling methods and related matrix-similarity methods. The ‘arity’ is the number
of genes between which a functional relation is predicted. ‘Localized” methods require only a coevolution of local region on two

proteins to predict a functional link.

correlating profile pairs and both just appear as pairs with
high mutual information. In practice, however, anti-
correlating profiles are easy to identify and can be treated
separately, and have actually been used successfully to
predict protein function, e.g. in the case of ThyX (see §2).
Finally, phylogenetic profiles have repeatedly been
compared by the Jaccard coefficient (Jaccard 1912;
Glazko & Mushegian 2004; Yamada et al. 2004, 2006).
The Jaccard coefficient usually accounts only for
the similarity generated by co-presence by ignoring
the number of genomes that do not contain any of the
compared orthologues in its calculation (see §8.4.5).

4.2. Phylogeny-aware profiling

All above-mentioned statistical approaches to compare
phylogenetic profiles assume statistical independence of
the ‘sampled’ occurrence values in different species.
However, because species are evolutionarily related the
independence assumption is clearly violated, which
may have negative effects on the quality of the
predictions. Consistent with this, it was found that a
substantial portion of modularity derived from the
species distribution of orthologous genes is the results of
such a phylogenetic signal (Snel & Huynen 2004). The
effects of the non-independence of profile values may
differ for the different naive profiling methods. For
example, the similarity measures differ in how they
score lineage-specific genes (table 2). Hamming
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Table 2. Naive co-occurrence measures differ in how they
score ineage-specific genes. With pairs of identical profiles
over 30 species both Hamming distance and Pearson
correlation constantly yield scores that indicate high simi-
larity. In contrast, Fisher’s exact test (two-tailed) and mutual
information yield less significance with a narrower and
broader than 50% species distributions.

mutual
presences Hamming Pearson  Fisher information
0/30 0 — 1 0
3/30 0 1 0.02 0.7
15/30 0 1 0.008 1
27/30 0 1 0.02 0.7
30/30 0 — 1 0

distance always indicates high similarity for identical
profiles independent of the lineage specificity, even for
gene-families that occur only in a single genome. In
contrast, mutual information is limited by the minimal
information content of the profiles (see §8.4.8). Thus,
for identical profiles with increasing lineage specificity,
mutual information yields a lower correlation value.
This results in a counter-intuitive behaviour. Consider
two lineage-specific genes that are co-lost from some
species within a clade (figure 3a). If alineage encompasses
less than half of the species, the additional co-losses will
lead to lower mutual information, despite the additional
evidence for functional linkage.
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Figure 3. Negative influence of non-independence on some
naive profiling methods. (a) (i) Two orthologous groups A and
B occur in half of the species and have identical patterns of
gains. Both Hamming distance (dy) and mutual information
(MI) indicate high similarity. Although two additional
co-losses in (ii) represent stronger evidence for a functional
relation, the mutual information score is lower than in the
previous situation (i). (b) (i) A and B are gained and lost
independently but Hamming distance suggests high similarity
(false positive). (ii) A single independent loss of B early in the
phylogeny leads to high Hamming distance (false negative),
despite two co-losses. In contrast, with differential Dollo
parsimony (dp; see §8.4.3) the example of dependent evolution
(ii) would correctly result in a better score than the example of
independent evolution (i). dg, Hamming distance; MI, mutual
information; dp, differential Dollo parsimony.

Figure 4. Tree-guided approach implemented in the STRING
database (von Mering et al. 2003a). A subtree is collapsed only if
all its leaves have the same presence/absence pattern, i.e. if the
ancestral state at the subtree’s root is known with high certainty.

One way to reduce the effect of the phylogenetic biasis a
reasonable, tree-guided selection of species that improves
the prediction quality in comparison with a naive inclusion
of all species (Sun et al. 2005). A related approach was
taken for the STRING database, in which subtrees of the
phylogenetic tree are collapsed and substituted by their
ancestral state (von Mering et al. 2003q; figure 4). Never-
theless, both approaches still rely on naive correlation
measures and thus only reduce the bias, but the remaining
occurrence values are still statistically dependent.

4.3. Model-based co-occurrence methods

A completely different approach to handle the non-
independence of the profile values is to use the
phylogenetic tree to correlate the evolutionary pro-
cesses rather than their observed outcomes. Model-
based occurrence profiling methods use a model of gene
content evolution to reconstruct ancestral genomes in a
phylogenetic tree based on the observed occurrence
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patterns. Three methodological frameworks have been
applied to phylogenetic profiling: the parsimony
principle, maximum likelihood and a kernel-based
method that models the evolutionary process by a
Bayesian tree.

According to the parsimony principle, of many
alternative evolutionary histories the one with the least
costs, i.e. gene gains and losses, is the most credible.
Liberles et al. (2002) used Fitch’s parsimony algorithm to
determine the presence or absence of each gene in the
ancestral species of the used phylogeny (Fitch 1971).
Fitch’s parsimony model allows arbitrary and equally
penalized changes between character states, i.e. gain and
loss of homologous groups are considered equally
probable. Ambiguities arising from equally parsimonious
reconstructions were resolved by branch length weighting
(D. Liberles 2006, personal communication). Barker et al.
(2007) used Dollo parsimony for ancestral state recon-
struction. Dollo parsimony allows a gene to be gained only
once throughout a phylogenetic tree, which may require
an arbitrary number of subsequent gene losses (Farris
1977). Based on the parsimonious reconstruction, gain/
loss profiles for branches rather than occurrence profiles
for genomes are constructed. The gains and losses on
different branches can be assumed as reasonably inde-
pendent, which justifies an application of similarity
measures like Hamming distance, Pearson correlation
coefficient or mutual information. Indeed, a simple
similarity measure applied to Dollo-based gain/loss
profiles yielded considerably better results on a eukary-
otic dataset than a mnaive application of Hamming
distance on occurrence profiles (Barker et al. 2007).

The parsimony approach usually treats the inferred
ancestral states as if they are known without error.
Nevertheless, there be can considerable uncertainty in
the reconstructed ancestral states even if the parsimony
solution is unambiguous. A requirement for parsimony
methods to accurately reconstruct ancestral states is
that the rates of change are low (Omland 1999). In
eukaryotes, this requirement may be met because
horizontal gene transfer (HGT) from non-endosymbio-
tic origin is rare and mainly confined to phagotrophic
protists (reviewed in Andersson 2005). In contrast, in
prokaryotes, HGT provides a mechanism of repeated
gene gain and is estimated to affect a fraction of 40-60%
(Kunin & Ouzounis 2003; Beiko et al. 2005) or even
90% of gene families (Mirkin et al. 2003).

One way to account for the uncertainty in the
estimate of the ancestral state is to use ‘parsimony
intervals’ that contain a number of suboptimal
solutions (Schluter et al. 1997). Recently, Zhou et al.
(2006) proposed a dynamic programming algorithm to
calculate such parsimony intervals for phylogenetic
profile comparison. The algorithm determines the best
100 suboptimal ancestral state reconstructions for each
phylogenetic profile and compares them by a similarity
measure that quantifies the number of correlated events
while accounting for the degree of suboptimality of the
reconstructions. However, a parsimony interval of 100
reconstructions is small in comparison with the number
of possible reconstructions, which is exponential in the
number of ancestral species. Two alternative model-
based methods account for the uncertainty in the
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ancestral state estimation by considering all possible
reconstructions: the maximum likelihood approach of
Barker et al. (2005, 2007) and the tree-kernel method
of Vert (2002).

The maximum likelihood method uses continuous-
time Markov models to describe the evolutionary gain
and loss of two genes (Barker & Pagel 2005). In order to
quantify the probability that two genes have been
gained and lost together, the likelihood (i.e. the
goodness of fit) of a model of contingent evolution, in
which the gain and loss of one gene is influenced by the
presence and absence of the other, is compared to the
likelihood of a model of independent evolution. In
contrast to the parsimony approaches, maximum
likelihood accounts for the branch lengths in the tree.
Furthermore, the likelihood values are independent
from a specific ancestral state reconstruction because
they are calculated over all possible combinations of
ancestral states. Although this can be done in linear
time (Pagel 1994), the fitting of the model remains a
computationally demanding task, which has to be
solved by heuristic optimization. Recently, the method
was considerably improved by assuming low gain rates
instead of estimating these rates for each pair of
occurrence profiles (Barker et al. 2007). The global
gain-rate parameter depends on the branch lengths in
the phylogenetic tree and has to be estimated from the
dataset itself. Furthermore, the maximum likelihood
method can also account for uncertainty in the tree
topology (Barker et al. 2007) that is known to
negatively affect predictions made by model-based
phylogenetic profiling methods (Zhou et al. 2006).

The tree-kernel method circumvents the costly
estimation of the rate parameters by considering both
gain and loss probabilities as priors of a Bayesian tree
(Vert 2002). Each branch of the tree has two associated
prior probabilities—a gain probability p(1|0) and a loss
probability p(0]1). Additionally, a probability for a
gene to be present at the root has to be provided. A
simplifying assumption of the original publication was
that the gain and loss probabilities were the same for all
branches of the tree, independent of the length of the
branch. However, the Bayesian tree representation
allows for more complex models with branch-specific
change probabilities and differing gain and loss
probabilities. The virtue of the method also comes
from the combination of this Bayesian tree with a
kernel-based approach that allows efficient calculation
of a profile distance that accounts for all possible
ancestral state reconstructions.

Although in recent applications model-based
methods assumed that the phylogenetic tree and the
patterns are known without error, this may not always
be the case. The annotation of genomes sometimes
misses genes and phylogenetic profiling has successfully
been used to identify these (e.g. Natale et al. 2000;
Mikkelsen et al. 2005). The uncertainty in the
occurrence values can be expected to be even more
pronounced in metagenomic data and in data from
microarray genotyping (Molenaar et al. 2005; Pretzer
et al. 2005). Both the maximum likelihood method and
the tree-kernel method could be modified to account for
such uncertainty.
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5. SIMILARITY METHODS

The original phylogenetic profiling approach, which
uses the co-occurrence of genes, is related to another
genomic-context method that identifies functionally
associated gene pairs based on correlating rates of
sequence evolution. For the purpose of this review, we
will refer to these two alternative approaches as ‘co-
occurrence profiling’ and ‘similarity profiling’, respect-
ively. There are a number of reasons to include a
discussion of similarity-based methods in a review
about phylogenetic profiling. Both co-occurrence and
similarity profiling methods use the idea of coevolution
of functionally related genes to predict functional
associations. Furthermore, there is a significant,
positive correlation between the sequence evolutionary
rate (estimated as average similarity to homologues in
an outgroup species) and the rate of gene loss, although
both mutually explain only about 10-15% of their
variation (Krylov et al. 2003). This suggests that
co-occurrence profiling and similarity profiling rely on
distinct but not entirely independent signals. Finally,
the phylogenetic profiling method of Date & Marcotte
(2003) seamlessly integrates co-occurrence profiling
and similarity profiling.

The phylogenetic profiling method of Date &
Marcotte (2003) correlates vectors of transformed
BrasTtp E-values that code the similarity of a protein in
a query species to their best hits in a number of subject
genomes (Marcotte 2000). To make the similarity values
independent from the length and sequence composition
of the query protein, they can be normalized by the score
of the protein’s self-alignment (Enault et al. 2003). The
resulting similarity vectors are compared by mutual
information, which requires a binning of values. The fact
that the number and boundaries of the bins can be
arbitrarily chosen illustrates that the similarity vectors
also contain information about the occurrence of genes.
If the subject genome does not contain a significant hit,
the corresponding component of the vector is set to zero
but is not excluded from the profile and thus contributes
to the correlation value. In the extreme situation with
only two bins representing worse than cut-off (absence)
and better than cut-off (presence), the Date & Marcotte
method and co-occurrence profiling are equivalent
(Snitkin et al. 2006). According to our definition, the
method of Date & Marcotte is thus both a similarity and
co-occurrence profiling method.

The data structure of pair-wise similarities of a query
gene to a number of best hits in subject genomes can be
extended into a matrix of pair-wise similarities between
homologous genes. Goh et al. (2000) demonstrated that
the correlation coefficient between the resulting simi-
larity matrices quantifies the degree of coevolution.
Comparing similarity matrices has been used by two
types of methods that have different fields of application.
The matrix alignment methods of Gertz et al. (2003) and
Ramani & Marcotte (2003) predict pairs of interacting
partners between members of two groups of paralogues
that reside in a single species. For each gene family, a
matrix of pair-wise similarities is constructed. Two
matrices are ‘aligned’ by shuffling the columns and
rows in order to make them as similar as possible, i.e. to
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match members of both families that are most similar in
their evolutionary rates. The matrix alignment is
computationally costly, which restricts the method to
small gene families, preferably ones of which some
members are already known to interact. In contrast, the
mirror tree method of Pazos & Valencia (2001) predicts
associations between two groups of orthologous genes
across different species. Each matrix contains the
similarities between unique representatives of a gene
family from each species. Different matrices are compared
by matrix correlation coefficients in order to identify pairs
of gene families that have similar evolutionary rates. In
contrast to the similarity-vector method of Date &
Marcotte, the mirror tree method can be considered as
pure similarity profiling because it only accounts for the
coevolution signals of those proteins that are present and
ignores the loss or gain events; organisms that do not
contain a homologue are treated as missing values by
skipping the respective matrix rows and columns for the
calculations of matrix similarity.

To our knowledge, no model-based similarity profil-
ing methods have yet been proposed. Nevertheless,
both the similarity vector method and the mirror tree
method have been modified to correct for the depen-
dence of similarity values on the distance of the
compared species. In the similarity vector method of
Date & Marcotte (2003), the similarity of the query
protein to its best hits in a subject genome can be
expected to decrease with increasing evolutionary
distance of the query and subject species. This distance
effect can be corrected for by dividing each vector
component by the average similarity of all proteins’ hits
to the subject genome (Enault et al. 2003). Similarly,
the mirror tree method can be corrected for the
background similarity of the genomes either by using
an algebraic projection operator (a linear map; Sato
et al. 2005) or by subtracting a distance matrix based on
a species tree from the homologous group distance
matrices (Pazos et al. 2005).

6. LIMITATIONS AND EXTENSIONS

Although the successful small-scale studies using
phylogenetic profiling provide an intuitive introduction
to the method, phylogenetic profiling remains abstract,
as long as one did not go through the process of using it
on real data. We analysed a set of 25 fungi and the
microsporidium Encephalitozoon cuniculi with 12 naive
and model-based co-occurrence profiling methods.
Although we observe a low overall performance with
this dataset (figure 5a), highly reliable predictions can
be made if a stringent score cut-off is used and only the
highest scoring orthologous group pairs are considered
as positive predictions (figure 5b), which indicates the
presence of a signal that reflects functional associations.
The fraction of positive controls (true positives) among
the positive predictions drops quickly if the cut-offs are
relaxed (figure 6), an observation that has been made
before (e.g. Enault et al. 2003; von Mering et al. 2003 ¢;
Barker & Pagel 2005; Snitkin et al. 2006; Zhou et al.
2006) and can be explained by a number of technical
causes, such as incorrect gene occurrence values due to
misannotations of genomes or incorrect sets of positive
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and negative controls. One likely important cause for
observing a low performance of phylogenetic profiling is
the low number of only 26 genomes used here. Although
it is of the same order of magnitude as in multiple other
studies that used eukaryotic genomes (Barker & Pagel
2005; Snitkin et al. 2006; Barker et al. 2007), a recent
study on the similarity/occurrence vector method of
Date & Marcotte (2003) showed that this method yields
significantly better results with increasing number of
bacterial genomes (Sun et al. 2005). This probably
applies also to the pure co-occurrence profiling methods
benchmarked here. Nevertheless, also the studies on
larger sets of genomes indicated a relatively limited
coverage for gene co-occurrence (Huynen et al. 2003;
von Mering et al. 2003a).

An alternative cause for the limited coverage of
phylogenetic profiling is the discrepancy between the
complexity of organisms and the severe simplifications
required for a phylogenetic profiling analysis. A discus-
sion of this discrepancy may suggest limitations of
phylogenetic profiling and serves to introduce some
methods that can be interpreted as extensions of, or at
least closely related to phylogenetic profiling. For this
discussion, it is helpful to consider ‘functional similarity’
as quantifiable. For example, a quantification can be
based on similarity measures for controlled vocabularies
that describe protein function, such as the function
description in the clusters of orthologous groups (COG)
database (Tatusov et al. 2000) or the gene ontology
(Ashburner et al. 2000), e.g. the co-occurrence of terms
associated with two proteins could be quantified by the
Jaccard coefficient or the average Resnik similarity for
ontology terms (Resnik 1999).

6.1. Functional divergence after gene
duplication

Already during the process of profile construction, i.e. the
mapping of the complexity of organisms into simple
vectors of numbers, information is lost. The construction
of phylogenetic profiles from groups of homologous genes
is relatively easy by standard homology detection
algorithms, but ignores that genome evolution is highly
dynamic and driven by events such as de novo gene
genesis, gene duplication, gene loss and HGT. Conse-
quently, multiple homologous genes may coexist in the
same genome. In particular, sub- or neo-functionalization
of duplicated genes (reviewed in e.g. Roth et al. 2006)
represents a major complication to any homology-based
and genomic-context method, because they violate the
assumption that homologous genes retain their function
during evolution. For instance, if the homologue of
ancestral function is not maintained but lost from one
genome then, in the phylogenetic profile, the presence of
homologous genes in different genomes will represent the
presence of different functions.

Fortunately, the impact of functional divergence
after duplication on the quality of genomic context-
based predictions can be reduced by splitting homolo-
gous groups into orthologous groups. Two homologous
genes are called orthologues if they were separated by a
speciation. In contrast, if two genes have been
separated by gene duplication they are called



160 Review. Protein prediction by phylogenetic profiling P. R. Kensche et al.

(a) Hamming distance I oo
Pearson correlation | oo
tree-kernel distance )
Jaccard coefficient | @

differential parsimony = 9]
tree-guided mutual information | oo
mutual information oo
Fisher’s test (Dollo), full I = @)
tree-guided Jaccard coefficient Oa KEGG o
Fisher’s test (profile) | oo MIPS o

co-occurrence probability oo

o O

1

likelihood ratio |
0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) '

Hamming distance o
Pearson correlation | |
tree-kernel distance =
Jaccard coefficient | u
differential parsimony o
tree-guided mutual information | =
mutual information o
Fisher’s test (Dollo), full | ] (@)
tree-guided Jaccard coefficient o O
Fisher’s test (profile) | o (o)
co-occurrence probability o ©)
likelihood ratio | o o

0.4 0.5 0.6 0.7 0.8 0.9 1.0
PPV0.05

Figure 5. (a) Phylogenetic profiling has low overall performance (b) but makes highly reliable predictions for the highest scoring
5% of orthologous group pairs. Plotted are the bootstrap medians of AUC and PPV0.05 estimated from a bootstrap sample
(n=100) of positive and negative controls. (Results are based on a set of orthologous groups for 25 fungi and the microsporidium
E. cuniculi (figure 1 of the electronic supplementary material) and functional associations for S. cerevisiae from the MIPS
(Mewes et al. 2006) and KEGG (Kanehisa et al. 2004) databases. In the bootstrapping procedure, each MIPS complex (KEGG
pathway) was given the same weight to account for the overrepresentation of some functional categories in the MIPS dataset,
such as the large ribosomal subunit. The bootstraps for the PPV estimates were done such that positive and negative controls
were sampled with the same probability as to produce an average P/(P+ N) ratio of 0.5. Box plots of the ‘weighted’ as well as a
‘normal’, i.e. non-weighted, bootstrap distributions are shown in figure 2 of the electronic supplementary material.) Dashed line,
performance of the random classifier; AUC, area under ROC curve; PPVO0.05, positive predictive value, i.e. fraction of true
positives among the 5% highest scoring predictions. Open circles, MIPS; open squares, KEGG.
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paralogues (Fitch 1970). Reliable orthology and
paralogy relations between members of a gene family
can be determined either by gene tree reconciliation, i.e.
by comparing the tree of homologous genes to a trusted
species tree or by examining the species overlap
between subtrees to infer duplications (van der Heijden
et al. 2007). Nevertheless, due to the practical
complications of large-scale phylogenetic analyses,
orthology is usually operationally based on some
clustering approach or other heuristic that uses relative
levels of sequence similarity (e.g. Tatusov et al. 1997;
Remm et al. 2001). Alternative to constructing the
orthologous groups and phylogenetic profiles by one-
self, one can also download them from public databases
such as RoundUp (Deluca et al. 2006) or COG
(Tatusov et al. 2003).

By switching from homologous groups to orth-
ologous groups, the impact of functional divergence
after duplication can be reduced, but the situation is
not principally solved. Despite the orthology relation-
ship, still about 40% of the bacterial orthologous groups
in the COG database contain paralogues that do not
originate from species-specific family expansion
(Tatusov et al. 2000). Furthermore, in a study of
modularity based on various genomic-context methods,
it was found that 40% of the genomic context-derived
modules could not be unambiguously assigned to a
metabolic pathway owing to the limited resolution of
their orthologous groups (von Mering et al. 2003b).

6.2. Multifunctionality

Proteins often functionally interact with or depend on
various other proteins. If all these associated proteins
are functionally related with each other, then the
functional context of the protein is homogeneous. An
interesting situation arises for ‘multifunctional’
proteins whose functional context is heterogeneous,
i.e. for those proteins that have ‘long-range’ dependen-
cies bridging different processes. In this situation, it is
not obvious whether it is more advantageous to
maintain the gene or to lose it. If one part of the
gene’s functional context is lost, the loss of the gene
itself may still affect the functioning of other parts of its
context. Hence, multifunctionality probably influences
the gene loss rate and thus the occurrence values in the
phylogenetic profiles. There are numerous examples of
multifunctional and ‘moonlighting’ proteins some of
which are members or important cellular processes like
glycolysis or tricarboxylic acid cycle (for a review see
Jeffery 1999; Moore 2004). High-throughput protein
interaction experiments indicate that many proteins
are shared between different complexes (Gavin et al.
2002; Krause et al. 2004), which suggests that multi-
functionality may be an abundant phenomenon.
Various mechanisms allow a protein to act in different
functional contexts, such as broad substrate specificity,
differential expression and differential localization
(Jeffery 1999). One of these mechanisms, the functional
specialization of different domains of the protein, allows
a protein to contribute to different processes by the
activity of its different domains. It is amenable to what
could be called ‘localized’ phylogenetic profiling
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methods. Both co-occurrence and similarity profiling
methods have been extended in this direction.

Pagel et al. (2004) proposed a domain-based
co-occurrence profiling method. For each PFAM and
SCOP domain (Bateman et al. 2002; Andreeva et al.
2004), they constructed an occurrence profile and
compared profile pairs with Hamming distance in
order to predict functional relations between domains.
Subsequently, proteins were considered as functionally
related if they contained such functionally related
domains. Thus, the approach taken by Pagel and
co-workers compares proteins indirectly via their
domain content. In contrast, the localized similarity
profiling introduced by Kim & Subramaniam (2006)
directly compares the sequences of proteins by local
alignments using a variant of the phylogenetic profiling
method of Date & Marcotte (2003). Each query protein
(from a query species) is considered as a set of
overlapping 120 amino acid segments that are indivi-
dually compared to the database of proteins. The
coevolution between two protein segments is quantified
by mutual information, just as for full length proteins in
the Date and Marcotte method. The correlation
between two proteins was defined as the highest
correlation between any of their segments (Kim &
Subramaniam 2006). In order to be independent of pre-
defined segments, Kim et al. (2006) further improved
this method into residue-level profiles. Both local
co-occurrence profiling and similarity profiling were
found to be largely complementary to their global
variants (Pagel et al. 2004; Kim & Subramaniam 2006).
For example, the methods of Kim and Subramaniam
and of Date and Marcotte had very similar performance
but shared only about 36% of their predictions or
less depending on the choice of cut-off (Kim &
Subramaniam 2006; Kim et al. 2006). Localized phyloge-
netic profiling thus provides an additional source of
evidence for functional relation and adds information
when combined with global profiling methods.

6.3. Higher order functional relations

Most co-occurrence profiling methods make two sim-
plifying assumptions about the dependencies of
proteins: they only search for binary, i.e. pair-wise,
and symmetric relationships. ‘Symmetric’ here means
that if gene A is associated with gene B then the reverse,
i.e. gene B is associated with gene A, is also true. For
example, for Hamming distance, it is irrelevant if we
calculate the distance dg(A, B) or du(B, A). Conse-
quently, co-occurrence profiling may frequently fail to
detect asymmetric relationships. Barker & Pagel
(2005) pointed out that their maximum likelihood
method can be adapted to model contingent evolution
of gene pairs, i.e. to model asymmetric, binary
relationships between phylogenetic profiles. For
example, asymmetric relationships could occur when-
ever a major system, such as a complex or pathway, is
modified during evolution. While the main function of a
complex is evolutionarily conserved, accessory proteins
could be added or removed for fine tuning. Sometimes
these modifications of systems happen in a gradual
fashion over longer evolutionary time-scales, as has
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been observed for a variety of multi-protein complexes
and metabolic pathways (Fothergill-Gilmore &
Michels 1993; Petsko et al. 1993; Gabaldon et al.
2005; Tanaka et al. 2005). Asymmetric, binary
relationships could be used to uncover these evolution-
ary trends, in particular, if more sequenced genomes
become available and the resolution of phylogenetic
trees is increased. Nevertheless, currently a systematic
assessment of binary, asymmetric relationships
between occurrence profiles is lacking. In contrast,
ternary relationships, i.e. for triples of gene families,
have been studied in the past. In the Boolean logic
formalism proposed by Bowers et al. (2004), the profiles
of orthologous groups are interpreted as vectors of truth
values. For example, consider an enzyme C that uses
substrates from both a pathway containing enzyme A
and from a pathway containing enzyme B. The relation
between the three enzymes can be expressed as the logic
relation AA B— C. Given such a relation, it can be
concluded that both the activities of A and B are
required for the activity of C. For example, for
members A and B of two signalling cascades whose
crosstalk involves the protein C. Bowers and co-
workers identified eight possible ‘logic types’ that
model different possible relationships between genes,
excluding cases that could easily be modelled by binary
relationships, and scored them using an entropy-related
measure. Intriguingly, logic types that are easier to
relate to our understanding of biological and evolution-
ary relationships tended to be more frequent than those
that are difficult to interpret. Owing to the higher
expressiveness of the ternary relation formalism, its
results add to the results of classical, binary co-occur-
rence methods. Recently, the formalism has been used
to model more complex relations of four genes (Zhang
et al. 2006). Tt should, however, be noted that the
identification of higher order relationships has practical
limitations. The number of possible logic functions is
exponential in the number of related genes. Each of
these possible relations can be interpreted as an
alternative hypothesis and the fitting of such a large
number of hypotheses may not be possible with the
currently available number of genomes. Furthermore,
also the number of combinations of genes between
which higher order relations are inferred grows quickly,
which limits further extensions to small gene sets.
Finally, with increasing complexity of the logic func-
tions, a biological interpretation of the relationship
between the involved genes becomes harder.

6.4. The evolution of functional context

If we consider binary functional dependencies and ignore
that these dependencies can be asymmetric, we obtain a
network of functional associations. Networks of
functional associations between proteins can evolve on
the level of edges, i.e. the interactions between proteins,
and on the level of nodes, i.e. by gain and loss of protein-
encoding genes. Obviously, both levels are linked
because if a gene is lost from a genome also all functional
links to it are lost. The edge-level evolution can be
interpreted as a change of protein function; more
specifically, by rewiring the network the functional
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context of a protein changes. The edge-level of the
network is particularly relevant for phylogenetic profil-
ing simply because phylogenetic profiling tries to predict
the edges. However, it does this in a comparative way
and thus disregards that the edges may have changed
during evolution. Functional links between genes must
have persisted sufficiently long during evolution to be
detectable by phylogenetic profiling methods.

Unfortunately, no conclusive answer can yet be
given on what is this rate of edge-level evolution, even
for protein—protein interaction networks or networks
derived from co-expression. The estimation of this rate
is hampered by the high levels of noise in high-
throughput data (Snel et al. 2004; Cesareni et al.
2005; Gandhi et al. 2006). For example, for the same
dataset of tissue-specific expression in human and
mouse, estimates of the fraction of gene pairs with
conserved co-expression range between less than 10 and
84% (Liao & Zhang 2006; Tsaparas et al. 2006). In
comparison, for gene pairs found in the relatively
distantly related worm and budding yeast, the fraction
of co-expressed gene pairs that share a transcription
factor-binding site in yeast that is also co-expressed in
worm was determined to be 76% (Snel et al. 2004),
which indicates a high conservation of co-expression at
least for conserved gene pairs.

A different aspect of the evolution of functional
context is the ‘severity’ of change. A ‘severe’ change of
functional context occurs if a protein is recruited to a
new context that is unrelated to its original context.
This recruitment may or may not involve a loss of the
original functional links. Notably, if a protein maintains
both its original and acquired functions, its functional
context becomes heterogeneous, i.e. it can be considered
multifunctional. However, if the original function is lost
then the selective forces acting on the protein before and
after the recruitment will be distinct. Recruitment
appears to be a major mode in the evolution of
metabolic pathways (Teichmann et al. 2001; Lecompte
et al. 2002; Rison et al. 2002; Light & Kraulis 2004;). In
contrast, ancestral and acquired functions can be
related such that the ancestral and the divergent form
of a gene may be subjected to similar selective
constraints. For example, in the small-molecule meta-
bolic network of FEscherichia coli homologous genes
separated by 11 or less reaction steps are overall rare
but occur more frequently at very short distances (1-3),
i.e. with relatively high functional similarity, than at
larger distances (4-11; Rison et al. 2002). Similarly,
duplicated physical complexes in most cases have
similar functions (Pereira-Leal & Teichmann 2005).

6.5. Fvolutionary modularity

A further abstraction from networks of functional links
is to analyse the structure of organisms in terms of
modularity. Usually, a module is defined as a group of
proteins that have stronger associations among each
other than to proteins outside of the module. The
modular structure of biological networks is figured as
hierarchical and overlapping (e.g. Ravasz et al. 2002;
Palla et al. 2005): different modules are related to each
other by combination into higher order modules or by
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coupling proteins. Certain topological properties of
biological networks can be explained by high false
positive rates in interaction data (Han et al. 2005) or by
simple evolutionary models (Amoutzias et al. 2004; van
Noort et al. 2004). Nevertheless, the modular organiz-
ation is apparent and it remains an open question which
selective forces or evolutionary mechanisms are respon-
sible (e.g. Wagner 1996; Kashtan & Alon 2005). One
would expect that the functional modularity of organ-
isms constraints the evolutionary process, leading to a
definition of evolutionary modularity that closely
follows the general definition of modularity: an
evolutionary module can be defined as a group of
genes that have stronger co-evolved with each other
than with genes outside of the module.

A number of genomic-context studies have included
gene co-occurrence to find functional modules (Snel
et al. 2002; Yanai & Delisi 2002; von Mering et al.
2003b; Yamada et al. 2004, 2006; Spirin et al. 2006; Wu
et al. 2006). Despite the technical and conceptual
problems, genomic-context networks do indeed reflect
functional modules, although the resulting modules are
frequently distinct from traditional module definitions
(Spirin et al. 2006; Yamada et al. 2006). The highest
scoring pair-wise associations predicted by phyloge-
netic profiling can be considered as small co-gained and
co-lost evolutionary modules and clearly contain
information about function. Furthermore, also larger
modular structures are reflected in the networks. Of
particular value for their description are multifunc-
tional network nodes that link different modules. For
example, metabolic networks are usually modelled as
graphs with nodes representing metabolites and the
edges between them representing enzymes. The linkers
in these networks are metabolites that are involved in
diverse pathways. Indeed, in networks derived from
genomic context, the evidence of a functional associ-
ation between genes decreased with the degree of the
metabolite node connecting them (Huynen & Snel
2003; von Mering et al. 2003b) and, consistently, for
linear pathways the correspondence of the genomic-
context network and the known metabolic network is
highest (Spirin et al. 2006). A similar observation was
made in a network based on gene order conservation.
The linkers in these networks connect locally uncon-
nected clusters and were enriched in multifunctional
enzymes (Snel et al. 2002).

A lack of evolutionary modularity may be an
important cause for the limited predictive coverage of
phylogenetic profiling and other genomic-context
methods. Studies that did not rely on genomic context
to define their modules found a heterogeneous distri-
bution of their evolutionary modularity; only about half
of the functional classes, like metabolic pathways or
protein complexes, evolved significantly modularly
(Snel & Huynen 2004; Campillos et al. 2006). Consist-
ent with this, genomic context is not equally informa-
tive about every cellular process (Campillos et al. 2006).
For example, catabolic pathways were found to be less
modular than biosynthetic pathways (Snel & Huynen
2004; Campillos et al. 2006) and showed a lower
coverage in combined genomic-context networks (von
Mering et al. 2003b). This suggests that the signal that
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genomic-context methods rely on may have only a
limited coverage simply because there are many
cellular processes whose evolution does not reflect a
modular structure.

7. CONCLUDING REMARKS

Phylogenetic profiling is a versatile method for the
prediction of functional interactions, but its coverage is
limited to those cellular systems that evolved in a modular
fashion. Nevertheless, basically all experimental and
computational methods have limits as they measure
only one or few aspects of functional association. For
instance, microarrays only capture co-expression on the
level of mRNA abundance and thus ignore the effects of
post-translational regulation. Numerous examples show
that the evolutionary evidence for a functional interaction
based on phylogenetic profiling as well as other genomic-
context methods is frequently neither strong nor specific
enough to pin down the exact function of a protein.
Consequently, in virtually all examples, additional
experimental evidence was used to stress the conclusions
drawn from phylogenetic profiling and to understand
protein function at a much higher level of detail.

The necessity to combine multiple lines of evidence
extrapolates to phylogenetic profiling used as a broad-
scale method that predicts functional interactions for a
large number of gene pairs. Phylogenetic profiling has
thus been integrated with other genomic-context
methods. For prokaryotes, conservation of gene neigh-
bourhood is usually found to have the highest coverage,
followed by phylogenetic profiling and, finally, gene
fusion/fission (Huynen et al. 2000; Manson McGuire &
Church 2000; Yanai & DeLisi 2002; von Mering et al.
2003b). Genomic-context methods can have higher
coverage than for example yeast two-hybrid at about
the same accuracy (von Mering et al. 2002). Although
such measurements depend somewhat on the bench-
marking set (Lee et al. 2004), this shows that genomic-
context methods can well compete with high-through-
put experimental approaches. Frequently, one type of
genomic evidence is clearly dominating (Huynen et al.
2000; Yanai & DeLisi 2002) and, thus, their contri-
butions to the integrated network are complementary.
It will be interesting to see if the predictions made by
localized profiling approaches, ternary interactions and
binary, asymmetric interactions will add further to the
predictive coverage of phylogenetic profiling and of
genomic-context methods in general.

8. DATA AND METHODS
8.1. Phylogenetic profiles

The protein sequences of the microsporidium
Encephalitozoon cuniculi and of 25 fungi (Ustilago
maydis, Cryptococcus neoformans, Phanerochaete
chrysosporium, Stagonospora mnodorum, Aspergillus
nidulans, Aspergillus fumigatus, Magnaporthe grisea,
Neurospora crassa, Trichoderma reesei, Fusarium
graminearum, Schizosaccharomyces pombe, Yarrowia
lipolytica, Debaromyces hansenii, Candida albicans,
Candida glabrata, Ashbya gossypii, Kluyveromyces
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lactis, Kluyveromyces waltii, Saccharomyces kluyveri,
Saccharomyces castellii, Saccharomyces bayanus,
Saccharomyces kudriavzevii, Saccharomyces mikatae,
Saccharomyces paradozus, Saccharomyces cerevisiae)
were downloaded from the corresponding sequencing
projects. Similarity scores between the proteomes were
computed using the Smith-Waterman P algorithm
(Smith & Waterman 1981) on a TmvmeLocic DECYPHER
(matrix: Blosum62; e-value cut-off: 0.01; low-complexity
filter on). The orthologous groups were constructed by an
approach similar to that used for the COGs (Tatusov
et al. 2000). Inparalogues specific to a clade usually are
more similar to each other than to any gene outside the
clade. This was used to construct species-specific
inparalogous groups and inparalogous groups specific to
the Saccharomyces sensu stricto clade (S. kudriavzevis,
S. mikatae, S. bayanus, S. paradozus, S. cerevisiae) whose
members are closely related. Subsequently, triangles of
mutual best hits between the inparalogous groups were
merged if they shared two members ( Tatusov et al. 2000).
The resulting orthologous groups were further refined: we
aligned the orthologous genes using MUSCLE v. 3.52
(Edgar 2004) with default parameters, calculated neigh-
bour-joining trees with Bio-NJ (Gascuel 1997), inferred
duplications with LorT (van der Heijden et al. 2007) and
split orthologous groups according to ancient dupli-
cations. These refined orthologous groups were used to
construct the phylogenetic profiles.

8.2. Control datasets

We retrieved the complex catalogue from the Munich
Information Centre for Protein Sequences (MIPS; as of 14
November 2005; Mewes et al. 2006). From this hierarchy
of categories, we removed those that had subcategories,
contained the keywords ‘other’ or ‘complexes’, or referred
to high-throughput studies (category 550). The
procedure yielded a total of 1195 assignments of
orthologues to 195 complexes. All pairs of orthologous
groups that shared a MIPS complex were considered as
positive controls. An alternative positive control dataset
was constructed from pairs of orthologous groups with
members in budding yeast that shared a KEGG map (as
of 17 January 2006; 187 maps; Kanehisa et al. 2004) and
are found in the same cellular location (Huh et al. 2003).
We found that the latter requirement improved the
benchmarking results (data not shown). The negative
controls, which should be functionally unrelated, were
constructed from the orthologous groups that occurred in
the positive controls. T'o this aim, from each set of positive
controls, we sampled pairs of orthologous groups that did
not occur in any of the positive control datasets.
Additionally, negative controls were not allowed to reside
in the same cellular location in budding yeast (Huh et al.
2003). We took this approach to have the same
distribution of profile entropies and loss rates in positive
and negative controls because some methods, such as
mutual information, are sensitive to the entropy of the
profiles (see §8.4.8) or loss rate (Barker et al. 2007). Note
that both control datasets only refer to a subset of the
5997 orthologous groups present in budding yeast. From
all datasets, we excluded anti-correlating pairs (Pearson
correlation r<0) because mutual information score gives
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high scores to both correlating and anti-correlating pairs
and thus deviates from the other methods. Similarly, pan-
orthologues, i.e. orthologues or profiles with presence
values for all speciesin the dataset, were excluded because
the maximum likelihood approach (Barker & Pagel 2005)
and the Pearson correlation coefficient cannot be
calculated for these. A summary of the data filtering is
given in table 1 of the electronic supplementary material.

8.3. Fungal tree

The fungal tree was based on a concatenated alignment
of selected sequences (Dutilh et al. 2007): only
orthologous genes occurring in at least 25 of the 26
genomes were used. Thus, in order to have a maximum
of residues for the tree construction, the unnecessary
loss of orthologous groups that were only lacking from,
for example, the degenerated genome of E. cuniculi was
minimized. We started by merging inparalogous groups
(see §8.1) into clusters based on the bidirectional best
hits between them. Subsequently, species-specific
expansions were filtered out: we aligned the genes in
each cluster using Muscre (Edgar 2004) with default
parameters, and calculated pair-wise protein distances
with TREE-PUzzLE v. 5.2 (Schmidt et al. 2002; approxi-
mate parameter estimates; parameter estimation uses
neighbour-joining tree; JTT model of substitution;
estimate amino acid frequencies from dataset; four
gamma categories; alpha=1.00 (weak rate hetero-
geneity)). From the pair-wise distances, the neigh-
bour-joining trees were constructed with Bio-NJ
(Gascuel 1997) and after identification of species-
specific duplications by LorT (van der Heijden et al
2007) from each genome, only the duplicate with the
shortest branch lengths to the root was retained. The
underlying assumption is that the gene with the highest
sequence conservation is most probably the one with
the conserved function after duplication. This yielded
229 orthologous groups that contained no more than
one gene in each of at least 25 species. For genes that
were lacking from a genome, the concatenated MUSCLE
alignments contained a gap. We used GBrocks (default
parameters; Castresana 2000) to select blocks of unambi-
guously aligned amino acids, which resulted in a super-
alignment of 132 409 conserved positions. Finally, we
used PuyML to calculate the maximum likelihood tree
depicted in figure 1 of the electronic supplementary
material (JTT model of substitution; estimated pro-
portion of invariable sites; four substitution rate
categories; gamma fixed with alpha=1.00; Guindon &
Gascuel 2003). This tree was used for the tree-guided and
model-based profiling methods.

8./4. Phylogenetic profiling methods

8.4.1. Tree-kernel method. The C implementation of
the tree-kernel method was downloaded from http://
cg.ensmp.fr/ ~vert/publi/ismb02/index.html and run
with the default gain/loss and retention probabilities
(Vert 2002). We used the distances in feature space as
scores with small distances corresponding to high
similarity of evolutionary history.
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8.4.2. Mazximum likelihood method. The likelihood
ratios (LhRs) from the maximum likelihood method
were calculated with a version of BAYESMULTISTATE
program that allows fixing the state at the trees root
(Barker & Pagel 2005), which was kindly prov1ded by
Andrew Meade. It is defined as 4= —2-In(L%,./La,.),
with LY, denoting the maximum likelihood of the null
model of independent evolution and L2, the maximum
likelihood of the alternative model of contingent
evolution. The number of tries for finding the maximum
likelihood of each model was set to 100, which deviates
considerably from the default (10 tries) and was chosen
as a suitable trade-off between computational costs and
the variance of the estimated LhR as determined in five
repeats of a sample of 100 profiles (data not shown).
Despite the increased number of tries in few cases, we
observed negative LhRs, which indicate a problem of
the algorithm to find the global likelihood optimum. In
these cases, we ran the algorithm another 100 tries,
which reduced the number of orthologous group pairs
with LhR less than 0 to 17.

8.4.8. Differential parsimony. The distance d(A4, B)
between the parsimonious reconstructions of two
orthologous groups A and B was calculated as
(D. Liberles 2006, personal communication)

d(A, B) = Z |(anc(a;)) —desc(a;)) — (anc(b;)

i€branches
—desc(b;))]-

Here, for instance, anc(a;) denotes the ancestral state
for the branch iinferred for the orthologous group A and
desc(a;) denotes the corresponding descendant’s state.
This gives no penalty to coordinate gains, coordinate
losses or if no gain or loss of either orthologous group
occurred, a penalty of 1 to independent gains or losses
and a penalty of 2 for coordinate gain in one orthologous
groups and loss in the other. In our implementation of
differential parsimony, we use Dollo parsimony instead
of Fitch parsimony (cf. Liberles et al. 2002) and we
restricted the dataset to orthologous groups present in
budding yeast. Consequently, a penalty of 2 did not
occur. Notably, an alternative representation of the
ancestral state reconstruction is as a vector with
components corresponding to branches of the phylogeny
and values corresponding to the ‘gain’ and ‘loss’ events
as well as ‘no’ event. In the absence of penalty 2,
differential parsimony is simply the Hamming distance
between these gain/loss vectors. As an alternative
similarity measure between the gain/loss vectors, we
used a two-tailed Fisher’s exact test to quantify the
co-loss probability on the branches of the tree.

8.4.4. Tree-guided methods. Both mutual information
and Jaccard coefficient used the tree-guided collapsing
of subtrees that is described in §4.2. Furthermore, a
single pseudocount for each of the four possible
presence/absence combinations was added (von Mering
et al. 2003a).
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8.4.5. Jaccard coefficient. The Jaccard coefficient of
two occurrence vectors A and B (Jaccard 1912) can be
defined for co-occurrence of presences (a=1) as well as
for co-occurrences of absences (a=0; see below). Here,
we used the co-occurrence of presences (a=1).

|{’L|A7 =aN Bi - a}|
J(A,B,a) = ’ ’ .
450 = {4, = aU B = al]

8.4.6. L,-norms. Lynorms are defined as

B)= /> (A;— B;)’. Frequently used L,
norms are the Manhattan distance or Hamming
distance (p=1) and the Euclidean distance (p=2).
For arbitrary values of p, the orthologous group pairs
will have the same order when sorted by distance L, and
we thus use only the Hamming distance.

8.4.7. Pearson correlation coefficient. We used a
standard linear correlation coefficient

_ Y- A)B-B)
VS (A4~ 47(B,— B’

8.4.8. Mutual information. Mutual information can be

defined based on the Kullback entropy between two
probability distributions {p"} and {p} as

K(plp") Zpllog

The Kullback entropy quantifies the amount of
information gained when substituting distribution {p"}
by distribution {p}. The index i refers to the possible
values drawn from the distributions. For the purpose of
comparing two profiles A and B, the possible values
correspond to the four combinations of occurrence
values of two genes, i.e. we define p;=p(a, b) and
pY:=7%a, b), a€ A, b€ B. We furthermore assume that
the occurrence values of the genes are statistically
independent, i.e. p”(a, b)=p(a) p(b). Thus, the mutual
information is defined as

MI(A, B) :=—K(p(a, b)|p(a)p(b))
a,b
=— Z Z a, b) IOg()p()b)'

a€{0,1} b{0,1}

The probabilities p are usually estimated by the

frequencies of the occurrence values (for p(a) and p(b))

or combinations of occurrence values (for p(a, b)) in the

compared profiles. Note that the maximally achievable

mutual information is determined by the minimum
entropy of the compared profiles (Steuer et al. 2002)

MI(A, B)<min{H(A), H(B)},
H(A) being the entropy of a profile defined as

H(A) == 3 p(a)log p(a).

a€{0,1}

8.5. Benchmarking
The positive predictive value (PPV) is defined as

TP(z)

PPV(2) = TP(z) + FP(z)
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Here, TP(z) and FP(z) are the numbers of true
positives and false positives, respectively, in the test set
that score better than the specified fraction or number z
of positive prediction. If the fraction of positive
predictions is set to =1 then the positive predictive
value will be completely determined by the ratio of
positive and negative controls in the dataset, i.e.
PPV=P/(P+ N). This ratio is equivalent to the
performance of the random classifier that selects
positive predictions randomly from the controls. To
be able to compare positive predictive values between
datasets, it is important that the datasets have the
same ratio of positive to negative controls. Alterna-
tively, identical P/N ratios can be achieved by boot-
strapping (see §8.5.1).

8.5.1. Bootstrapping. We used a weighted bootstrap-
ping procedure that assigns equal weights to all
complexes/pathways and generates a ratio of positive
to negative controls of 1:1. The members of each
complex/pathway were assigned the weight
1/(complex size). Proteins shared between complex-
es/pathways were assigned the average of the per
complex /pathway weights. The negative controls were
given the same weight as the sum of the weights of the
positive controls.
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