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Biology is rapidly changing from a

descriptive to a data-driven discipline in

which the discovery of novel findings

depends on the comparison and integra-

tion of massive data sets. As a conse-

quence, ontologies—systematic descrip-

tions of specific biological attributes—are

becoming more and more important for

describing the existing biological knowl-

edge. Despite an increasing awareness

about ontologies among biologists, much

work remains to be done before many

research fields in biology can benefit from

capturing the knowledge in such a way.

We explore, here, the use of biological

ontologies, illustrate how ontologies can be

used to make discoveries, and discuss some

of the challenges to using ontologies for

more than descriptive purposes.

The word ontology is derived from Greek

öntoz (of being) and -locı́a, (study) and

refers to the philosophical study of the

nature of being and existence. In comput-

er science, an ontology is an explicit

specification of a conceptualization that

defines the objects, concepts, and other

entities that are presumed to exist in some

area of interest and the relationships that

hold among them [1].

Ontologies have a long tradition in

biology and medicine, although many of

them are normally referred to as taxono-

mies or classifications. A very early

example of a biological ontology is the

Linnaean taxonomy from the mid 1700s,

which describes relations between species

and, combined with the work of Charles

Darwin, forms the basis for modern

taxonomy and our understanding of

evolution. Today, ontologies have become

an essential part of modern molecular

biology, enabling large-scale comparison,

integration, and sharing of data. Many of

the early ontologies are usually not

thought of as ontologies or formally

specified in ontological terms, yet they

form the conceptual basis of molecular

biology. For example, they focus on

classification of and relationships between

biological entities or concepts such as

amino acids [2] and protein structures

[3,4], protein and domain families [5–7],

as well as associated molecular functions

[7,8] and biochemical pathways [9].

The Rising Awareness About
Biomedical Ontologies

The ontologies mentioned above are all

fairly simple classification schemes that

consist of either a single level of categories

or a hierarchy of categories (i.e., a tree

structure). One of the most well-known

ontologies, Gene Ontology (GO), inte-

grates model organism databases to pro-

vide descriptions of gene products across

organisms using standardized, machine-

readable language. To tackle the problem

of describing protein functions in their

cellular context, GO uses a more complex

structure known as directed acyclic graph

(DAG) [10]. The difference between a tree

and a DAG is that in the latter a term can

be related to multiple broader terms rather

than only one (Figure 1). This allows GO

to elegantly model, for example, that

receptor tyrosine kinases are both receptors and

kinases.

GO has had a major impact on the

awareness and use of ontologies in biology.

Prior to publication of GO in 2000 [10],

less than one in 10,000 new abstracts

added to Medline would mention the

words ontology or ontologies. By 2007 that

number had increased by more than an

order of magnitude, and more than two

thirds of the abstracts that mention

ontologies specifically mention GO

(Figure 2), which is also reflected in the

steady rise in the number of the citations

to GO and associated resources. This can,

in part, be attributed to the use of GO

within rapidly growing research areas such

as comparative genomics, transcriptomics,

and proteomics. Another important con-

tribution is that the GO consortium

worked closely together with the commu-

nities behind key model organism data-

bases to ensure that vast amounts of GO-

based annotations would be provided for

each of the respective genomes.

An ontology is much like a database:

until it is used to organize actual data, it is

an empty shell that is not of much use to

anyone. Once large amounts of data are

easily accessible in a structured form,

numerous tools will almost certainly be

designed to make use of it. Indeed, half of

the top 10 cited papers related to the topic

ontologies present tools that allow easy

statistical analysis and inspection of GO

terms for a set of genes or proteins, for

example, identified in a transcriptomics or

proteomics study [11–15]. As a direct

consequence, GO is one of the few

ontologies that are frequently used to

describe and compare large-scale datasets

and have succeeded in revealing trends

that might otherwise have been over-

looked. For example, GO analysis sug-
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gested that translational repression is

stronger for mRNAs translated by endo-

plasmic-reticulum-associated ribosomes

compared to free cytosolic ribosomes

[16]. Going beyond convenient overviews

and utilizing ontologies to reveal new

biological insights remains one of the

major challenges. So far, most efforts to

enhance ontologies are directed at broad-

ening the biological knowledge that is

formalized using ontologies.

Recently, interaction ontologies have

been developed that complement the

current GO scheme on functional classifi-

cations. These ontologies aim to describe

the types of interactions that can take

place between biomolecules, including

binding, regulation, and modification

[17–20]. GO has taken the first small step

in this direction by adding new relation-

ship types related to regulation [21].

Numerous other biomedical ontologies

are being developed that are useful for

providing context for the functions of

genes, proteins, and small molecules.

Furthermore, ontologies cover complex

biological processes and systems such as

anatomy, development, and phenotypes.

In medicine, ontologies such as Medical

Subject Headings (MeSH), International

Classification of Diseases (ICD), Systema-

tized Nomenclature of Medicine–Clinical

Terms Diseases (SNOMED-CT), Ana-

tomical Therapeutic Chemical (ATC)

classification system, and Coding Symbols

for Thesaurus of Adverse Reaction Terms

(COSTART) are extensively used to

classify diseases, symptoms, drugs, and

side effects. Currently, about 200 biomed-

ical ontologies are listed in databases like

http://www.bioontology.org/ and http://

www.obofoundry.org/. Yet, there are

obvious areas such as the interaction of

species with the environment (e.g., life-

styles and habitat similarities) where first

attempts have been made (http://www.

environmentontology.org), but which de-

serve more attention in the future.

Using Ontologies for Discovery

In addition to having important roles in

genome annotation and statistical character-

ization of gene sets, ontologies have the

potential to help scientists make new discov-

eries. To our knowledge, this potential has

only been realized in a few case studies so far.
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Figure 1. Typical structures of ontologies. Almost all biomedical ontologies are either simple tree structures that represent hierarchical
classifications or directed acyclic graphs (DAGs). The difference is that the latter allows a term to be related to multiple broader tems (green arrows)
whereas the former does not. Directed cyclic graphs are very rarely used for ontologies; the reason is that cycles (red arrows) can only arise in
ontologies that make use of other relationships than is-a and part-of are used [28]. We illustrate each structure with simplified examples, namely an
ontology of vertebrates, an ontology of cellular components, and an ontology of cell-cycle regulation that shows the mutual regulation of cyclin-
dependent kinase (CDK) and anaphase-promoting complex/cyclosome (APC/C).
doi:10.1371/journal.pbio.1000374.g001
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An early example is the Genes2Diseases

method [22], which predicts candidate

genes for inherited diseases in a given

locus by correlating molecular functions of

the genes therein assigned by GO with

controlled vocabularies in chemistry, dis-

eases and phenotypes provided by the

Medical Subject Headings in Medline

(MeSH terms). For example, the gluta-

mate dehydrogenase 1 and 2 genes, which

reside within the linkage region of the

disease spinocerebellar ataxia-8, infantile, with

sensory neuropathy, were predicted to be

involved in the disease based on literature

links between the GO term glutamate

catabolism and the MeSH term spinocerebellar

degenerations.

Recently, two new uses of ontologies for

discovery have been published. The first

links human diseases to animal models

through cross-species comparison of phe-

notypes and anatomical structures [23],

and the second identifies hitherto un-

known targets for existing drugs by

comparing side effects [24]. Despite the

completely different goals, the two meth-

ods conceptually have much in common:

concepts (be they diseases, animal models,

or drugs) are linked based on the similarity

of the sets of phenotypes that they are

associated with. The phenotypes are

described using terms from ontologies,

which are backtracked to broader, paren-

tal terms in the ontology (see Figure 3).

Finally, the resulting sets of phenotypes are

compared using scoring schemes that take

into account the frequencies of the term,

because rare terms are generally more

informative than very common terms.

There is one main conceptual difference

between the two approaches. Washington

et al. needed to compare phenotypes

across species-specific anatomical ontolo-

gies to identify genes in model organisms

that are phenotypically similar to 11

human diseases [23]. By contrast, Cam-

pillos et al. could directly compare the

phenotypic side-effect profiles of different

drugs, because all side-effect data were

directly obtained from human subjects,

and thereby identify 261 pairs of chemi-

cally dissimilar drugs from different ther-

apeutic indications that are likely to share

targets [24].

These approaches go beyond the type of

logical reasoning that is usually associated

with ontologies. The major difference is

that they can identify plausible relation-

ships that are supported by the existing

knowledge, but which are not strict, logical

consequences thereof [25]. For example, a

human disease can be linked to an animal

model based on having similar annotated

phenotypes. The underlying idea that a

computer can discover a new, previously

unknown relationship (A–B) based on two

or more known relationships (A–C and B–

C) is reminiscent of the early (mostly

manual) text-mining work by Don Swan-

son who, for example, correctly predicted

that fish oil can ameliorate Raynaud

disease based on both concepts being

linked to platelet inhibition, vasodilation,

lowered blood viscosity and triglyceride

levels, increased prostacyclin, and blocking

of serotonin release [26]. In other words,

the phenotypic profile of the response to

fish oil matched that of successful treat-

ments of the disease.

Current Challenges and Future
Needs

The works described in the previous

section illustrate the promise of using

ontologies for biomedical research, but

also highlight some of the many challenges

that must be overcome if we are to realize

the power of ontologies and to move

beyond descriptions to discoveries. Despite

basing their work on existing ontologies,

both discovery projects involved a consid-

erable investment of time in annotating

the current knowledge within the field

(domain knowledge) according to the

ontologies. Although this annotation pro-

cess was aided by the use of text-mining

tools, domain experts must check all the

extracted facts. Quantity and quality of

annotation is, as alluded to earlier, the

make or break of any ontology.

A prerequisite for making good annota-

tions is that the human annotators use the

terms from the ontology consistently. It is

thus crucial to have clear definitions of all

the terms. The sequence ontology (SO) is so

far the only biological ontology to formally

specify the meaning of terms [27]. Al-

though formal definitions are certainly

more stringent than the textual descriptions

that all other biological ontologies rely on,

we believe that the latter are more

important for ensuring consistency of how

the terms are used by annotators.
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Figure 2. The growth of ontologies in biomedicine. To illustrate the increasing use of
ontologies, we mined PubMed abstracts for occurrences of the words ontology and gene ontology
(and the plural forms thereof). We normalized for the general growth of PubMed by converting
the raw counts per year to ‘‘hits per million abstracts.’’ The plot shows a steady increase in the
awareness of ontologies over the past decade, and that GO became the dominating biological
ontology over a period of just five years (note the logarithmic scale). However, ontologies appear
to have reached a plateau over in the past three years, at least in terms of how often they are
mentioned in abstracts. In contrast, the citations to GO and associated resources are steadily
rising (end of 2009.5500) and imply a further increasing use.
doi:10.1371/journal.pbio.1000374.g002
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Widely used ontologies like GO tend to

run into a second problem that only

enhances the former one: concept explo-

sion. GO currently consists of over 30,000

different terms, which makes it nearly

impossible for a human annotator to know

all terms, their precise definitions, and how

terms relate to each other. For example,

one could easily be mistaken to think that

the GO term DNA replication would auto-

matically imply the term cell cycle, but that is

not the case because some DNA replication

proteins are used only in the mitochondria

or in response to DNA damage. Nonethe-

less, there are many examples of cell-cycle

genes in the model organisms that are

annotated with the former GO term but

not the latter, which simply shows that even

the best database curators cannot be

expected to memorize a DAG of more

than 30,000 terms. Whereas complex

ontologies allow more fine-grained annota-

tions to be made, we suspect that simpler

ontologies may lead to fewer mistakes.

GO’s success can partly also be attrib-

uted to its consistent use of the same

ontology across species, which facilitates

simple similarity-based function annota-

tion and cross-species comparisons. How-

ever, it is a major challenge to accommo-

date species-specific differences within a

single ontology. This is especially true

when dealing with concrete physical

entities; for example, budding yeast and

humans do not have the same comple-

ment of protein complexes, which makes it

difficult to define a unified set of protein

complexes within the GO cellular compo-

nent ontology. This issue only becomes

more difficult when dealing with anatomy

or developmental stages, for which species-

specific ontologies are currently used. In

such cases the way forward may be to

bridge the species-specific ontologies by

identifying orthologous genes, that is,

genes from different species with common

ancestry, as was done by Washington and

colleagues [23].

The two largest challenges, though, are

that the vast majority of the biological

knowledge currently exists only as unstruc-

tured text, and that much of what is

described in a typical publication cannot

be captured by current ontologies. At best,

current ontologies describe the type of

information that would be given in the

Conclusions section of a paper. However,

the most important details typically reside

in the Results and Methods sections: which

observations were made and under which

exact conditions. To capture this in a

structured form, which will be crucial for

interpreting the future flood of experimen-

tal data, we will need ontologies such as the

Ontology for Biomedical Investiga-

tions (http://www.obi-ontology.org) that

are more closely tied to the experiments

and measurements themselves, rather than

to the researchers’ interpretations thereof.

Maintaining such ontologies will be partic-

ularly difficult because new experimental

techniques are continuously developed,

making a comprehensive description of

them a moving target. Even with such

ontologies in place, the challenge remains

to get the information described according

to ontologies. This will likely require the

development of tools that will help authors

annotate the text as they write it, and

possibly readers to subsequently improve

the annotations as the ontologies them-

selves are expanded (Box 1).

The need for computer-readable ways to

express our knowledge is closely tied to the

exponential growth in biological data.

Human-readable textual descriptions suf-

fice when analyzing only a few genes or

proteins, but computer-readable ontologies

are a prerequisite for systematic and

comparative analysis of whole genomes,

transcriptomes, or proteomics. Despite

these challenges, the rapid move towards

quantitative biology will thus likely drive

the development of new biological ontolo-

gies. The sheer number of high-throughput

experiments implies that ontologies will be

needed for describing not just the genes and

proteins but also information about the

samples and experiments themselves (i.e.,

metadata). Finally, current ontologies are

qualitative in nature, whereas ontologies

that can capture quantitative knowledge

(e.g., fold-changes) in time, space, and

context (e.g., environmental factors) will

be needed to fully describe the conclusions

derived from quantitative experiments.
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Figure 3. Ontology subsumption reasoning. This example from Washington et al. [23]
shows the relationships of the term ‘‘intestinal epithelium’’ to other anatomical entities within the
ZFA ontology. Gray arrows with an ‘‘i’’ indicate an is-a relation, and blue arrows with a ‘‘p’’ indicate
a part-of relation. The numbers indicate IC of the node, which is the negative log of the
probability of that description being used to annotate a gene, allele, or genotype (collectively
called a feature). As terms get more general, reading from bottom to top, they have a lower IC
score because the more general terms subsume the annotations made to more specific terms.
doi:10.1371/journal.pbio.1000374.g003
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Box 1. Semantic Annotation of Scientific Publications

To capture the knowledge of a publication in computer-readable form, the text must somehow be semantically annotated, that
is, the meaning of the text must be described using standardized names and terms.

Why? The biomedical literature is growing exponentially, and we are already past the point where it is impossible to read all
papers published on topics such as the cell cycle [29,30]. Reading thus needs to be supported by semantically enhanced
literature and ontology-aware tools that provide computational access to the underlying knowledge [30].

What? It is unclear how much of the meaning of an article should be captured by semantic annotation. Although more is
always better, it is important to keep in mind that anything is better than nothing. We should thus already now start to
annotate the genes, proteins, functions, interactions, and phenotypes mentioned in each publication with their respective
database identifiers and ontology terms. The scope of semantic annotations should subsequently be gradually extended as
new ontologies are developed.

Who? One option is to have authors annotate their manuscripts, since they know better than anyone exactly what was meant.
However, one cannot expect authors to be sufficiently well versed in ontologies to be able to make all the applicable
annotations, for which reason they may need support from database curators. The latter could also contribute annotations
directly; it would be desirable that the large effort that goes into constructing biological databases would also improve the
annotation of the underlying literature. Finally, one could allow readers to add and correct annotations.

When? One can envisage several points during the life cycle of an article when annotations could be added. Authoring tools
could help researchers annotate the text with appropriate ontology terms while writing the manuscript, which as an attractive
side-effect would encourage consistent usage of scientific terms in the text itself. Semantic annotation could alternatively
become part of turning an accepted manuscript into a publication. However, the annotation process need not end at the time
of publication; readers could correct erroneous or missing annotations and extend the scope of annotation in already published
articles as new ontologies are developed.

Where? There are several options as to where the semantic annotation of a publication could be stored. One option is to
embed it directly in the documents. This ensures the tightest possible link between text and annotation but would force the
annotations to be static, unless one allows post-publication changes to documents. Alternatively, annotations could be stored
in centralized databases operated by publishers or public information centers, or in a distributed manner that leaves the
individual content consumers to decide which types and sources of annotations to include.

The answers to these questions are obviously not independent of each other, and the alternative approaches are
complementary rather than mutually exclusive. Several different approaches have already been tested, often in collaboration
with publishers, and it is clear that tools will be required to ease the burden of manual annotation by suggesting semantic
annotations where appropriate (see [31] and references within).
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