
brief communications

nature methods  |  VOL.10  NO.9  |  SEPTEMBER 2013  |  881

sequence identity has been proposed as a remedy7. However, 
additional complexity arises from genomes harboring multiple 
copies of the 16S rRNA gene, which can exhibit intragenomic 
diversity of up to ~5% (for example, Desulfitobacterium hafniense, 
Supplementary Table 1) or when 16S rRNA genes from differ-
ent species (for example, Aeromonas salmonicida and Aeromonas 
hydrophila) are ~99% identical (Supplementary Table 2).

More recently, the calculation of the pair-wise average nucleo-
tide identity (ANI) of whole genomes4,8 has been proposed to 
computationally obtain results that mimic those from DDH (with 
intraspecies similarity of approximately >94% ANI)8. Even though 
ANI is easier to use and faster than DDH, it is still computation-
ally expensive and thus has not been applied at large scale to refine 
the current taxonomy of sequenced prokaryotic genomes.

As an alternative, protein-coding genes have been suggested as 
markers for species delineation and clade-specific, but not uni-
versal, marker genes have already been used for this purpose2,3. 
Additionally, for the related task of placing genomes into an exist-
ing taxonomic classification, such as the one provided by the US 
National Center for Biotechnology Information (NCBI Taxonomy 
database), several methods that use universal marker genes have 
also been developed9,10. These include an approach based on 40 
universal, single-copy phylogenetic marker genes (pMGs)11,12 
(Supplementary Table 3), which had been first identified to resolve 
the evolutionary history of organisms by building a phylogenetic 
tree that spans all three domains of life11. However, a comprehen-
sive analysis of global prokaryotic genomic diversity at the species 
level has not been provided by any of these approaches because of 
both efficiency concerns and a lack of focus on the species level.

Here we present the specI method for fast and accurate deline-
ation of prokaryotic species based on these 40 protein-coding  
pMGs. We used a clustering approach based on pair-wise nucleo-
tide sequence dissimilarity between pMGs, bypassing the compu-
tational bottlenecks of constructing multiple sequence alignments 
and accurate phylogenetic trees. The computational efficiency of 
this approach enabled the analysis of a comprehensive set of 3,496 
prokaryotic genomes with accuracy equal to or higher than that 
of existing approaches.

In a set of 3,496 high-quality prokaryotic genomes (see Online 
Methods for quality-control criteria), including 836 sequenced 
type strains (Supplementary Table 4), we identified 40 univer-
sal single-copy pMGs11,12 by eggNOG (evolutionary genealogy 
of genes: nonsupervised orthologous groups) annotation13. To 
benchmark the methodology, we selected 943 genomes from spe-
cies with sequenced type strains, for each of which all 40 pMGs 
and at least one full-length 16S rRNA gene could be detected. 
Type strains are used as a taxonomic reference and hence should 
be used to assess the performance of species-delineation tools14 
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The definition of prokaryotic species is one of the most debated 
topics among microbiologists, without any satisfying solution1. 
Phenotypic information, pathogenicity and environmental obser-
vations had originally guided the delineation of prokaryotic spe-
cies. These approaches have been complemented by molecular 
techniques, such as the use of DNA-DNA hybridization (DDH) 
and sequencing of the 16S ribosomal RNA (rRNA) gene as a phy-
logenetic marker2. Currently, information from different genomic 
and phenotypic methods is combined to assign an organism to a 
species3. An ad hoc committee on the systematics of prokaryotes 
proposed to define species as “a category that circumscribes a 
(preferably) genomically coherent group of individual isolates 
(strains) sharing a high degree of similarity in (many) independ-
ent features, comparatively tested under highly standardized con-
ditions”1,2. In practice, a prokaryotic species is often defined as a 
group of organisms with a certain phenotypic consistency, a DDH 
value of over 70%, and a 16S rRNA gene nucleotide sequence 
identity of 97% or more using reference ‘type strains’4, which are 
representative strains for prokaryotic species chosen by experts 
and are used as a taxonomic reference.

Whereas DDH is still considered the ‘gold standard’4 for species 
assignments, its application is impractical because of experimental 
complexity, low throughput and often irreproducible results. Use 
of the 16S rRNA gene as a phylogenetic marker has consequently 
gained popularity5, despite the fact that the routinely applied 97% 
sequence identity cutoff was not intended for this use and may 
be inaccurate6,7. A more stringent threshold range of 98.7–99% 
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(see Online Methods, Supplementary Fig. 1 and Supplementary 
Table 4 for details on type strain classification). For each pMG, 
we calculated distances between all pairs of genomes as inverse 
nucleotide sequence identities. We used nucleotide sequences as 
they provide better resolution than amino acid sequences when 
comparing closely related organisms15. Next, we combined the 
distances using a length-weighted average (Online Methods), 
which confers robustness to potential errors in individual pMGs 
(for example, due to rare duplication, loss and horizontal transfer 
events or misidentification of one or more pMGs in a genome).

Based on the combined distance metric, we partitioned genomes 
into species clusters, exploring single, average and complete  
linkage-clustering algorithms. We applied a twofold cross- 
validation approach to determine the sequence identity cutoffs, 
which provided optimal species delineations in comparison to a 
taxonomic classification based on type strains14. Finally, we assessed 
the accuracy of our clustering approach as cross-validation error 
using the average false discovery rate (FDR; equals 1 – precision) 
among the clusters and the average recall among the named spe-
cies in the type-strain taxonomy (Online Methods). A nucleotide 
identity cutoff of 96.5% (Fig. 1a and Supplementary Fig. 2) for 
average linkage clustering yielded optimal results (average recall 
of 98.9% and average FDR of 1.5%, Fig. 1a; see Supplementary  
Table 5 for a list of discrepant genomes). Cutoffs for the other 
clustering algorithms only deviated slightly (Fig. 1a).

We extended the assessment to include analysis of the 16S rRNA 
gene. The most frequently used species cutoff for operational tax-
onomic units of 97% sequence identity6 yielded clusters that were 
less accurate than those derived from the method based on pMGs, 
with more than threefold larger FDR (Fig. 1a). When we opti-
mized the 16S rRNA sequence identity cutoff in the same way as 
for the 40 pMGs, identities between 98.7% and 99.1% (depending 
on clustering algorithm) distinguished prokaryotic species best, 

in agreement with a previously recommended range of 98.7–99% 
sequence identity7 (Fig. 1a), although the average FDR and aver-
age recall were worse than for the combined 40 pMGs.

We performed global species clustering with the aim of revis-
ing the current species classification in an accurate and consistent 
manner. In addition, we offer the specI tool for the automated 
placement of newly sequenced genomes into our global cluster-
ing (Online Methods). The accuracy of specI for assigning new 
genomes into named species clusters was compared to existing tax-
onomic placement methods Amphora210, JSpecies4 (implementing 
the ANI method) and 16S rRNA nearest-neighbor classification, 
using the type strain classification (Fig. 1b,c; genomes used are 
listed in Supplementary Table 6). specI was more accurate than 
Amphora2 and the 16S rRNA nearest-neighbor classifier (Fig. 1b,c  
and Online Methods). It also was considerably faster than 
Amphora2 and JSpecies, including the speed-optimized MUMmer-
based implementation4 (Fig. 1c). Because a large-scale comparison 
to assess the overall accuracy of species assignments by JSpecies 
(ANI) was too time-consuming (Online Methods), we selected sev-
eral clades; in all of these, the species groupings were very similar 
between specI and ANI (Supplementary Tables 7–13).

Applying the optimized cutoff (96.5% sequence identity for com-
bined pMGs) to the set of 3,496 prokaryotic high-quality genomes 
resulted in 1,753 species clusters (Supplementary Table 14),  
which we examined for inconsistencies with the current NCBI 
Taxonomy information (a widely used classification that is less 
well curated than the type strain classification). Although not 
all of these 3,496 genomes contained all 40 pMGs (mostly due 
to incomplete genome sequences; Supplementary Table 15), we 
expect this to have only negligible influence on the results, as 
specI is robust to missing pMGs (Supplementary Fig. 3).

After removing 378 genomes not assigned to a species in the 
NCBI Taxonomy database, 2,804 of the remaining 3,118 genomes 
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figure 1 | Comparative performance assessment of specI. (a) Performance of the 40 pMGs (combined pMGs) and 16S rRNA gene species-level clustering 
cutoffs (cutoff estimated) as well as the classical 16S rRNA gene 97% nucleotide sequence identity cutoff (97% ID cutoff) in terms of average precision 
and recall using indicated clustering algorithms. The cutoffs are reported in the inset. (b) Accuracy of species placements compared to type strains 
using specI (two implementations, using different alignment algorithms; Online Methods), Amphora2 and a 16S rRNA nearest-neighbor classifier (16S 
NN classifier; which included an optimized 99% ID cutoff) based on 130 holdout genomes, whose taxonomy is not disputed. (c) Empirical runtimes of 
specI, Amphora2 and ANI calculations for analysis of 100 randomly chosen genomes. For ANI calculations, only the MUMmer alignment step of JSpecies 
was benchmarked (Online Methods). (d) Large-scale application of the species-level clustering method to 3,496 high-quality genomes. The genomes 
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(89.9%) formed clusters in agreement with the NCBI Taxonomy 
database (Fig. 1d). Manual investigation of the 314 assign-
ments that disagreed indicated that for 195 of these (62.1%), the 
results of our method were supported by classification proposals  
in recent literature (Fig. 1d and Supplementary Table 16). We 
found no publications on the taxonomy for most of the 119 
unsupported disagreements. When including all literature- 
supported cases, we estimate at least 96.2% of our assignments are 
likely to be correct. Of the remaining discrepancies, data for 87 of 
119 genomes (73.1%) suggest a split of the original species accord-
ing to our clustering, whereas merges of different species into the 
same cluster occurred less frequently (Fig. 1d). The rate of cor-
rect assignments was even higher for the type strains, and nearly 
all discrepancies were supported by ANI values (Supplementary 
Table 7). The discrepancies with the NCBI Taxonomy data were 
not concentrated in certain phyla (Supplementary Fig. 4), indi-
cating that a single, globally adjusted criterion for species defini-
tion appears to work well throughout the archaeal and bacterial 
domains of life.

We observed systematic discrepancies between our consist-
ent and universally applied species delineation criteria and the 
NCBI Taxonomy database for clinically relevant genera because 
these tend to have a more fine-grained species taxonomy (for 
example, Mycobacterium tuberculosis16), resulting in merges in 
our clusters. In contrast, more coarse-grained naming is often 
applied in understudied clades, which can be resolved at a 
finer resolution with our approach (see below; Supplementary  
Table 16). Finally, some species are inherently difficult to deline-
ate based on molecular markers and consequently pose a source of 
error for automated approaches. These organisms can be identi-
fied as extreme cases exhibiting low coherence between species 
assignments based on individual pMGs, as the coherence between 
pMGs is generally very high (87% of genomes have a coherence 
score >90%; Supplementary Fig. 4 and Online Methods).

To better understand the reasons for discrepancies between 
the specI results and the current taxonomic classification, we 
investigated three clades in detail (Supplementary Table 17). 
For these, we built phylogenetic trees using concatenated align-
ments of the 40 pMGs and the 16S rRNA gene and compared 
them with trees constructed from concatenated alignments of 

all one-to-one orthologs (derived using eggNOG routines13). 
These one-to-one orthologs represent a considerable fraction of 
the analyzed genomes (12.3–65.9%), and thus we expected them 
to give a very robust signal. This tree-based approach can resolve 
the phylogenetic history of the clades and reveal whether named 
species or species clusters are monophyletic (as is desired for con-
sistent taxonomy) or not. The phylogenetic trees had identical  
topologies (Fig. 2, and Supplementary Figs. 5 and 6). The ANI4,8 
values we calculated for these clades also coincided with the  
species clusters and trees (Supplementary Tables 8–13).  
These results demonstrate the power of the 40 pMGs for species 
delineation. In contrast, the trees generated from 16S rRNA gene 
alignments had differences in topologies and typically much lower 
bootstrap support at the species level (Fig. 2, and Supplementary 
Figs. 5 and 6). However, splits between different genera defining 
monophyletic clades also had high bootstrap support, confirming 
the usefulness of the 16S rRNA gene analysis for inferring genus 
membership (as provided by tools such as Greengenes17).

We investigated two genera known to be co-differentiating 
long-time endosymbionts of insects: Buchnera and Wigglesworthia 
(Supplementary Figs. 5a and 6b)18,19. In an earlier study based 
on ANI values, the authors proposed the division of Buchnera into 
host-specific taxa4, and our results support a co-speciation scenario 
by both clustering and phylogenetic trees for these genera, at a reso-
lution that could not be obtained with 16S rRNA–based analysis.

specI can be used to find and resolve errors in the NCBI 
Taxonomy database. For example, we propose a reclassification of 
Serratia odorifera 4Rx13 to Serratia plymuthica, which is also sup-
ported by phylogenetic trees as well as ANI calculations. Our spe-
cies clusters of the genus Serratia also suggest the inclusion of two 
unnamed organisms in the S. plymuthica species (Supplementary 
Figs. 5b and 6c). Polyphyly is a frequent type of inconsistency 
in the NCBI Taxonomy database, as highlighted by S. odorifera, 
which was readily detected by specI (Supplementary Fig. 5b  
and 6c). Other examples of polyphyletic species include known cases 
from the genus Escherichia–Shigella20 (Supplementary Fig. 7),  
for which one specI cluster represented the whole Escherichia–
Shigella clade except Escherichia albertii (Supplementary Note).

Finally, we examined a major discrepancy between our results 
and the NCBI Taxonomy database for the genus Prochlorococcus. 
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This genus had been identified relatively recently21 and clas-
sified as a single species (Prochlorococcus marinus) based on  
the 97% sequence identity cutoff for the 16S rRNA marker, with  
a subdivison into ‘ecotypes’ proposed later22. specI splits this  
conglomeration of 13 genomes into several species clusters that 
correspond to ecological preference with respect to light avail-
ability (ecotypes HL and LL), regardless of whether clusters are 
based on pMGs or the 16S rRNA gene (Fig. 2 and Supplementary 
Fig. 6a). The more fine-grained species distinction suggested  
by clusters based on pMGs was independently supported  
by whole-genome comparisons using ANI (Supplementary 
Tables 8 and 9).

The robustness and accuracy of specI allowed us to confi-
dently assign a large portion of the 378 unidentified organisms 
to a named species or to propose new species. We assigned 98 
genomes to named species (Supplementary Table 18). In addi-
tion, 39 genomes, which were grouped into 15 unclassified 
species clusters with two or more members (Supplementary  
Table 19), and 241 singleton genomes require new species names 
(Fig. 1d). To evaluate the accuracy of these assignments, we classi-
fied an additional 100 recently sequenced genomes (not included 
for global species delineation of 3,496 genomes), 92 of which were 
assigned to the same species as in the NCBI Taxonomy database 
(Supplementary Fig. 8), but most of the remaining eight genomes 
were clearly distinct from their named species clusters in terms 
of divergence of pMGs (Supplementary Table 20). Classification 
of new genomes with specI is completely automatic. The only 
manual intervention needed is the selection of a name for newly 
discovered species. Over 10% of all sequenced genomes (378 of 
3,496) are unclassified at the species level today, and we expect 
this number to increase, highlighting the need for automated  
species assignment.

In conclusion, we developed a method based on 40 pMGs11,12 
to address the need for accurate, universal, computationally effi-
cient and automated approaches for species assignment of existing 
and newly sequenced genomes. specI is applicable to any newly 
sequenced genome (via a dedicated web server), as it uses univer-
sal, single-copy phylogenetic marker genes that are automatically 
identified. The approach facilitates large-scale applications because 
it only uses ~1% of a prokaryotic genome and is thus faster than 
existing methods that use the whole genome, while maintaining 
high accuracy and robustness. We believe that specI has the poten-
tial to help make prokaryotic taxonomy, which has been called 
“the most subjective branch in any biological discipline,”23 a more 
objective field. specI provides reliable guidelines for species classi-
fication, could in principle be extended to other taxonomic levels 
(such as genera) and could serve as a basis for other large-scale  

applications that rely on a consistent taxonomy guided by molecu-
lar markers in comparative genomics and metagenomics.

methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
Genome selection. All prokaryotic genome sequences listed at 
http://www.ncbi.nlm.nih.gov/genome/browse/ were downloaded 
in conjunction with their predicted genes and proteins from the 
NCBI Nucleotide database and European Molecular Biology 
Laboratory (EMBL) Bank website on 23 February 2012. To filter 
out low-quality genomes, we removed genomes that had more 
than 300 contigs and a length for which the collection of all con-
tigs of that length or longer contain at least half of the total of the 
lengths of the contigs (N50) of less than 10 kilobases (remov-
ing 213 genomes). Next, we extracted the 40 pMGs11,12,24 from 
all genomes and removed all incomplete genomes for which less 
than 30 pMGs were found (removing 68 genomes). This quality  
filtering retained 1,789 complete genomes and 1,707 high- 
quality incomplete genomes, and 281 genomes were removed.  
The resulting set of 3,496 genomes was used for the global  
analysis (Fig. 1d).

From this comprehensive collection of genomes, we extracted a 
subset of genomes for the estimation of optimal species delineation 
cutoffs. This set contains 943 genomes, which contained all 40 pMGs, 
at least one full-length copy of the 16S rRNA gene (Supplementary 
Table 15) and whose named species was represented by a sequenced 
type strain as a ground truth for taxonomic classification.

One hundred additional annotated genome sequences  
(including predicted genes and proteins) were downloaded on 
24 May 2013 and used to evaluate the specI classification accu-
racy. The results are shown in Supplementary Figure 8 and 
Supplementary Table 20.

Extraction of 40 universal single-copy phylogenetic marker 
genes. We annotated the 40 pMGs of the 3,496 prokaryotic 
genomes using SMASH routines (version 1.6)25 and sequences 
of the 40 pMGs obtained from eggNOG version 3 (v3; ref. 13). 
For this, the genes of the 3,496 genomes were screened against 
eggNOG v3 using Blast26, filtered for best hits and annotated 
using SMASH.

Extraction of 16S rRNA gene. Full-length 16S rRNA gene sequences 
were identified in the 3,496 genomes using rna_hmm.py27  
with customized hidden Markov models generated using 
hmmbuild28 and alignments downloaded from the SILVA data-
base (version SSU r104; alignment quality = 100; sequence 
length ≥ 1,200; sequence quality ≥ 75; restrict search to SILVA)29. 
Sequences with a length <1,250 base pairs30 and a bootstrap sup-
port of <90% at the genus level were removed from the analysis.

Extraction of one-to-one orthologs. We generated orthologous 
groups of all genes from the genomes shown in Figure 2 and 
Supplementary Figure 5 using the eggNOG pipeline31. We then 
extracted all orthologous groups that contained exactly one gene 
member from each genome. We found 629 one-to-one orthologs 
in the Prochlorococcus-Synechococcus clade used for the analysis 
in Supplementary Figure 6a, 666 one-to-one orthologs for the 
Buchnera-Wigglesworthia clade used for Supplementary Figure 6b  
and 161 one-to-one orthologs for the Serratia-Rahnella clade used 
for Supplementary Figure 6c.

Species type strains. We collected information about the type 
strains of all listed species from the ‘List of prokaryotic names 

with standing in nomenclature’ hosted at http://www.bacterio.
net/. These were then assigned to NCBI Taxonomy identifiers 
(downloaded on 24 July 2012) by matching the culture collec-
tion names of the type strains with the NCBI Taxonomy names 
including all synonyms. The results were manually inspected, 
and mismatching names were excluded. All type strains that 
could be assigned to an NCBI Taxonomy identifier were clas-
sified depending on whether a genome sequence for this NCBI 
Taxonomy identifier was available or not (Supplementary Fig. 1 
and Supplementary Table 5).

NCBI Taxonomy curation. We used the NCBI Taxonomy data-
base (downloaded on 24 July 2012), marked all species that were 
not assigned a proper species name in the NCBI Taxonomy data-
base (for example, “Vibrio sp. Ex25”), to exclude these genomes 
when calculating the accuracy of species classification.

To investigate discrepancies between our species-level clus-
tering and the existing NCBI Taxonomy database in detail,  
we performed a ‘targeted’ curation of the latter based on a litera-
ture survey of all discrepant genomes. This extensive curation 
resulted in the reclassification of 182 genomes found in the NCBI 
Taxonomy database (Supplementary Table 16).

Calculation of distances. We calculated all symmetrical pair-
wise distances for the 40 pMGs as well as the 16S rRNA gene 
using glsearch of the fasta package (version 36)32 by globally 
aligning the shorter sequence to the longer one for every pair of 
sequences. We then extracted pair-wise percentage nucleotide 
sequence identities. To generate distance matrices as input for 
the clustering procedure, we transformed identities using the 
formula: distance = 1 – identity. Subsequently, we calculated the 
gene-length–weighted average percentage sequence identity and 
distance of the combination of all pMGs (emulating a distance 
derived from concatenation). The increased phylogenetic resolu-
tion of the combined set of pMGs has been shown before11.

Clustering. Clustering was performed using the SciPy package 
hcluster (version 0.2.0) (Eads, D. https://code.google.com/p/scipy-
cluster/) for the Python programming language. Distance matrices 
were generated as described above and then clustered using single, 
average and complete linkage. The hierachical clusterings were 
then transformed into discrete species-level clusters through the 
application of distance cutoffs. To select optimal cutoffs, we regen-
erated clusterings with various distance cutoffs ranging between 
0% and 100% dissimilarity in 1,000 linear increments.

Evaluation of clustering results. Congruence between clusters 
and a reference taxonomy was computed using the average FDR 
of all clusters and the average recall of all named species. FDR of 
a cluster was defined as the proportion of genomes not belonging 
to the majority species within that cluster, and recall of a named 
species was defined as the largest proportion of genomes from 
this species that were grouped together in a single cluster. Both 
FDR and recall had values between 0 and 1, with low FDR val-
ues and high recall values indicating good agreement with the 
taxonomy. For each clustering generated with a certain distance 
cutoff, we computed the average FDR and recall as the mean of the 
FDR and recall values across all clusters weighted by the number 
of genomes per cluster or species, respectively. We used 10 as a 
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maximum weight even if more representative genomes existed, to 
decrease bias (toward very well-studied species such as Escherichia 
coli, for which >100 genomes have been sequenced).

Selection of cutoffs. To select optimal nucleotide identity cutoffs 
for the 40 pMGs and the 16S rRNA gene, we first selected a set 
of 943 genomes in which all 40 pMGs as well as a full-length 16S 
rRNA gene could be identified and whose named species was rep-
resented by a sequenced type strain. This set was randomly split 
into two subsets for twofold cross-validation. For both subsets, 
we calculated the cutoffs with the highest average F score (defined 
as F1 = 2(precision × recall)/(precision + recall) with precision = 
1 − FDR) for each of the pMGs individually as well as the com-
bined set. Next we evaluated the performance of these cutoffs by 
applying them on the respective holdout subset and calculating 
the average FDR and recall on all clusters from both sets (Fig. 1a).  
To obtain a global cutoff, we calculated the average of the two 
cutoffs from the individual subsets. Also, over-fitting regarding 
the existing taxonomic classification is unlikely as our cross- 
validation procedure guarded against it. The resulting optimal 
cutoffs were then applied to the complete set of 3,496 genomes to 
obtain comprehensive species-level clusters, which were compared 
in detail with the NCBI taxonomic classification (Fig. 1d).

Assessment of discrepancies between clustering results and 
NCBI Taxonomy database. We extracted discrepancies between 
the NCBI Taxonomy database and the clustering of the com-
bined 40 pMGs applied to the set of 3,496 genomes. We manually 
inspected these and performed a literature survey to classify all 
observed discrepancies into one of the following types: (i) literature 
supports the clustering rather than the NCBI Taxonomy database, 
(ii) clusters merged genomes from more than one species into a 
single cluster and (iii) splits corresponding to cases where several 
clusters contained representative genomes of the same species. This 
was only possible for genomes with a proper species name in the 
NCBI Taxonomy database. The remaining genomes without explicit 
species names (for example, genomes that are taxonomically not 
assigned to a named species such as “Pusillimonas sp. T7-7” or 
“uncultured Termite group 1 bacterium”) were classified depend-
ing on whether they were grouped together with named genomes, 
which suggested the transfer of that species name (Fig. 1d).

Coherence between different phylogenetic marker genes. We 
calculated a score reflecting the coherence between clusterings 
based on individual pMGs. This was done by pair-wise compari-
sons of cluster memberships of the 3,496 genomes. If two genomes 
were found in the same cluster in at least half of all 40 independ-
ent clusterings, we counted cases in which these genomes did not 
cluster together as false negatives and consistent clusterings as 
true positives. If a pair of genomes co-clustered in less than half 
of the single-pMG clusterings, all instances in which we observed 
co-clustering nonetheless were counted as false positives,  
otherwise as true negatives. For each genome we summed up 
these numbers and calculated the F score as the final cluster-
coherence score. The results are visualized using iTOL33 as shown 
in Supplementary Figure 4.

specI web server. The specI tool is provided as an easy to use  
web application at http://www.bork.embl.de/software/specI/. 

Users can upload the predicted genes sequences of a genome 
and their respective protein sequences. The 40 pMGs are then 
automatically extracted from these sequences using the fetchMG 
tool (http://vm-lux.embl.de/~mende/fetchMG/). Next the length-
weighted average distance to all 1,753 species clusters is deter-
mined using usearch34. For the ‘accurate’ algorithm, the distances 
to all clusters closer than 85% nucleotide sequence identity are 
realigned using glsearch. In the last step, the most similar species 
cluster is determined and the input genome is assigned to the 
species cluster if its length-weighted average nucleotide sequence 
identity is higher than 96.5%.

Comparison of taxonomic placement methods. We compared 
specI to Amphora2 (ref. 10) and a 16S rRNA gene–based nearest-
neighbor classifier (calling a species match, if the maximum pair-
wise nucleotide identity between full-length 16S rRNA genes was at 
least 98%). For a fair method comparison, we generated a specI ref-
erence clustering including only those genomes that are also present 
in the original Amphora2 reference tree. We then compiled a test 
set consisting of genomes that were not included in the reference 
tree or clustering, but for which another genome belonging to the 
same type strain species was. Additionally, we required that at least 
one full-length 16S sequence could be identified in these genomes, 
resulting in a set of 212 genomes. From these, we excluded genomes 
whose taxonomy is debated, which yielded a final test set of 130 
genomes (Supplementary Table 6). These genomes were classified 
using the three approaches mentioned above (Fig. 1b).

Runtime comparison of taxonomic placement methods. We 
compared the runtime of specI to that of Amphora2 and JSpecies for 
the placement of 100 randomly chosen genomes (Fig. 1c). As the 
JSpecies GUI (graphical user interface) seemed to be very slow when 
using that many genomes, we only benchmarked the speed of the 
MUMmer tool used to for the fast calculation of ANIm values35.

Accuracy estimations for missing phylogenetic marker genes. 
To study the impact of missing pMGs, we randomly removed 10, 
20 and 30 pMGs from the analysis and used specI to taxonomi-
cally place the test set of 130 genomes that was generated for the 
above described method comparison. We repeated the analysis 
ten times with differing sets of pMGs.

Phylogenetic trees. Phylogenetic trees were built for concate-
nated DNA alignments of the 40 pMGs, the 16S rRNA gene and 
a concatenation of all one-to-one orthologs found in the clades 
used to generate the tree (see above for ortholog identification). 
Alignments were made with AQUA (version 1.1)36 using standard 
parameters and masked using Gblocks (version 0.91b) with the 
‘relaxed’ parameter settings (“minimum number of sequences for 
a flank position”: 9; “maximum number of contiguous noncon-
served positions”: 10; “minimum length of a block”: 5; “allowed gap 
positions”: “with half ”)37. Maximum likelihood phylogenetic trees 
were built with RAxML 7.2.8 (ref. 38) using the ‘GTRGAMMA’ 
model and default parameters with 100 bootstraps per data set. 
Phylogenetic trees were visualized using iTOL (version 2.2)33.

ANI calculation. We used JSpecies (V1.2.1)4 to calculate ANIb 
and ANIm values for a number of genomes (Supplementary 
Tables 7–13).
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