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Abstract

Background: The identification of body site-specific microbial biomarkers and their use for classification tasks have
promising applications in medicine, microbial ecology, and forensics. Previous studies have characterized site-
specific microbiota and shown that sample origin can be accurately predicted by microbial content. However, these
studies were usually restricted to single datasets with consistent experimental methods and conditions, as well as
comparatively small sample numbers. The effects of study-specific biases and statistical power on classification
performance and biomarker identification thus remain poorly understood. Furthermore, reliable detection in
mixtures of different body sites or with noise from environmental contamination has rarely been investigated thus
far. Finally, the impact of ecological associations between microbes on biomarker discovery was usually not considered
in previous work.

Results: Here we present the analysis of one of the largest cross-study sequencing datasets of microbial communities
from human body sites (15,082 samples from 57 publicly available studies). We show that training a Random Forest
Classifier on this aggregated dataset increases prediction performance for body sites by 35% compared to a single-
study classifier. Using simulated datasets, we further demonstrate that the source of different microbial contributions in
mixtures of different body sites or with soil can be detected starting at 1% of the total microbial community. We apply
a biomarker selection method that excludes indirect environmental associations driven by microbe-microbe
associations, yielding a parsimonious set of highly predictive taxa including novel biomarkers and excluding
many previously reported taxa. We find a considerable fraction of unclassified biomarkers (“microbial dark matter”)
and observe that negatively associated taxa have a surprisingly high impact on classification performance. We
further detect a significant enrichment of rod-shaped, motile, and sporulating taxa for feces biomarkers, consistent with
a highly competitive environment.

Conclusions: Our machine learning model shows strong body site classification performance, both in single-source
samples and mixtures, making it promising for tasks requiring high accuracy, such as forensic applications. We report a
core set of ecologically informed biomarkers, inferred across a wide range of experimental protocols and conditions,
providing the most concise, general, and least biased overview of body site-associated microbes to date.
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Background
The identification of microbial biomarkers and their use
for classification provide valuable information for predic-
tions in a wide range of applications. For example, dis-
ease states can be associated with complex microbial
patterns, making suitable biomarker detection and clas-
sification methods crucial for accurate disease identifica-
tion and prediction [1–4]. Another important
application is the identification of the source of origin
for a sample, for example in forensic cases [5] or envir-
onmental monitoring [6]. In the former, reliably deter-
mining the bodily source of a stain at a crime scene (e.g.,
saliva, semen, vaginal fluid, blood) can critically aid the
reconstruction of crime events. In the latter, distinguish-
ing microbial communities of human origin from those
of environmental provenance can be of great value, for
example in studies of human sewage pollution [7]. Es-
tablishing the source of microbial communities has an
added complexity when dealing with mixtures, such as
in contaminated samples, as these require the distinction
of two or more different sources.
In the last decade, advances in high-throughput se-

quencing have led to a marked increase in both the
number and sequencing depth of human microbiome
studies, encompassing a wide range of experimental pro-
tocols and conditions (e.g., sex, geography, medication)
[8, 9]. This increase in data volume and diversity has
opened the door for human microbiome studies to apply
more advanced statistical and machine learning tools
[10, 11].
Pioneering studies have explored the potential of super-

vised machine learning approaches on a number of
microbiome-based classification tasks, such as identifica-
tion of individual subjects, disease prediction, and body
site identification [10–12], mostly focusing on compara-
tively small-scale datasets from individual studies [13, 14].
In these evaluations, the best-performing methods gener-
ally achieved high predictive power, with Random Forest
Classifiers (RFCs, [15]) ranking consistently among the
top performing models. Further studies have successfully
applied classification methods to varying sample types
such as human, soil, and sediments [16–18] and also in
the context of multi-source mixtures [19, 20].
While the success of supervised learning methods has

been demonstrated in individual studies, it is largely un-
clear whether these results generalize to a meta-study
setting. For instance, a large fraction of publicly available
data consists of amplicon sequencing runs, where primer
specificity can result in amplification biases [21, 22].
This can affect taxonomic inferences and classification
accuracy, potentially leading to classifiers with top per-
formance for some primer types and mediocre perform-
ance for others. While metagenomic shotgun sequencing
tends to produce less biased estimates of community

composition, this approach is more expensive and typic-
ally results in a lower coverage of the 16S rRNA gene,
potentially compromising the resolution of abundances
for rare taxa [23]. Apart from protocol-specific effects,
subject-specific factors such as geographic location and
medication may introduce further biases. Recent work in
disease prediction also suggests that individual studies
may report unspecific signals only properly appreciated
when aggregating studies [24].
The aggregation of sequencing data from different

studies into large meta-datasets and their utilization for
classifier training could thus lead to more general and
predictive models that can reliably classify samples pro-
duced under a variety of experimental protocols and
from a wide range of subjects. It further may allow iden-
tification of biomarkers that overcome biases of individ-
ual studies. Recent work by Pasolli et al. [25] showed
promising results for the predictive power of cross-study
models for classification of diseased versus healthy sub-
jects, as well as classification of body sites. However,
their body site classification analysis was based on 642
sequencing samples from only two studies and further-
more restricted to whole genome shotgun sequencing.
Therefore, it is yet unclear whether these results
generalize across larger and experimentally more hetero-
geneous datasets.
Such datasets are of particular relevance for the identi-

fication of microbes endemic to human body sites.
Site-specific microbes have been extensively studied in
large cooperative efforts, such as the Human Micro-
biome Project (HMP, [26]), and in smaller studies by in-
dividual groups. However, single-study biases and
insufficient sample size could significantly influence pre-
viously reported associations. For instance, the original
HMP was restricted to 242 healthy adults situated in the
USA and limited to two primer sets, raising questions
about whether reported site-specific taxa generalize
across geography, subject-specific conditions, and
experimental protocols.
While some microbes are endemic to a body site,

others are only indirectly associated with a site due to
their ecological dependency on endemic microbes. These
indirectly associated microbes could in principle also
thrive in other habitats, where the same requirements
may be fulfilled by other partners. Common biomarker
identification approaches may misinterpret this eco-
logical signal and specify such indirectly associated
microbes as body site biomarkers. More refined
methods, on the other hand, can separate directly and
indirectly associated markers by testing whether an
association signal can be explained by other variables
[27, 28]. Generalized Local Learning (GLL, [27]), a
method that excludes indirectly associated biomarkers,
was previously shown to achieve the best balance
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between number of identified biomarkers and accuracy
in psoriasis prediction [12]. Importantly, such ecological
interaction effects were usually not considered by previ-
ous studies on biomarkers for human body sites, poten-
tially inflating numbers of reported markers.
In this study, we had two aims: (i) to train a super-

vised classification model on a heterogeneous,
large-scale dataset and evaluate its performance com-
pared to a single-study classifier in body site predic-
tion, both for single-source samples and mixtures, and
(ii) to obtain a high-quality set of microbial bio-
markers directly associated with human body sites, ex-
cluding microbe-microbe-driven associations. To this
end, we retrieved 50,273 publicly available sequenced
samples from five human body sites (skin, saliva, va-
gina, nostril, and feces), further filtered down to
15,082 classification-ready samples spanning 57 stud-
ies. We additionally retrieved sequencing data for
1329 soil samples as representatives of a typical envir-
onmental contaminant. We used the body site dataset
for classifier training and evaluated its performance on
single-source samples, as well as in silico mixtures of
samples from two body sites or from a body site and
soil. We compared this performance to a classifier
trained on a single study, subject to previous machine
learning benchmarks, and demonstrated that the
cross-study classifier makes strongly improved predic-
tions. Finally, we identified a parsimonious core set of
microbial biomarkers for the investigated body sites,
which included previously unreported biomarkers and,
mostly due to our bias-mitigating cross-study ap-
proach and the exclusion of indirect associations,
rejected previously reported study-specific associa-
tions. We analyzed this set of biomarkers in depth in
terms of taxonomy, phylogeny, and physiological
traits.

Results
A large and heterogeneous collection of microbial
sequencing samples from human body sites
Publicly available metagenomic sequence read data were
retrieved from the NCBI Sequence Read Archive [29]
for studies investigating microbial communities in five
human body sites: nostril, saliva, skin, vagina, and feces.
The initial dataset consisted of 50,273 samples, se-
quenced mainly through targeted amplicon sequencing
and whole genome shotgun sequencing technology.
After extensive filtering (see the “Methods” section), this
dataset was reduced to a condensed set of 15,082 sam-
ples (see Additional file 1: Table S4 for accession num-
bers) from 57 studies, where the number of samples per
body site ranged between 1354 (nostril) and 5296 (skin).
In total, 60,892 operational taxonomic units (OTUs)
were identified after mapping to a database of 16S rRNA

reference sequences provided by MAPseq [30],
pre-clustered at 96% sequence similarity (Fig. 1). We
refer to this dataset as GlobalBodysites.

Cross-study classifier outperforms single-study model in
predictive accuracy
We trained an optimized Random Forest Classifier
(RFC-global) on the GlobalBodysites dataset and
assessed its performance on labelling samples with their
correct body sites in a fivefold cross-validation frame-
work (see the “Methods” section). Performance was
measured through F1 scores, which take into account
both precision and recall and are less affected by imbal-
anced numbers of samples per body site than other met-
rics. The classifier was able to accurately identify body
site labels in the cross-validated test sets (Fig. 2a), with
mean F1 scores between 0.73 (nostril) and 0.95 (feces).
Training and testing the classifier on sample sets with
biased body site proportions yielded comparable results
(Additional file 2: Figure S10b).
We next investigated which pairs of body sites were

most challenging to distinguish for RFC-global. To this
end, we generated a confusion matrix, capturing the
misclassifications across all pairs of body sites (Fig. 2b).
We observed a relatively small number (5 to 11%) of
misclassifications for all site pairs except one: nostril
samples were more prone to misclassification (36%),
with a majority of mislabellings as skin (33%). This
pattern is in line with nostril-skin misclassifications ob-
served in previous work [25].
Next, we compared the predictive performance of

RFC-global to a classifier trained only on the samples
from a single study. To this end, we trained a RFC on
the subset of GlobalBodysites comprising 372 samples
from Costello et al. [13] (RFC-single), a dataset used ex-
tensively for body site prediction benchmarks in previ-
ous research [10, 11]. We found the prediction
performance for RFC-global (trained across studies) to
be considerably higher than that for RFC-single (mean
F1 of 0.89 compared to 0.66, an increase of 35%)
(Fig. 2c).
In order to further elucidate this difference in pre-

dictive performance, we looked at the intrinsic feature
importance assignments of the RFCs in detail. Briefly,
RFCs assign a weight (feature importance) to each
OTU depending on its estimated predictive import-
ance. We found that 91.4% of the 1397 predictive
OTUs (feature importance > 0) reported by RFC-single
were also supported by RFC-global. However,
RFC-global reported 15,863 additional predictive
OTUs (Additional file 3: Figure S1a,b), an increase by
a factor of more than 12. Additionally, 8.6% of the
OTUs predictive for RFC-single were dismissed as un-
informative by RFC-global. We further observed that
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feature importances of overlapping predictive OTUs
were only moderately correlated (Spearman’s rho of
0.68, p value < 0.05, Additional file 3: Figure S1c).
In order to estimate whether increased prediction per-

formance extends to other single studies, we further
trained a classifier on all 5433 samples belonging to the

Human Microbiome Project (HMP, RFC-single-hmp),
which constitutes the largest single study in GlobalBody-
sites (36% of all samples). While performance of
RFC-global was closer to RFC-single-hmp (12% F1 score
increase, Additional file 2: Figure S10a, “unweighted”),
we found this greater similarity to be driven by the

a b c

Fig. 2 a Prediction performance of RFC-global was estimated on five cross-validation sets of unseen samples, measured as F1 score. b Distribution of true
positive and false positive classifications across all pairs of body sites. c Comparison of RFC-global to a RFC trained on only samples from the Costello et
al. dataset (RFC-single) and a random guesser, measured as F1 score

Fig. 1 Fifteen thousand eighty-two samples from five body sites and 57 studies were queried from the NCBI Sequence Read Archive and
uniformly processed, yielding the GlobalBodysites dataset. A Random Forest Classifier (RFC-global) was trained and evaluated on this dataset,
followed by identification and analysis of ecologically informed microbial biomarkers
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dominant fraction of HMP samples in our validation
sets. When weighting studies by the inverse of their sam-
ple numbers in F1 score calculation, effectively increasing
the reward for correctly predicting samples from smaller
studies, we found the performance increase of RFC-global
to be noticeably more pronounced (41% F1 score increase,
Additional file 2: Figure S10a, “weighted”).
We next investigated whether the performance of

RFC-global could benefit from additional data. To this
end, we tested classification performance for increasing
numbers of studies and samples, starting with only the
HMP project (Additional file 4: Figure S11). For the “un-
weighted” scenario (see previous paragraph), we found
that performance plateaued around 30 studies (~ 8000
samples), indicating small benefits from additional stud-
ies for classifier performance. However, when increasing
the reward of predicting samples from smaller studies
(“weighted”), we found that performance did not reach a
plateau but instead consistently increased with more
studies.

Even trace amounts of body site microbiomes can be
reliably identified in mixtures between body sites or body
site and environment
Next, we evaluated detection limits and prediction per-
formance of RFC-global on in silico mixtures of different
body sites (see the “Methods” section). The task was to
identify a microbial community from a target body site
in mixtures of communities from the target body site
and a background body site, along a gradient of increas-
ing mixture fractions, for all pairs of body sites. Classifi-
cation performance was measured through the area
under the ROC curve (AUC) metric, which similarly to
F1 scores is robust to label imbalances, but quantifies
predictive performance independent of a decision
threshold.
At 15% mixture fraction, RFC-global achieved more

than 75% of the AUC obtained for unmixed samples in
15 out of 20 body site combinations (Fig. 3). For six of
these combinations, these AUC scores were achieved
even at trace amounts as low as 1 to 2% mixture frac-
tion. Highest performance was reached when the source
body site was vagina or feces, with an average AUC of
0.81 at 2% mixture fraction. In agreement with the con-
fusion matrix of single-source samples (Fig. 2b), distin-
guishing skin and nostril samples was challenging:
mixtures containing these two body sites required at
least 70% skin for the AUC to reach 0.8 when skin was
the target body site (Additional file 5: Figure S2). Inter-
estingly, the identification of nostril in mixtures contain-
ing skin required a mixture fraction of only 30% to
achieve the same AUC.
Compared to RFC-global, RFC-single was considerably

less robust to mixed sources: predictions resulted in

lower AUC values irrespective of which body sites were
mixed, in some cases down to little more than random
guessing (AUC < 0.6), even when the target body site
comprised up to 80% of the mixture (Additional file 6:
Figure S4).
Since AUC measures general discriminative power with-

out setting a specific classification threshold, we also de-
termined thresholds above which the presence of a body
site fraction in a mixture was likely. To this end, we esti-
mated optimal prediction thresholds for all body site com-
binations based on the training data and computed F1
scores for each pair of body sites (Additional file 7: Figure
S3). For most pairs, F1 results were comparable to the
AUC analyses, but some combinations required higher
fractions of the target body site when imposing a fixed
threshold.
We next investigated the predictive performance and

robustness of our classifier in mixtures comprising bac-
terial communities from a human body site and an
environmental component. We prepared in silico mix-
tures between body site samples from the GlobalBody-
sites data and 1329 additional microbial soil samples
from the NCBI SRA database. For all non-fecal mix-
tures, we obtained AUC values greater than 0.9 even in
samples that consisted mostly of soil (body site mixture
fractions below 10%) (Additional file 8: Figure S5). For
feces, performance was slightly decreased to between 0.8
and 0.9 AUC for mixture fractions below 50%.
In order to also test the robustness of the classifier to

contamination in training samples, we randomly mixed
50% of all training samples with 30% soil, followed by
classifier training (RFC-global-contaminated). Validation
of RFC-global-contaminated on unmixed body site sam-
ples resulted in F1 scores similar to RFC-global (mean
decrease 1.3%).

A parsimonious core set of directly associated microbial
biomarkers for human body sites
Having assessed the predictive power of RFC-global,
we were next interested in biological patterns driving
its performance and whether new or unusual associa-
tions between microbes and environment could be
detected in GlobalBodysites. We thus sought to iden-
tify a core set of microbial biomarkers for each inves-
tigated body site.
We used Generalized Local Learning (GLL, [27])

(Fig. 4a), an approach that has advantages over feature
importances reported by Random Forests and decision
trees ([31], see Methods).
Briefly, GLL only reports OTUs as biomarkers whose

association with a habitat cannot be statistically ex-
plained by ecological dependencies on other OTUs in
that habitat. This effectively makes the identified
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biomarker sets more parsimonious, as OTUs found to
be only indirectly associated with a habitat are excluded.
In our study, GLL reduced the number of OTUs from an

initial 60,982 to 635 directly associated biomarkers,

between 92 (nostril) and 326 (skin) (Fig. 4b, Additional file 9:
Table S5). When evaluating single-source samples, the pre-
dictive performance (F1 score) of a RFC trained only on
biomarkers (RFC-global-GLL) was slightly increased (1 to

Fig. 3 Discrimination performance of RFC-global on mixed samples with varying levels of mixture fractions (up to 15%). Mixtures of all pairs of
body sites were prepared using an in silico procedure (see the “Methods” section) and then predicted by RFC-global. Prediction performance was
quantified in terms of AUC. Dotted lines indicate performance evaluated on unmixed samples
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5%) compared to RFC-global (Fig. 4d). In contrast, a ran-
dom subset of all OTUs with size equal to the biomarker
set resulted in strongly reduced F1 scores that ranged from
a 20% reduction in feces up to an 80% reduction in vaginal
sites (Fig. 4d).
We further evaluated the performance differences be-

tween RFC-global versus RFC-global-GLL in simulated
mixtures of body site and soil samples and found that
biomarker-only RFC models performed worse on such
mixtures, with decreases that ranged between 50% AUC
for feces and 5% for vaginal sites (Additional file 8:
Figure S5).
In order to test how GLL biomarker discovery was

affected by dataset size, we further applied it to the
Costello et al. dataset. This test yielded 12 biomarkers
(98% less than GlobalBodysites) which achieved an
average F1 score of 0.39 (compared to 0.89 in
RFC-global-GLL, Additional file 10: Figure S6a).

Negatively associated microbes are numerous and
contribute strongly to sample prediction accuracy
Among the directly associated biomarkers selected by
GLL, we found both positively associated and negatively

associated OTUs (PA-OTUs and NA-OTUs, Fig. 4a, b).
The presence of PA-OTUs associated with a body site in
a sample increased the likelihood of classification as that
body site, while their absence decreased it (vice versa for
NA-OTUs). We observed a large fraction of PA-OTUs
for feces (92%), while for nostril, skin, and vagina sam-
ples, mostly NA-OTUs were identified (74 to 88%). For
saliva, fractions of positively and negatively associated
OTUs were balanced (57% PA-OTUs). Average preva-
lence—the number of samples a biomarker OTU is
found in across all body sites—was slightly elevated for
NA-OTUs (Additional file 11: Figure S9).
All pairs of body sites showed a varying amount of over-

lap among identified biomarker OTUs (Additional file 12:
Figure S7). Notably, this overlap was in most cases oppos-
itional (positive for one body site, negative for the other).
An exception to this pattern was the combination
nostril-skin, for which 98% of shared biomarker OTUs
had the same association type.
We compared the importance of the PA-OTUs and

NA-OTUs in classification accuracy by training RFC
classifiers separately on only positively or negatively
associated biomarkers. When using PA-OTUs only, we

a b

c d

Fig. 4 Identified ecologically informed biomarker OTUs. a Comparison of traditional univariate and ecologically informed biomarker identification.
Ecological association information can be used to discard biomarkers indirectly associated with body sites. b Between 92 and 326 positively and
negatively associated biomarkers were identified per body site. c Phylum-level distribution of positive and negative biomarkers per body site.
d Predictive performance of classifiers for each body site, trained on different sets of OTUs: all OTUs, all biomarkers, only PA-OTUs (positive biomarkers),
only NA-OTUs (negative biomarkers), and a random set of OTUs of size equal to the all biomarkers
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observed 25–55% lower F1 scores (for skin and nostril,
respectively). In contrast, using only NA-OTUs resulted
in smaller decreases in F1 score ranging between 4% for
saliva to 11% for skin for all sites except nostril which
showed a reduction of 35% (Fig. 4d).

Previously unreported associations between microbes
and body sites
We next examined the taxonomic profiles of detected
biomarker OTUs. These OTUs stemmed almost exclu-
sively from the domain Bacteria, with a small number of
Archaea and Eukaryota (0.3% and 0.5% respectively). As
shown in Fig. 4c, four phyla were dominant in the se-
lected biomarkers across all body sites: Bacteroidetes,
Firmicutes, Proteobacteria, and Actinobacteria. With few
exceptions, both PA-OTUs and NA-OTUs from these
phyla were found across all body sites. We found high
fractions of positive Firmicutes and Bacteroidetes bio-
markers in feces and Proteobacteria biomarkers in skin.
Furthermore, Tenericutes included predominantly
PA-OTUs for vagina and NA-OTUs for skin and nostril.
We identified 107 distinct genera among all 635 bio-

marker OTUs. Numerous associations found in our au-
tomated analysis were in line with previously reported
associations (e.g., Corynebacterium and Cutibacterium
for skin, Lactobacillus for vagina, Bacteroides for feces,
and Prevotella for saliva; see Additional file 13: Table S1
and Additional file 14: Table S2). Nonetheless, we also
detected novel specific genus-body site associations that,
to our knowledge, have not been discussed elsewhere
(Table 1): Ralstonia and Caulobacter were found to be
directly associated with skin, Delftia to nostril, and an
archaeal OTU mapping to the genus Halovenus to feces.
It is furthermore noteworthy that GLL marked a number
of previously reported genera as only indirectly associ-
ated in our study, for instance Megasphaera in saliva
[32], Veillonella in skin [26], Mobiluncus in vagina [33],
and Bacillus in feces [34].
Across all genera that comprised the 635 identified

biomarker OTUs, 14 included PA-OTUs for multiple

body sites. For instance, Actinomyces contained
PA-OTUs for saliva, skin, and vagina. Moreover, five
genera included both PA-OTUs and NA-OTUs for the
same body site (mostly vagina, Additional file 15: Table
S3). For example, Prevotella contained three PA-OTUs
and six NA-OTUs for vagina.
To gain an understanding of the taxonomic relation-

ships among selected biomarkers, we reconstructed a
phylogenetic tree for a set of 50 OTUs categorized as
the most informative for classification by the Random
Forest models (Fig. 5). While most clades at varying tree
depths displayed a strong positive association to a single
body site, many also included members with shifted
habitat preference. For instance, nearly all OTUs in the
Bacteriodetes clade (phylum level) were positively associ-
ated exclusively with saliva. However, one Prevotella
OTU from this clade was instead positively associated
with vaginal sites, and one Bacteroides OTU with feces.
Similarly, one OTU in the Atopobium clade (genus level)
was a positive biomarker for saliva while the second one
was positively associated with vaginal sites. Overall, asso-
ciation patterns were particularly pronounced for the
Actinobacteria clade (phylum level): 29% of its members
were directly positively or negatively associated to four
or more body sites (average associations per OTU, 2.8).
In contrast, the Firmicutes clade had only 10% OTUs
with four or more direct associations (average, 2.1).
Critically, 58% of all biomarker OTUs could not be

mapped to any known genus and many of these microbes
were among the most important biomarkers (Fig. 5,
Additional file 16: Figure S8). Out of this set, 21% could
only be confidently classified at the domain or phylum
level, with two members surpassing the 90th percentile of
feature importance (mean, 40th) (Additional file 16: Figure
S8). Furthermore, many of these largely unclassified bio-
markers were common: on average, they were found in
1012 samples (up to 4542). In order to characterize the
taxonomic neighborhood of biomarkers not confidently
mapping to any phylum, we further analyzed their closest
16S rRNA matches and found that most of these OTUs
hit Firmicutes (55%), Proteobacteria (17%), Bacteroidetes
(11%), and Tenericutes (10%), albeit at low sequence iden-
tity. Among these phyla, we observed an overrepresenta-
tion of unclassified OTUs for Proteobacteria (17%
unclassified compared to 8% classified) and Tenericutes
(10% compared to 0.6%).

Aerobicity is the most defining characteristic of microbial
biomarkers found in body sites
To further characterize the selected microbial bio-
markers, we collected information on oxygen depend-
ency, shape, gram stain, spore formation, and motility in
a literature search and tested which of these microbial
traits were enriched among the selected biomarkers at

Table 1 Novel positively associated biomarker genera for each
body site. Weight of each biomarker is measured by the
percentile of feature importance in RFC-global amongst
biomarker OTUs of the same body site. Prevalence is the
average number of samples that biomarker OTUs of a genus
were found in across all body sites

Body
site

Genus Prevalence Percentile of Random Forest feature
importance

Nostril Delftia 2480 83.0

Skin Ralstonia 2666 83.7

Caulobacter 1280 71.2

Feces Putative
Halovenus

266 0.1
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each body site compared to the background of all other
biomarkers with the same association type (Table 2). We
found the most specific enrichment pattern for
PA-OTUs in feces: these microbes were significantly
enriched for anaerobes and tended to be rod shaped,
spore forming, and motile. In contrast, NA-OTUs for
feces tended to be facultative anaerobes or gram
positive.
Across body sites, we found a clear separation by oxy-

gen dependency, where oxygenated body sites (nostril,
skin) were enriched for aerobic or facultative anaerobic
biomarkers, while feces were enriched for anaerobes.
Vagina, being a less oxygenated environment, showed an
enrichment of facultative anaerobes only, while the
well-oxygenated saliva environment had no significant
signal for oxygen dependency.

Discussion
This study is, to our knowledge, the most comprehen-
sive cross-study evaluation of human body site classifica-
tion and the first analysis of ecologically informed
biomarkers for human body sites. Our results show that
aggregating a large number of microbial sequences from
diverse studies on human body sites leads to (i) strongly
improved classification of body sites and (ii) the identifi-
cation of parsimonious and likely less biased sets of
microbial biomarkers for body sites. In our evaluation of
body site classification, we highlight the prediction per-
formance achieved for the detection of mixture compo-
nents. This characteristic of our classification model is
particularly valuable for accuracy-demanding applica-
tions as for instance in forensics. Limitations of our
study include the observation that the classification of
very similar sample types, such as nostril and skin,
remains challenging. Moreover, the directly associated
microbial biomarkers we report here require further
experimental validation.

Improved classification accuracy in large cross-study
datasets
We analyzed a large-scale dataset composed of over
15,000 samples from five human body sites and showed
that a RFC model trained on this data (RFC-global) is
considerably more accurate for body site prediction than
multiple models trained on data from single studies
(RFC-single, RFC-single-hmp) used in previous body site

Fig. 5 Phylogenetic distribution of the top 50 biomarkers. Biomarker
OTUs were chosen based on feature importance (gini impurity) as
estimated by RFC-global. Colored blocks represent biomarker association
type and strength, measured as normalized mutual information, where
green indicates positive and red negative association. OTUs unclassified
at the genus level are denoted by “*”. The shortened phylum name
stands for Fusobacteria
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classification benchmarks [10, 11, 25]. We found that
prediction performance continued improving when in-
cluding additional studies (after correction for study
size), indicating that even more data from undersampled
geographic regions or conditions could be useful to fur-
ther improve the performance of RFC-global. Moreover,
we demonstrated that in mixtures comprising microbial
communities from two human body sites or a human
body site and a soil sample, RFC-global is capable of de-
tecting trace amounts (down to 1% mixture fraction) of
a target sample type in many tested cases—this sensitiv-
ity was not achieved with RFC-single.
The discrimination power demonstrated here is useful

for a number of applications. In a forensic case involving
sexual assault, for example discerning whether a stain at
a crime scene contains a mixture of vaginal fluid and
skin (from different individuals) or whether it contains
vaginal fluid and saliva can affect the reconstruction of
the crime event. Similarly, the power to discriminate hu-
man body site components from soil could help trace
body site samples in forensic stains that have been ex-
posed to environmental bacteria for prolonged periods
of time, for example in forest environments. Of particu-
lar interest is that the high classification performance in
mixtures with soil samples was achieved without prior
training on soil communities. This inherent robustness
of RFC-global to soil-based noise may thus potentially
extend to other environments. Since many potential
source environments for microbial transfer may still be
unknown or undersampled, generic robustness to noise
sources would be an important feature. Albeit further
confirmation is needed, this also indicates promise for
similar classification tasks, like identification of human
sewage pollution in water and indoor contamination (or
microbial transfer) on hospital surfaces.

As a cautionary note, we observed that classification
accuracy and the detection limit in mixtures depended
strongly on sample type. For example, sample types har-
boring relatively similar microbial communities, such as
nostril and skin or, to a lesser extent, feces and soil, were
harder to distinguish and resulted in more misclassifica-
tions and higher detection limits than more distinct
sample types, such as nostril and feces. Only
high-confidence mixture classifications for similar sam-
ple types should thereby be trusted.

A core set of ecologically informed biomarkers
Applying Generalized Local Learning (GLL) enabled re-
moval of redundant biomarkers whose association was
statistically explainable by microbe-microbe associations.
This selection step led to a strongly reduced core set of
microbial markers that are directly associated with human
body sites. We showed that this set precisely captured
body site differences, achieving classification accuracy
similar to or surpassing the full set of OTUs in unmixed
samples. Applying GLL on the Costello et al. dataset [13]
identified a reduced set of 12 biomarker OTUs (compared
to 635 in the global dataset), resulting in a sharp drop in
classification performance (Additional file 10: Figure S6).
This drop likely stems from the smaller size and reduced
diversity of the Costello et al. dataset, which emphasizes
the need for heterogeneous large-scale datasets to fully
take advantage of GLL.
We examined two types of biomarkers for each body

site: positively associated (PA-OTUs) and negatively asso-
ciated (NA-OTUs) (Fig. 4b). In contrast to most other
body sites, feces were characterized by a larger number of
PA-OTUs and few NA-OTUs. This trend was likely a con-
sequence of the distinctness of gut communities from
other body sites, as most of these positive, feces-specific
biomarkers were identified as negative for at least one
other body site (Additional file 12: Figure S7).
Although NA-OTUs are commonly reported by LEfSe

[35]—a standard tool for microbial biomarker discovery
that does not distinguish between direct and indirect in-
teractions—negative association patterns between micro-
bial taxa and human body sites have to our knowledge
not been comprehensively discussed in previous litera-
ture. We showed that NA-OTUs are numerous, can
achieve levels of accuracy comparable to the use of both
OTU types, and result in consistently higher predictive
performance than using PA-OTUs alone (Fig. 4d). While
NA-OTUs are generally more numerous than PA-OTUs,
in particular in nostril, skin, and vagina, this cannot ex-
plain observed performance differences, as NA-OTUs
also outperform PA-OTUs in body sites with lower
NA-OTU proportions. The predictive superiority of
NA-OTUs is striking because it indicates that the ab-
sence of specific microbial taxa is generally more

Table 2 Enriched physiological traits among biomarker OTUs by
body site and association type

Body site Association
type

Physiological trait

Nostril + Aerobic, facultative anaerobic, gram
positive

– No enriched traits

Saliva + Spherical shape

– Gram positive

Skin + Aerobic, facultative anaerobic

– Anaerobic

Vagina + Facultative anaerobic

– No enriched traits

Feces + Anaerobic, rod shaped, spore forming,
motile

– No enriched traits
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informative than the presence of usual microbial taxa in
an environment. We expect ecological factors driving
this strong negative association signal to be mostly
non-microbial (e.g., pH, oxygen content, medication),
since our GLL analysis reduced the influence of inhibit-
ing ecological microbial associations, such as competi-
tion and amensalism. Similarly, positive associations
have been corrected for symbiosis and commensalism,
leaving unmeasured non-microbial variables as the most
likely explanation for observed positive biomarkers.
Identifying factors driving the direct associations we re-
port and pinpointing them to particular microbes and
body sites would provide important insights into the
forces shaping microbial diversity across the human
body.

Taxonomic and phylogenetic patterns of detected
biomarkers
The importance of using large aggregated datasets and
selecting ecologically informed biomarkers is highlighted
in the taxonomic analyses of identified markers. While
many biomarker OTUs identified here belonged to pre-
viously reported site-specific genera, we also found novel
associations. Furthermore, we found that some associa-
tions previously reported in single studies were not con-
firmed in our study. It is worth noting that the
conditioning step of GLL can only exclude (but never
add) biomarkers; thus, any novel biomarkers found in
this study result from the increased size and diversity of
the analyzed dataset. Notable examples of novel markers
are Ralstonia and Caulobacter OTUs for skin (Table 1)
and an OTU mapping to the archaeal genus Halovenus
as a biomarker for feces. The latter is surprising because
mostly water-dwelling, halophile species of this genus
have been described thus far. Since archaeal diversity is
underrepresented in current taxonomic databases, it is
thus possible that this weakly predictive and
low-prevalence OTU belongs to a to-date unidentified
archaeal genus able to persist in the human gut.
A number of commonly reported genus associations

were not found as direct associations in our analysis. For
example, while Methanobrevibacter [36] is one of the
few archaeal genera consistently identified in the human
gut, its known ecological dependence on fermenting
bacteria [37] lead to its exclusion as direct biomarker in
our study. Similarly, Veillonella has been excluded as a
biomarker for skin because of its statistical association
with a Streptococcus OTU, and indeed, symbiosis be-
tween Veillonella and Streptococcus has been previously
described [38].
We observed that most major human-associated phyla

included both positive and negative biomarkers for all
body sites, making high-level taxonomic affiliation only
weakly indicative of body site presence. Even at the

genus level, we find frequent cases of genera that include
biomarker OTUs of the same association type for differ-
ent body sites. For example, while most Prevotella
markers were positively associated with saliva, one
sub-clade in the phylogenetic tree was associated with
vagina (Fig. 5). Furthermore, some genera included
PA-OTUs for as many as three distinct body sites, and
5% of all biomarker genera include both PA- and
NA-OTUs for the same body site, making these genera
highly unreliable for body site classification. We there-
fore generally recommend analysis at 96% OTU-level
resolution or higher to identify predictive biomarkers. A
caveat to this approach is that association patterns spe-
cific to more general taxonomic levels can be missed.
For instance, Staphylococcus as a biomarker for skin was
not recovered in our analysis because many reads map-
ping to this genus could not be confidently assigned to
one single 96% OTU (see Additional file 17: Text S1). A
hybrid approach of unsupervised OTU clusters and su-
pervised taxon assignments may alleviate this problem
in future studies. Furthermore, a number of body
site-specific strains have recently been described [39],
indicating that a strain-level analysis may lead to add-
itional biomarkers and increased classification accuracy
in future studies.
Additionally, we note that many microbial biomarkers,

some of which are among the most predictive OTUs,
could not be precisely taxonomically classified, constitut-
ing “microbial dark matter” [40, 41]. For instance, we
identified a bacterial OTU distantly related to Firmicutes
(81% 16S rRNA sequence identity) among the 10% most
important biomarkers. It is a strong PA-OTU for saliva
and a NA-OTU for nostril, skin, and vagina. Moreover,
we observed an overrepresentation of uncharacterized
OTUs distantly related to Proteobacteria and Teneri-
cutes, indicating insufficient coverage of the phylogenetic
tree around these phyla in current taxonomic reference
databases. We deem it crucial to intensify research on
describing uncharacterized human-associated microbes
detected in this study in order to elucidate their poten-
tial roles in human health and disease.

Microbial trait enrichment in particular body sites
In terms of physiological traits identified for the mi-
crobial biomarkers, we find oxygen dependency to be
the most pronounced physiological characteristic
among PA and NA biomarkers: aerobic microbes
tended to be positively associated with exposed body
sites, while (facultative) anaerobic microbes preferred
lowly oxygenated sites. Apart from this expected ob-
servation, only PA feces biomarkers showed a detailed
enrichment pattern for multiple other traits, namely
rod shape, motility, and spore formation. Compared
to coccoid cells, rod-shaped cells have a higher
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surface to volume ratio and are therefore more effi-
cient at uptaking substrate [42, 43]. Along the same
lines, motility has been found to be an important feature
in competitive environments [44, 45]. The enrichment in
microbial species with these traits thus indicates that
despite being a nutrient-rich environment, the gut se-
lects for microbial traits providing a benefit in com-
petitive habitats. Furthermore, spore-forming lactic
acid bacterial species of the Lactobacillus genus have
been shown to be sensitive or weakly tolerant when
exposed to acidic environments and bile acid [46].
However, in endospore form, these bacteria survive
the passage through the human stomach and germin-
ate successfully in the gut [47]. The ability to survive
the acidic stomach environment that presents a bar-
rier to the gut would therefore confer a clear advan-
tage to microbial species frequently exposed to such
environments and suggests that many of these species
could be acquired with food, rather than reside per-
manently in the gut.

Limitations
Limitations of our study include the use of in silico
simulations for mixture analysis. While our protocol
uses real samples to create mixtures, it remains to be
investigated how mixtures created in a wet lab envir-
onment would affect classifier performance. Addition-
ally, we only estimated robustness to environmental
noise through soil samples as a typical environmental
source. Whether the robustness we observe generalizes to
other likely noise sources, such as dust from indoor envi-
ronments, requires further testing. Importantly, a classifier
trained only on GLL-selected biomarkers was markedly
less robust to environmental noise, likely because no
markers were selected to discriminate this signal. It is
therefore crucial to use the classifier trained on all OTUs
if environmental mixtures are expected. Finally, the direct
microbe-environment associations we report here are
based on statistical relationships and whether these reflect
real direct environmental dependencies requires experi-
mental validation.

Conclusions
The present study is part of a recent development,
where the ongoing growth and diversification of mi-
crobial sequencing studies of human body sites,
coupled with adequate statistical techniques to mine
emerging patterns from this data, catalyzes discovery.
We are confident that this data-intense approach will
continue to expand our understanding of the human
microbiome and lead to generalized insights into our
microbial ecosphere.

Methods
Data acquisition
We first selected a set of representative body sites: saliva,
skin, vagina, and feces. We further included the body
site nostril due to its known similarity with skin, in order
to also test classification accuracy on the more difficult
distinction between skin and nostril in later analysis
steps.
Studies from the NCBI Sequence Read Archive data-

base (SRA, [29]) were filtered for human samples
through automated parsing of annotation keywords,
matching at least one of the following rules: (1) “Hu-
man” or “Homo sapiens” is found in the host name field,
(2) “9606” is found in either the host taxon ID or sample
taxon ID field, or (3) the pattern “human <*> metagen-
ome” is found in the organism field, where “<*>” is a
wildcard for a single word (e.g., “gut”) or empty. On
these filtered human samples, we then conducted a sec-
ond body site-targeted search with the keywords “saliva,”
“tongue,” “nostril,” “nares,” “vagina,” “fornix,” “retroauri-
cular crease,” “antecubital fossa,” “skin,” and “feces.”
Random subsets of samples for each body site were
manually checked via the SRA web service to verify that
the filtered samples were of human origin and belonged
to the habitats assigned by the automated pipeline. In
case of mismatches, samples were removed from the
pool. Similarly, soil samples were retrieved from the
SRA through the keyword “soil” and subsequently fil-
tered for samples with no body site-related keyword
annotations.

OTU mapping, taxonomic classification, and filtering
Raw sequence data for 50,273 sequenced samples (inde-
pendent sequencing runs of biological samples) from the
keyword-filtered studies was downloaded from the NCBI
SRA database. Reads were quality filtered using custom
programs that trimmed reads to the first two consecu-
tive low-quality bases (≤ 10) and discarded reads smaller
than 75 bp or having a fraction of low-quality reads lar-
ger than 5%. MAPseq v1.0 [30] was used to map the fil-
tered reads to the reference of full-length 16S/18S rRNA
sequences provided with MAPseq which includes repre-
sentatives for 61,899 OTUs at the 96% identity cutoff.
The results of MAPseq were parsed and an OTU count
table was created using the assignments to OTUs at 96%
sequence identity with a minimum confidence of 0.5.
Taxonomy was assigned to OTUs based on a 90% con-
sensus over the full taxonomic lineages of all OTU
member sequences. For sequences belonging to RefSeq
[48] genomes or culture collection strains, the annotated
taxonomy as provided by NCBI in December 2017 was
used. Other sequences were taxonomically classified
through mapping onto the RefSeq set using MAPseq
and a confidence threshold of 0.5.
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An initial analysis (see Additional file 17: Text S1)
showed that samples with fewer than 20 unique OTUs
tended to be noisy; we therefore excluded these from
the analysis. We then computed the normalized mutual
information between OTUs and performed hierarchical
clustering (complete linkage, Euclidean distance) to
group highly similar OTUs with normalized mutual in-
formation higher than 0.9 together, as these OTUs were
hard to distinguish from each other by GLL, the bio-
marker discovery algorithm we applied. For each group,
a random representative was chosen. After all filtering
steps, a subset of 15,082 samples remained for analysis.

Classification of body sites
Counts in the OTU table were normalized by the total
number of mapped reads per sample, resulting in rela-
tive abundances. Next, the dataset was split into five dis-
tinct training and validation sets, retaining the
proportions of samples across body sites constant for
each subset (stratified k-fold split). For each subset, a
Random Forest Classifier (RFC, [15]) was trained with
the python package scikit-learn [49]. Hyper parameters
were optimized based on a grid search across a stratified
inner fourfold cross-validation on each respective train-
ing set. Possible parameter values were as follows: num-
ber of trees 500, 1000, or 2000; maximum number of
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. Class
weights were automatically adjusted to cope with class
imbalance, and the optimization objective for the inner
cross-validation loop was the F1 score. Classifier output
probabilities were additionally calibrated through a
non-parametric procedure based on isotonic regression
[50] implemented in scikit-learn. All five classifiers were
evaluated on their respective validation sets to estimate
the generalization error of the final classifier trained on
the whole dataset (RFC-global).
For RFC-single and RFC-single-hmp, the same proced-

ure was slightly adapted to use only samples from the
study by Costello et al. [13] or the Human Microbiome
Project [26] for training. Furthermore, vaginal samples
were excluded from the validation sets for the compari-
son between RFC-global and RFC-single since samples
of this type were not collected in [13].
For “weighted” F1 score analyses, we weighted each

sample by the inverse of the number of samples belong-
ing to its associated study. These weights were then
passed as “sample_weight” parameter in the scikit-learn
F1 score function.
Biased validation and training sets were created by

keeping all samples from one body site (Bbias) and then
randomly down-sampling all other body sites until each
had 10% of the sample count of Bbias.

Mixture simulations
Artificial sample mixtures from two body sites Btarget and
Bbackground were created through the following proced-
ure: (i) randomly choose one sample taken from Btarget

and Bbackground respectively; (ii) compute relative fre-
quencies of each OTU in these samples and use the fre-
quencies as base probabilities of OTU-drawing; (iii)
weight the probabilities according to the desired mixture
fraction Fbackground, which determines how similar the
mixed sample should be to the sample from Bbackground;
(iv) randomly choose OTU sequences based on these
weighted probabilities until n sequences were chosen,
where n is the weighted average of sequences in the two
samples, with weights Fbackground and 1 − Fbackground. The
procedure was repeated for each pair of body sites along
a gradient of increasing mixture fractions.
To estimate performance, the data was split into the

same training and validation sets as described previously
for the classification of unmixed samples. For each of
these splits, the classifiers previously trained on the re-
spective training sets were used, while validation sets
were further processed, separately for each body site pair
Btarget and Bbackground. For this processing, samples in the
validation sets were first reduced to only samples from
Btarget and Bbackground, followed by in silico mixture of all
Btarget validation samples with randomly picked Bback-

ground validation samples, using increasing mixture frac-
tions Fbackground. AUC scores were finally computed for
each mixed validation set and pre-trained classifier.
We also determined thresholds for the correct identifi-

cation of a target body site in a mixture. To do so, we
first prepared in silico mixtures as described above for
all training samples. Then we computed a
precision-recall curve for these mixed training samples
and picked the threshold that yielded the optimal F1
score on that curve. Subsequently, F1 scores were used
to quantify the threshold-adjusted prediction perform-
ance of our Random Forest models on mixed test sets
(see previous paragraph). This procedure was repeated
for each combination of body sites and mixture frac-
tions, leading to a threshold table with 5 × 4 × 10 = 200
entries. For this analysis, only thresholds were adjusted;
the classifier decision trees and calibrator were not
trained on mixed samples.

Identification of microbial biomarkers
While Random Forest Classifiers perform intrinsic fea-
ture selection which can yield insights into which OTUs
the classifier estimates to be most predictive [11, 12, 15],
this approach has a number of shortcomings. Firstly, if
features are highly correlated, the classifier tends to arbi-
trarily pick one of them and discard the others, leading
to the removal of potentially biologically interesting
OTUs. Since microbes interact with each other and live
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in complex ecological networks of mutual dependencies,
such correlations are inevitable. Furthermore, deciding
on a cutoff for how many OTUs to label as biomarkers
based on feature importance (gini impurity in our case)
can be difficult.
To identify the core set of microbial markers directly

associated with a body site, we applied Generalized
Local Learning (GLL, [27]) to address these shortcom-
ings. The approach detects OTUs whose association
with a habitat cannot be statistically explained by their
relationship with other microbes, effectively exploiting
ecological dependencies among OTUs to make bio-
marker discovery more parsimonious. Furthermore, it
internally uses statistical tests of independence, which
apply well-studied significance cutoffs, and avoids
classifier-specific inductive biases [31].
GLL was instantiated with semi-interleavedHITON-PC

as edge-finding algorithm and mutual information as test
metric (proportional to the classic G-test, [51]). We ran
the algorithm with the following parameters: max-k = 3,
h-ps = 5, and alpha = 0.05. Prior to biomarker discovery,
OTU abundances in the OTU table were binarized, where
an OTU was assigned the value 1 if at least one sample
read mapped to the OTU and 0 if not, in order to allow
discretized mutual information tests and reduce sequen-
cing depth biases. We ran GLL separately for each body
site, using a custom implementation in the python [52]
and cython [53] programming languages. False discovery
rate adjustment of p values [54] was applied prior to the
GLL conditioning step. Whether an OTU was positively
or negatively associated with a body site was estimated by
the sign of the Spearman correlation coefficient between
binarized OTU and body site. We found identical associ-
ation type assignments for odds ratios and linear discrim-
inant analysis effect sizes.

Phylogenetic analysis of biomarkers
The biomarkers identified by GLL were weighted based on
feature importance (gini impurity) inferred by RFC-global,
and the top 50 most important biomarkers as estimated by
feature importance (gini impurity) were chosen for phylo-
genetic analysis. A multiple sequence alignment for the se-
lected biomarkers was extracted as a subset of the publicly
available alignment of all OTUs in the reference database,
created with INFERNAL version 1.1.2 [55] and microbial
secondary structure model SSU-ALIGN [56]. Based on this
alignment, a phylogenetic tree was reconstructed using fas-
ttree version 2.1.3 [57] using the GTR substitution model
and otherwise default options.

Collection of microbial trait information
Across all PA and NA biomarker OTUs, we created a list
of genera and reviewed primary literature and the public
database MicrobeWiki [58] to assign a list of phenotypic

characteristics to them. Major categories were aerobicity
(subcategories: aerobe, anaerobe, facultative anaerobe),
gram stain (gram positive, gram negative), cell shape (rod,
spherical, helical), spore formation (forms spores, does not
form spores), and motility (motile, non-motile). When no
information was found, the trait was labeled as missing,
while if more than one sub category was described by dif-
ferent sources, all alternatives were kept and used later for
the statistical analysis. This trait information was then ex-
trapolated to all OTUs with mapped genus information.

Statistical analysis of microbial traits
For each marker OTU subset S from each combination of
body site and association type, as well as each trait
sub-category (e.g., anaerobic), we tested whether the
sub-category was significantly enriched within S compared
to the background of marker OTUs with the same associ-
ation as S, but associated to a different body site. To this
end, we conducted Fisher’s exact test (alpha 0.05,
one-tailed), followed by false discovery rate adjustment of
p values [54].
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