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We recently presented a three-pronged association study that integrated human intestinal microbiome data derived from
shotgun-based sequencing with untargeted serum metabolome data and measures of host physiology. Metabolome and
microbiome data are high dimensional, posing a major challenge for data integration. Here, we present a step-by-step
computational protocol that details and discusses the dimensionality-reduction techniques used and methods for
subsequent integration and interpretation of such heterogeneous types of data. Dimensionality reduction was achieved
through a combination of data normalization approaches, binning of co-abundant genes and metabolites, and integration
of prior biological knowledge. The use of prior knowledge to overcome functional redundancy across microbiome species
is one central advance of our method over available alternative approaches. Applying this framework, other investigators
can integrate various ‘-omics’ readouts with variables of host physiology or any other phenotype of interest (e.g.,
connecting host and microbiome readouts to disease severity or treatment outcome in a clinical cohort) in a three-pronged
association analysis to identify potential mechanistic links to be tested in experimental settings. Although we originally
developed the framework for a human metabolome–microbiome study, it is generalizable to other organisms and
environmental metagenomes, as well as to studies including other -omics domains such as transcriptomics and
proteomics. The provided R code runs in ~1 h on a standard PC.

Introduction

Common metabolic disorders are multifactorial, with risk factors including host genetics and multiple
environmental exposures, such as lifestyle, alongside action of gut microbial symbionts and patho-
gens1–4. Circulating metabolite levels often act as intermediaries between states of the microbial
ecosystem in the gastrointestinal tract and host biology5–7. Therefore, characterization of microbial
community composition and functional potential8 must be coordinated with targeted or untargeted
metabolomic analysis of various biological compartments of the host9. Systems medicine–based
approaches can subsequently be taken to mine these high-dimensional data for simple or complex
associations, yielding insights into the biology of human health and the pathogenesis of common
multifactorial disorders. However, few studies have thus far linked multiple high-dimensional bio-
logical feature spaces together in the same study sample, an effort in which additional challenges arise
with regard to data integration and interpretation of analytical outcome.

We recently reported results from a study combining measures of host phenotype, gut meta-
genome and fasting serum metabolome10, in which we developed a computational framework for a
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top–down integration approach of the three data types. Indeed, this hypothesis-free, yet phenotype-
anchored, approach revealed several findings of biological relevance—and as such serves as a
showcase for a successful data-integration framework. Although there are alternative metagenome
analysis frameworks that could provide input equivalent to that of our core method, the analysis we
conducted builds on previous developments from the MetaHIT consortium, notably, its microbial
reference gene catalog construction11 and metagenomic species (MGS) framework12. The protocol is
provided as a script pipeline for the R programming language, which can be used as a concrete
starting point for researchers seeking to undertake similar projects.

The objective of this protocol, and the novel advance offered by the outlined approach, is focused
on the integrative analysis of high-throughput data; the protocol could be equally applied to other
forms of data so long as they are structured similarly (e.g., quantitative and between-sample com-
parable measurements, provided as data matrices and originating from transcriptomics or proteomics
profiling, e.g., with relevant a priori groupings of features, such as gene families organized into
functional modules) to those for which we designed the method. Thus, the underlying principles of
the protocol should be seen as agnostic with regard to data type, and are applicable to various forms
of host and microbiome quantitative measurements, so long as functionality can be attributed to the
organisms. A general method for microbiome and metabolome study design and data generation is
outside the scope of this protocol; we refer interested readers to the following papers for examples of
how to undertake microbiome13–17 or metabolome18–23 studies. However, we do provide a detailed
description of the specific methods applied to generate the data for the study by Pedersen et al.10 (see
also Box 1 and the Supplementary Methods), which are also used here as demonstration data for the
bioinformatics protocol.

Applications
We originally applied the computational framework to a Danish sample of nondiabetic individuals
and type 2 diabetes (T2D) patients with measurements of clinical phenotypes, gut metagenome
and fasting serum metabolome (325 polar metabolites and 876 molecular lipids; here collectively
termed ‘metabolites’)10. The aim of the three-pronged study was to elucidate mechanisms
for the gut microbial influence on circulating metabolites in the context of insulin resistance
of the host. Briefly, we found the fasting serum metabolome of insulin-resistant individuals
to be characterized by increased levels of branched-chain amino acids (BCAAs), alongside a
gut microbiome enriched in microbes possessing biosynthetic potential for BCAA biosynthesis
and depleted of microbes with bacterial inward transporters for these amino acids. Furthermore, we
found the association between BCAA biosynthetic potential and insulin resistance to be driven
mainly by Prevotella copri and Bacteroides vulgatus. By contrast, the association between BCAA
transport and improved insulin sensitivity was driven by multiple species that each had only
minor effects. The outcome of the three-pronged association analyses was further tested in
rodent experiments10.

Box 1 | Pre-processing of raw data and input files for the protocol

Before the integrative analysis, the raw data must be processed. For microbiome data, this includes (i) pre-
processing of sequencing reads (including quality control and filtering out of host human reads), (ii) generation
of reference gene catalog (or selection of an existing one), (iii) mapping of reads, (iv) downsizing/rarefying (thus
normalizing the data so as to be comparable between samples despite any differences in read depth) and
(v) binning of genes to MGS entities.
For metabolome data, the typical preprocessing workflow includes (i) raw file import, (ii) detection of peaks,
(iii) filtering/smoothing, (iv) peak list de-isotoping, (v) alignment, (vi) gap filling, (vii) integration of peaks,
(viii) normalization and finally (ix) peak/feature identification.
Although these procedures fall outside of the scope of the present protocol, we refer to our previous paper10 and
the Supplementary Methods for more detailed descriptions of the pre-processing of the microbiome and
metabolome data that were used to generate the input files provided with this protocol.
An archive containing the demonstration data is available at the accompanying Git repository (https://bitbucket.
org/hellekp/clinical-micro-meta-integration); it includes preprocessed microbiome and metabolome data and
phenotype information for 397 individuals in addition to functional microbiome annotation, a set of MGSs with
taxonomic annotation and a manually composed annotation of metabolite clusters, as described in the ‘Materials’
section. These files have already undergone the numerous pre-processing steps listed above. For new data, one
must tailor the pre-processing toward the particular experimental protocol and analytic platforms used to
generate the data.
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In the present protocol, we describe and discuss in detail how such computational data integration
can be carried out more generally, using our study on insulin resistance as a showcase. The protocol is
generalizable to other phenotype study scenarios, in which the outcome of interest can be either a
continuous variable, as shown here, or a discrete variable (in which case, univariate significance tests
and effect size estimates simply would replace the correlation tests). Although the workflow described
is for a combined metagenome taxonomy and function, metabolome and phenotype dataset, the
general analysis framework can be adapted to other types of datasets, for example, by substituting the
metabolomics data in the computational analysis with other types of -omics data, such as proteomics
data, or completely different use cases, for example, transcriptome versus immune system versus
treatment response, or environmental metagenome versus soil chemical screen versus crop yields.

Overview of the procedure
The overall workflow, with examples taken from Pedersen et al.10, is shown in Fig. 1. The pre-
processing steps of machine readouts taken before such integrative analyses are highlighted in Box 1.

...

H
O

M
A

-I
R ...

Metabolite to
microbiome

functional module
associations

Phenotype to
microbiome
functional
module

associations

Mod 1

Mod 2

Mod 3

Mod 4

…

Mod 39

KEGG

Metabolite clusters
(74)

Serum metabolites

325 polar metabolites
876 molecular lipids

Phenotype association filtering

Gut microbiome

Microbiome functional modules
KEGG
(567)

Species
(788)

7M microbial genes

(21) (39) (79)

Species effect
Leave-one-out analysis

Median correlation between
microbiome function and HOMA-IR

C
orrelation all species

C
orrelation

w
ithout species x Species

effect

H
O

M
A

-I
R

B
M

Ia
dj

Gene groups
KEGG orthologyCo-abundance

clustering

Neg Pos Neg Pos Neg Pos

(FDR < 0.1)

M
et

ab
ol

ite
 c

lu
st

er
 1

M
et

ab
ol

ite
 c

lu
st

er
 2

1

M
et

ab
ol

ite
 c

lu
st

er
 8

M
et

ab
ol

ite
 c

lu
st

er
 7

M
et

ab
ol

ite
 c

lu
st

er
 6

M
et

ab
ol

ite
 c

lu
st

er
 2

......

Co-abundance
clustering

Phenotypes
HOMA-IR
HOMA-IRBMIadj
...

IR metabotypeIS metabotype

…

…

b

Box 1

5–7

8–12

13–15

17–19

Fig. 1 | Overview of the protocol workflow integrating human phenotype, serum metabolome and gut microbiome
data. After pre-processing raw microbiome and metabolome data, metabolites are summarized as co-abundance
clusters (Steps 5–7), and KEGG module and species abundance profiles are extracted from gut microbiome data
(Box 1). Next, in the phenotype-filtering step, features are filtered for statistically significant positive or negative
associations with the phenotype of interest (here HOMA-IR or HOMA-IRBMIadj) (Steps 8–12), and the resulting
features are taken forward for cross-domain correlation/association analyses (Steps 13–15). Finally, microbial driver
species for the KEGG module associations with HOMA-IR are identified by using the leave-one-MGS-out analysis
(Steps 17–19). Numbers in circles refer to protocol steps. FDR, false-discovery rate; IR, insulin resistance; IS, insulin
sensitivity; Mod, module; neg, negative; pos, positive. Adapted with permission from Pedersen et al.10, Springer
Nature.
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To address the high-dimensional feature space of the complex dataset, we collapsed co-abundant
polar metabolites and molecular lipids into metabolite clusters (Fig. 1, Steps 5–7) and metagenomic
reference genes into MGSs (Fig. 1, Box 1), respectively, alongside metagenomic functional potentials
defined at the module level (Fig. 1, Box 1), thereby reducing dimensionality while retaining maximal
resolution. We assessed the clinical phenotype relevance for the components of each type of -omics
data (Fig. 1, Steps 8–12) and performed a cross-domain association between the metabolomics and
microbiome functional profiles (Fig. 1, Steps 13–15). Associated microbes were further subjected to a
so-called microbial driver species analysis that combined three data dimensions (MGSs, microbial
functions and clinical phenotypes) in a leave-one-out analysis to identify MGSs that contributed
particularly to the observed linkage between metagenomic functional potential and clinical phenotype
(Fig. 1, Steps 17–19). Below, we provide a more in-depth discussion of the analysis framework.

Repeated dimensionality reduction to reduce heterogeneous data complexity and to ‘sharpen’
relevance by phenotype association filtering
One of the strengths of high-throughput technologies is also a main weakness: so many features may
be measured at once that comprehensive statistical tests often yield apparently significant findings
merely by chance24. This makes stringent corrections for multiple testing paramount, reducing
statistical power to detect any differences. To circumvent the challenges posed by high data
dimensionality, the data can be grouped in ways that are biologically meaningful to the application at
hand. Such groupings can be identified by complementary, yet methodologically different,
dimensionality-reduction approaches based on data-driven clustering or by utilizing biological prior
knowledge (Table 1). Circulating metabolites and microbial genes in a metagenome sample each have
innate correlation structures. Metabolite concentrations are often shaped by common pathways that
are regulated in concert or by common precursors, whereas microbial genes from a chromosome
show co-abundance across samples. In the latter case, MGSs can be identified, as previously repor-
ted12 and described in the Supplementary Methods. Similarly, we can group metabolite features into
clusters of both annotated and unannotated metabolites, as described in detail below. In parallel,
dimensionality can be reduced by using prior biological knowledge. In the current protocol, this is
done by grouping microbial genes into Kyoto Encyclopedia of Genes and Genomes (KEGG) func-
tional modules based on sequence similarity to proteins with known functional characteristics.
Analogously, one can also exploit predefined metabolic pathway maps as scaffolds for integrating
metabolomics data and defining metabolite clusters, given a sufficient number of annotated meta-
bolites to reliably cover (most of) the steps in the given pathways, which was not the case in our study.
In this protocol, the feature space is further reduced by removing features that are too rare for their
changes to reach statistical significance. In the second step, the dataset is filtered again to consider
only features exhibiting significant association with the primary outcome variable (the clinical

Table 1 | Examples of different strategies for data-driven dimensionality reduction and resources
that can be applied for knowledge-driven dimensionality reduction

Data driven Knowledge driven

Microbiome data Binning of co-abundant genes, e.g.,
using the MGS frameworka 12, MetaBat50,
MaxBin51 and so on, or using single-copy
phylogenetic marker genes (mOTU)52, or
including base composition information
using, e.g., CONCOCT53. Reference
genome–based methods, e.g.,
MetaPhlAn54

KEGG pathwaysa 55–57

MetaCyc58

Clusters of orthologous groups (COGs)59

Carbohydrate-active enzyme (CAZy) families
(http://www.cazy.org)60

Gut metabolic modules (GMMs)61

Metabolome data Clustering of co-abundant metabolites,
e.g., using the WGCNA frameworka 26 or
any other unsupervised clustering
framework
Principal component analysis (PCA)62

Non-negative matrix factorization63

(NMF)

KEGG pathways55–57

ConsensusPathDB64 (collection of pathways
and metabolite sets from multiple databases,
including KEGG)

aIndicates strategies and resources used in this protocol.
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phenotypes, here insulin resistance), while controlling for relevant confounding factors. This
approach is designed to increase the effective power of a cross-omics association analysis.

Clustering of co-abundant metabolites to reduce the metabolomics feature space
Clustering of co-abundant metabolites is done here using the weighted gene co-expression network
analysis (WGCNA) algorithm, originally developed for gene expression analysis25–27 and recently
reviewed in the context of proteomics and metabolomics data analysis28. Importantly, effective
WGCNA performance depends on parameter settings for cluster reconstruction, which will vary to
some extent between datasets. Establishing these for a dataset requires some parameter exploration
and inspection of the resulting clustering. The full procedure for this lies beyond the scope of the
present protocol, but readers are referred to the main WGCNA documentation26. We recommend
using a signed network, effectively setting the link between negatively correlated metabolites (close) to
zero; by contrast, using an unsigned network will group metabolites with high absolute correlation. It
is further recommended to use biweighted mid-correlations as a robust alternative to Pearson cor-
relations for calculating the similarity between any two metabolites. To preserve the continuous
nature of the co-abundance patterns, so-called soft thresholding is often used to convert the similarity
matrix to an abundance matrix; this requires choosing a value for the power parameter β. One
common strategy is to choose the smallest value of β that satisfies the scale-free topology criteria27.
Thus, for optimal performance, Steps 5 and 7 of the protocol should be performed for different values
and the resulting curves inspected; thereafter, parameters should be specified as appropriate. The
parameters used in our example correspond to optimal choices for that dataset and analysis10. One
attractive feature of WGCNA is the use of a ‘bin cluster’ for unassigned metabolites (here named
‘M_remaining’ and ‘L_remaining’ for the polar metabolites and molecular lipids, respectively), rather
than forcing all metabolites into a specified cluster, as is the case with many other clustering algo-
rithms. Such unassigned metabolites can be analyzed as individual variables separately from the
clusters at a later stage.

Choice of a representative value of composite features and performing of correlation analysis
The definition of features composed of multiple individual variables requires some consideration
when selecting a single representative value for downstream analysis such as clinical phenotype and
cross-omics associations; these definitions depend on the dimensionality-reduction approach
employed. For co-abundance clusters defined by WGCNA, the default is to use the first principal
component of the abundance matrix, which is basically a weighted average. By contrast, MGSs are
defined as clusters of genes with extremely high correlation (Pearson’s correlation coefficient >0.9),
for which the median gene abundance of each MGS is considered an appropriate representative
value12. For knowledge-based approaches, such as pathway or module grouping of microbial genes, it
is similarly possible to use a median or mean abundance of genes in a given group, such as that
implemented in the HUMAnN software29, or, as implemented here, to employ a functional module
enrichment analysis with a Mann–Whitney U (MWU) test of the correlation coefficients from a gene-
level analysis.

Owing to the skewed distribution of metagenomic count data, we recommend the use of non-
parametric statistical tests, such as Spearman’s correlation, for downstream analysis. Similarly, we
have chosen to use a partial Spearman correlation test, as implemented in the ppcor R package30,
when adjusting for the potentially confounding effects of a third variable (here, body mass index
(BMI)). Although in this protocol we adjust for only a single variable, the analysis could be modified
to adjust for multiple relevant variables, as seen in the paper by S. Kim30, and could even be extended
to perform a stepwise conditional analysis of -omics variables to identify independent signals.

Driver-species analysis to assess contributions to microbial guilds
Shotgun metagenomics as performed in the workflow outlined here can assess the functional
potential of a microbiome directly from the gene sequences. Similar functional potential is often
found across multiple species. In such cases, it is appropriate to group species with overlapping
functional potential into so-called microbial guilds, that is, microbiome subsets varying in taxonomic
composition and containing organisms that are not always closely related, but which together per-
form all or part of the same function. Direct quantification of functional potential from shotgun
metagenomics identifies the presence and involvement of such microbial guilds. It then becomes
relevant to ask which bacteria contribute most to the role that defines the guild.
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The microbiome functional correlations could potentially be driven either by one or a few pro-
minent species or by many species that each contribute to the functional potential to different
degrees. To identify the MGSs (or taxa identified under any other framework of resolution) that
contributed the most to the association between a given functional KEGG module (hereafter termed
‘KEGG module’, i.e., a microbial guild) and a human phenotype, we developed an approach based on
a variation of the leave-one-out principle, effectively evaluating the importance of each taxon by the
difference in association strength that results from removing it from the analysis. Note that this
driver-species analysis is different from a classic leave-one-out cross-validation analysis, in which the
aim is to evaluate model performance rather than feature importance. The idea is simply to repeat the
phenotype–KEGG module association analyses, removing all genes for a given MGS, one at a time,
and see how much the association signal drops for each species that is removed, under the premise
that the more the signal drops, the more important that species was for the originally observed
association (Box 2 and Fig. 2). Although we use this approach for KEGG module–phenotype asso-
ciations here, the overall approach for estimating the effect of a different taxon on a given association
is easily generalizable to other functional definitions and/or other domains, e.g., microbial functional
potential versus host metabolome associations.

Alternative methods
The computational workflow described here consists of multiple analytical steps developed during
previous work10, each of which could be implemented in other ways. We envision this protocol as
providing a framework for scientists wishing to undertake an integrative analysis of a multi-omics
dataset for which parts of the protocol can be adapted to other situations as needed, with some tools
modularly switched out for other options, such as alternative approaches for dimensionality reduc-
tion listed in Table 1.

In the approach taken here, we use a stepwise approach to identify important features for each
data type and subsequently evaluate the interrelationships. Which approach is most appropriate for a
given multi-omics data-integration analysis depends largely on the intended outcome. For biomarker
discoveries, one could use multivariate models to identify relevant features for an outcome of interest,
such as those implemented in DIABLO as part of the versatile mixOmics package31, which incor-
porates several multivariate projection-based methods, or by using any other supervised machine
learning methodology. Alternatively, for identifying subgroups of individuals, one approach is a
similarity network fusion32, in which samples are clustered by shared data structure across multiple
data types. Previous applications of software and statistical frameworks to microbiome data inte-
grating a priori information include canonical correlations analyses with structure-constrained
penalty functions33, which makes use of phylogenetic similarity between amplicons for dimension-
ality reduction; and MIMOSA (model-based integration of metabolite observations and species
abundances), which integrates genetic information with measured biomarker data to infer metabolic
properties of bacteria as an extension of previously applied predictive relative metabolic turnover
functions34,35. Thus, our approach is only one of many possible strategies that can be used for analysis
of a multi-omics dataset. For further overview of strategies for integrating metabolomics with
microbiome data, we refer to the recent review by Chong and Xia35.

Box 2 | Principle behind the driver-species analysis

The first step in the driver-species analysis is to establish a dataset-dependent baseline signal/extent of expected
association (Fig. 2a,b). Previously, the gene abundance profiles for each sample were annotated to KOs
(Supplementary Methods). For each KO, the abundance in each sample is computed by summarizing the
abundances of all genes mapping to that KO. Each of the KOs in a given KEGG module is then correlated to the
phenotypic variable of interest (here, HOMA-IR as a response variable in our analysis), resulting in a Spearman
correlation coefficient (SCC) for each KO (SCCKO with all genes) (Fig. 2a). To arrive at a single value for a given
KEGG module–phenotype association, we finally collapse the signals over all KOs (that are part of the KEGG
module) by taking the median SCCKO with all genes (Fig. 2b).
To evaluate the effect of a given MGS on a specific association, all genes forming that MGS are removed from the
gene abundance table (across all samples) (Fig. 2c). The KO distributions are then recomputed and correlated to
the response phenotype, and then a median SCCKO without MGSi genes is computed. The effect of the given MGS
(MGS influence) is finally defined as the difference between the baseline SCC, which utilizes all genes in the
sample (SCCmodule), and the altered SCC, which utilizes all genes except those belonging to the given MGS
(SCCmodule without MGSi genes) (Fig. 2d). These steps are repeated, iterating over all MGSs containing at least one
KO in the given KEGG module. More precisely, a large SCC reduction upon removal of an MGS’s genes would
indicate that this MGS plays a large role in the induction of a given microbial functional-phenotype association.
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An important consideration in the selection of methods for integrative analysis such as that
achieved using this protocol is the particular set of challenges following from the distributions
and dynamics of the source dataset. Metabolomic data are structurally very different from micro-
biome data, which calls for other methods of clustering. Unlike microbiome data, metabolomic data
are neither sparse nor particularly erratic in their abundance. The same applies to cross-species
functional grouping on the basis of, e.g., KEGG orthology groups (KOs). Dominance by a few
members reflects different properties and results in a less sparse dataset, as compared with micro-
biome datasets. In the exemplary analysis described here, correlations between phenotype
and functional profiles, or between functional and metabolite profiles, are thus less sensitive
to dominance by a small number of factors. Direct correlations between microbiome taxa and
phenotypes are prone to false-positive associations. In particular, low-abundant taxa are prone to
such errors. Such false discoveries may result from measurement error and biases. For this reason, our
procedure for the identification of driver species was designed not to depend on correlations between
single MGSs and phenotypes. For completeness, we include the computation of direct correlations
between bacterial taxa and phenotypes in the protocol. Therefore, we suggest considering methods for
detection and management of compositionality bias, such as SparCC36,37 or the approaches reviewed
in Gloor et al.38

Advantages and limitations
Metagenomics is an evolving field in which large and complex datasets are generated and down-
stream analysis remains challenging. With recent technological advances, the integration of meta-
genomics data with other complex -omics data will become increasingly common. The present
protocol provides a step-by-step approach for the analysis of such large multi-omics datasets, thus
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contributing to the development of standardized approaches in the field that will facilitate the
comparison of such studies. A major advantage is that the analysis can be adapted to include different
types of high-dimensional -omics data, can reflect domain-specific foreknowledge well and makes
interpretation and design of validation tests straightforward. However, there are a number of bio-
logical and technical issues with current microbiome protocols that bioinformaticians should be
aware of when interpreting results from this analytical approach; these are described below. In
addition, the present protocol profiles only the cellular component of the microbiome (although we
use the term ‘microbiome’, strictly speaking, we are ignoring the virome).

Correlations between gut microbiome and host serum metabolome data can be obscured by
physiological processes
Spatial separation of the sampled body sites must be considered when integrating data, such as
when joining gut microbiome data to serum metabolomics measures. Correlations between data
from different body sites can be affected by physiological action; for example, the relationship
between a gut microbe and serum metabolite could be obscured by the rate of metabolite uptake
and/or breakdown by the liver. Another example might be when the correlation between serum and
stool metabolites is affected by individual differences in intestinal epithelial filtering of a given
metabolite. The connection between the gut microbiome and the blood circulatory system relies on
nutrient translocation from the former to the latter. Not much is yet known about the exact per-
meability of specific metabolites through the gut wall, or whether changes in such permeability
play a part in some diseases, as in the so-called ‘leaky gut’ model39–41. In summary, altered
production of a given small molecule within the gut microbiota implies an altered presence of
this molecule in circulation; however, this is not guaranteed, and caution must be taken in inter-
preting association as causation. How this issue is best addressed is outside the scope of the present
protocol and calls for additional experiments, especially in the form of interventions including
portal vein metabolomics42.

What you measured might not be what you had hoped to measure
Correlations with microbiome data can be obscured by the fact that microbiome activities may take
place in other parts of the gastrointestinal tract than the site that is sampled (typically stool).
Assessments of gut microbiome functional activity through stool sample sequencing have inherent
limitations in interpretation of more proximal sections. For example, the gut microbial composition is
not uniform along the gastrointestinal tract; colonic microbial composition differs immensely from
that of the small intestine43. Although samples (that we can measure noninvasively) from different
study participants reflect this bias equally and thus remain comparable, care must be taken when
inferring states in the upper gut from such data. Second, the functional redundancy of the micro-
biome can obscure associations more generally, something that can be addressed by systems biolo-
gical analysis looking for biases in functional enrichment across species, or through insights from
community-scale metabolic modeling. Third, metagenomic analyses measure the potential for
expression of genes (e.g., relative abundance of genes) but not their actual expression (which can be
measured directly from RNA and/or protein readouts). Therefore, metagenomics gives only indirect
evidence for functional activity of the gut microbiome, making the importance of gene function
especially difficult to access. Fourth, for many applications, using species-level (or broader tax-
onomical) resolution may blur the signal if, for example, only a subset of the subspecies populations is
actually driving the investigated association. Future microbiome studies should utilize the potential of
operating at increased taxonomical resolution; i.e., using subspecies population resolution or structure
information. Fifth, although substantial effort has been made to standardize protocols for sample
processing for gut metagenome analysis to minimize technical variation44, for other types of
microbiome samples, additional sources of error may arise, potentially necessitating experimental
controls of various types to ensure high fidelity of data generation. Finally, standard approaches for
sequencing-based microbiome profiling yield relative, not quantitative data. To circumvent this, one
can adjust the sequencing data by the actual bacterial cell counts of the sample, as recently detailed by
Vandeputte et al.45.

Timescale of data and limitations of case–control versus longitudinal data
Correlations between high-throughput and clinical data can be obscured by the fact that our
measurements are a snapshot, whereas the clinical variables may be long-term effects, and that
other factors may play a large role (e.g., factors reflecting likelihood of recruitment as a cohort
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participant). The microbiome composition reflects temporary factors such as diet and the transient
colonization of microbial species. In many long-term progressive diseases such as diabetes or
atherosclerosis, pathology builds up asymptomatically over decades before diagnosis is possible.
Subtle effects probably accumulate over time to drive disease progression; these may or may not
be the same effects that are visible at the clinical stage. Furthermore, comorbidities are hard to
differentiate from the underlying cause (e.g., cardiovascular health in diabetes or in relation to
obesity), confounder effects brought on by their co-occurrence, or effects of their treatment regimens
post diagnosis. These factors call for caution in both exploration of confounding factors and inter-
pretation of results.

Use of relative abundance
The present approach works with data, such as metagenome measurements, that are compositional,
comprising relative abundance values. Such data are in principle vulnerable to, e.g., dilution effects
and the effect of detection flaws interacting with diversity, as well as sampling depth differences
between samples. In the analysis we previously reported, we chose to minimize bias resulting from
such effects by downsampling all data matrices so that the samples have the same depth (other
normalization approaches are reviewed in Weiss et al.46). This eliminates bias while also losing power,
so an alternative approach may be to replace tests such as the Spearman correlation assessments with
corresponding tests that explicitly model proportional data, such as the method suggested by Gloor
et al.47. All other steps of the Procedure will remain the same. As discussed above, metabolomic data
may be less susceptible to these issues.

Level of expertise required
Comprehending the step-by-step part of this protocol (to an extent where you can apply it to your
own data) requires basic understanding of R, including how to install R packages. Good general
introductions to R include the ‘R Programming for Data Science’ (https://bookdown.org/rdpeng/
rprogdatascience/) by R. Peng and the Coursera course ‘R Programming’ offered by Johns Hopkins
University (https://www.coursera.org/learn/r-programming).

Materials

Equipment
Software
● R (https://cran.r-project.org); we recommend the use of RStudio (https://www.rstudio.com/products/
rstudio/download/). The analysis was tested using R 3.3.3. If packages are available under another
version, it should run, but specifics of the implementation of each package may change the results
slightly.

● Bioconductor (see https://www.bioconductor.org/install/ for install instructions and access)

c CRITICAL Ensure that the following packages (including their indirect dependencies in the form
of other packages needed for their compilation and operation, some of which should be installed via
Bioconductor) are installed and loaded correctly (in every case available via the built-in R and
Bioconductor package managers).

● xlsx, for saving to a spreadsheet
● data.table, for fast read of large files into R
● WGCNA, clustering software. Our previously reported work10 was done using v1.34.
● flashClust, clustering software
● ppcor, partial Spearman correlations, for confounder analysis. Our previously reported work10 was
done using v1.0.

● gplots, for plotting
● cowplot, for plotting; to arrange several plots on the same page
● ggplot2, for plotting
● plyr, for data transformations
Input data files: phenotype
● phenotypes.tab: file with clinical phenotypes (columns) per individual (rows). It is used to test for
associations, or for confounder analysis. Individuals are labeled ‘idv’, followed by a number, e.g.,
‘idv001’. c CRITICAL All demonstration files—both input data files and annotation files—are tab-
delimited text files, but other formats would also work after modifying the respective file-import
commands in the R script.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS | VOL 13 |DECEMBER 2018 | 2781–2800 |www.nature.com/nprot 2789

https://bookdown.org/rdpeng/rprogdatascience/
https://bookdown.org/rdpeng/rprogdatascience/
https://www.coursera.org/learn/r-programming
https://cran.r-project.org/bin/windows/base/old/3.3.3/
https://www.rstudio.com/products/rstudio/download/
https://www.rstudio.com/products/rstudio/download/
https://www.bioconductor.org/install/
www.nature.com/nprot


Input data files: metabolome
● metabolomic.tab/lipidomic.tab: input data matrix for abundance of 325 polar metabolites or 876
molecular lipids per individual. Note that no additional normalization is done in this script, so data are
assumed to be comparable in these regards. Such different data types are eventually merged into a
single set of metabolite cluster abundances. Individual metabolite/lipids are named M or L (for
specifying a polar metabolite or molecular lipid, respectively), followed by a number and lastly the
annotation or ‘unknown’ (in the case of unannotated metabolites/lipids), e.g., ‘M_20_Valine’.

Input data files: microbiome
● MGS_abundance.tab: file with the abundance (e.g., median gene abundance) of MGSs (columns) per
individual (rows). These are assumed to have been rarefied to comparable depth or otherwise
normalized. For historical reasons, the MGSs are labeled ‘T2DCAG’ followed by a number, e.g.,
‘T2DCAG00001’.

● KO_abundance.tab: file with the abundance of each KO (columns) per individual (rows). The data are
assumed to be rarefied to comparable depth or otherwise normalized. For this, the software tool rtk48

can be used.
● gene_abundance_sub.tab: file with the abundance of each catalog gene (subset version) in each
individual assumed to be rarefied to comparable depth or otherwise normalized.

Annotation files: metabolome
● cluster_mapping_file.tab: input file with annotation for metabolite clusters, as available from curation
of data in the specific dataset. The WGCNA clustering algorithm, by default, names the generated
clusters with color codes. This mapping file simply facilitates renaming to more meaningful cluster
descriptions. Here, the serum polar metabolite and serum molecular lipid clusters are labeled
M01–M35 and L01–L39, respectively, and collectively termed ‘metabolite clusters’.

Annotation files: microbiome
● MGS_taxonomy.tab: file with taxonomic annotation of the MGSs (rows) used in the analysis. Each row
contains the following information: species_taxonomy, species_pct, genus_taxonomy, genus_pct,
family_taxonomy, family_pct, order_taxonomy, order_pct, phylum_taxonomy, phylum_pct, where
x_pct is the percentage of the MGS genes that can be annotated (by sequence similarity) to the
taxonomy of the MGS. If no taxonomy can be assigned to the MGS, the value will be NA (not
available).

● KEGG_modules.tab: file containing definition of KEGG gene functional modules (rows) specifying
which KO gene groups constitute each KEGG module. The first two columns contain KEGG module
entry (number) and name, and the third column lists all KOs, separated by semicolons. Any other
functional annotation used analogously could be swapped in instead of the name. This file can be
obtained by downloading KEGG modules from http://www.genome.jp/kegg-bin/get_htext?ko00002.
keg; download htext and then run the provided script ‘parse_kegg.pl’ (after changing the input
filename).

● KO_to_MGS.tab: file listing for each KO (rows) the MGSs (space-separated) of which it is a member.
This is based on the KO annotation of the gene catalog (gene_to_KO.tab) and information regarding
which gene from the gene catalog is within each MGS, as given in the list in the MGS_to_gene.tab file.

● gene_to_KO.tab: file containing the KO annotation (if any) per gene (rows) in the gene catalog
(constituting 7,328,469 genes). Genes are labeled ‘RefCat620’ followed by a number (1, …, 7,328,469),
e.g., ‘RefCat620.1’. It is used to create the KO_to_MGS.tab file. Note, that for the purposes of this
protocol and to considerably reduce the size of input data, only the subset of catalog genes with KO
annotation (n = 2,205,769) are provided in files with gene abundance or annotation (gene_to_KO.tab,
MGS_to_gene.tab and gene_abundance_sub.tab), as only those genes are used in the driver-species
analysis.

● MGS_to_gene.tab: list of genes binned into a given MGS (rows). It is used to create the KO_to_MGS.
tab file. Rather than gene names, the file contains the index value of the gene, i.e., the position of the
gene in the gene catalog (subset version, thus 1, …, 2,205,769).

Procedure

c CRITICAL For full details of how to execute each step, see the enclosed source R code at the
accompanying Git repository (https://bitbucket.org/hellekp/clinical-micro-meta-integration); the code
can be performed step by step, e.g., in the RStudio interactive environment. For reference, we also
provide examples of all output files generated by the script, including figures and tables (also at the
accompanying Git repository).
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All commands specified below are intended to be executed in R, within a single persistent envir-
onment, whether through bundling in a unified script or through consecutive commands in console
or RStudio.

Stage I: starting an R session with all required packages and input files ● Timing
~32 min
1 Set the working directory (10 min). The code will look for input files and deposit output files in

subdirectories relative to a main directory.
On your computer, create a directory for the analysis, to remain generic (and without

assumptions about user operating system), we here call it ‘top/’. Then create subdirectories to obtain
the following directory hierarchy:

top/
r-code/
data/
results/

Copy all R code from the Git repository to your ‘top/r-code/’ subdirectory (i.e., all R files). Then
open the main R script, called ‘protocol_main.R’, in, e.g., RStudio.

Finally, modify the following command to set the working directory to your top/ directory:
setwd("~/top")

2 Ensure availability of software packages and satisfaction of dependencies (10 min). Use the following
command to load the required libraries specified in the Software list above:

source("r-code/step2_load.libraries.R")
? TROUBLESHOOTING

3 Import input files (10 min). When using the demonstration data, the following input data are
assumed to exist within the ‘top/data/’ subdirectory (the content and structure of the files are
described in the ‘Materials’ section):

phenotypes.tab
metabolomic.tab/lipidomic.tab
cluster_mapping_file.tab
MGS_abundance.tab
MGS_taxonomy.tab
KEGG_modules.tab
KO_abundance.tab
KO_to_MGS.tab
gene_to_KO.tab
MGS_to_gene.tab
gene_abundance_sub.tab
These input files are available at the accompanying Git repository of this protocol article, as a

demonstration example for the Procedure (https://bitbucket.org/hellekp/clinical-micro-meta-
integration).

Download the ‘example_input.zip file’, unzip it and place all files in your ‘top/data/’
subdirectory.

Then use the following command to import the demonstration data files into R:
source("r-code/step3_import.input.files.R")

4 Pre-processing/cleanup of loaded data for sparsity and domain limitation (2 min). Use the following
command to restrict the input data to account for method limitations:

source("r-code/step4_preprocessing.data.for.sparsity.R")

Stage II: co-abundant clustering of metabolome data ● Timing ~6 min

c CRITICAL In the following steps (Steps 5 and 7), WGCNA clustering is performed separately on
lipidomic and metabolomic measurements to detect clusters of densely connected metabolites/lipids.
The metabolite/lipid profiles constituting a given cluster are summarized by the first principal
component of the metabolite/lipid abundance matrix (‘Module Eigen-metabolite/lipid’), which is
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basically a weighted average abundance profile. Before this, optimal parameters for WGCNA should be
established for the dataset being analyzed.
5 Identify clusters of polar metabolites (2 min). Use the following command to generate WGCNA

clusters for polar metabolites:
source("r-code/step5_identify.WGCNA.clusters.for.metabolites.R")

? TROUBLESHOOTING
6 Link individual polar metabolites to the phenotype of interest (2 min). The dimensionality reduction

approach (detailed in Stage III) hinges on identifying features (e.g., metabolites and lipids clusters)
that are associated with a host phenotype of interest. In the example work we describe here, this
was insulin resistance as assessed by the homeostatic model assessment for insulin resistance
(HOMA-IR) measurement.

In this step, for reference, the individual polar metabolites are linked with HOMA-IR,
both directly and under adjustment for a potential confounder variable. In this case, such
de-confounding was done for BMI. In the case of a binary phenotype variable, one can, for example,
substitute the Spearman correlation test with a MWU test.

Use the following command to associate the individual polar metabolites with HOMA-IR:
source("r-code/step6_associate.metabolites.with.phenotype.R")

7 Identify clusters of molecular lipids and link individual molecular lipids to the phenotype of interest
(2 min). To repeat Steps 5 and 6 for lipidomic data, use the following command to generate
WGCNA clusters for molecular lipids:

source("r-code/step7a_identify.WGCNA.clusters.for.lipids.R")
Use the following command to associate the individual molecular lipids with HOMA-IR:
source("r-code/step7b_associate.lipids.with.phenotype.R")
The resulting metabolite and lipid clusters are thereafter combined into a single dataset,

collectively termed ‘metabolite clusters’, for downstream analyses.
? TROUBLESHOOTING

Stage III: phenotype filtering ● Timing ~10 min

c CRITICAL This analysis stage generates associations between the dimensionality-reduced -omics data
and a clinically interesting phenotype. In our previous work, this was insulin resistance (HOMA-IR
measurement), but any phenotype is possible, as is checking against other -omics domains or overall
-omics measurements such as gut diversity or enterotype. Furthermore, this analysis can be conducted
while controlling for confounders (such as BMI in the analysis we previously reported), by performing
tests with partial correlations, or can be extended to binary phenotype variables by substituting tests of
Spearman correlation with, e.g., MWU tests.
8 Link metabolite clusters to the phenotype of interest (2 min). To repeat Step 6 for metabolite clusters,

use the following command to associate metabolite clusters with HOMA-IR:
source("r-code/step8_associate.metabolite.clusters.with.pheno-
type.R")

9 Link MGS metagenomic entities to the phenotype of interest (2 min). To repeat Step 6 for
metagenomic taxonomic data, use the following command to associate MGSs with HOMA-IR:

source("r-code/step9_associate.MGSs.with.phenotype.R")
10 Link KEGG functions to the phenotype of interest (2 min). This step is analogous in goal to Step 6

but is used for metagenomics functional data. Here, we use KEGG modules, but any other
groupings of genes into functional modules could similarly be used (see examples in Table 1). Use
the following command to associate KEGG modules with HOMA-IR:

source("r-code/step10_associate.KEGG.modules.with.phenotype.R")

c CRITICAL STEP It is important to note that each KEGG module is constituted of multiple KOs.
Thus, to generate results on the level of modules, we test if correlations between the phenotype
and the abundances of KOs in the module are significantly higher or lower (MWU test) for the
module member KOs than for all other KOs, thus also considering module completeness
beyond the single-gene level. In the case of a binary phenotype variable, the KOs can be ranked
based on, e.g., Wald statistics (instead of Spearman correlation coefficients (SCCs)) for testing
differentially abundant KOs with a negative binomial test with the DESeq2 R package49 using non-
rarefied gene counts.
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11 Save phenotype associations (2 min). Use the following command to save the (BMI-corrected)
HOMA-IR association of metabolite clusters, MGSs and KEGG modules calculated in Steps 8–10:

source("r-code/step11_save.phenotype.associations.R")
12 Select features with significant differences (2 min). Combine and integrate those functional,

taxonomic and metabolomics features that reliably correspond to the host phenotype of
interest, using the following command to select the subset of features significantly associated
with HOMA-IR:

source("r-code/step12_select.significant.features.R")
? TROUBLESHOOTING

Stage IV: cross-domain association analyses ● Timing ~11 min

c CRITICAL This stage tests the association of the set of metabolite clusters associated with the
phenotype of interest with the set of functional metagenome features likewise so associated (identified in
Step 12). Here, once again, the complex nature of KEGG modules (consisting of multiple KOs) must be
taken into account.
13 Correlate metabolite clusters to functional metagenomic potentials (KOs) (5 min). Use the following

command to calculate correlations between each metabolite cluster and each KO:
source("r-code/step13_associate.metabolite.clusters.with.KOs.R")

14 Associate metabolite clusters with functional metagenomic potentials (KEGG modules) (2 min). To
use the KO-level data generated in Step 13 to calculate module-level associations between a KEGG
module and a metabolite cluster, execute the following command:

source("r-code/step14_associate.metabolite.clusters.with.KEGG.
modules.R")

15 Plot metabolome–microbiome functional analysis results (2 min). Use the following command to
create a visual representation of the generated results:

source("r-code/step15_plot.metabolome.microbiome.functional.ana-
lysis.R")
This creates a plot similar to that shown in Fig. 3.

? TROUBLESHOOTING
16 (Optional) Export metabolome–microbiome associations for network analysis (2 min). Further

exploration of such high-dimensional association data can be performed using software for network
analysis, e.g., Cytoscape (http://www.cytoscape.org) or igraph (http://www.igraph.org). Here, we
provide code for exporting an edge file with pairwise association scores and false discovery rate
(FDR) values between metabolite clusters and KEGG modules, as well as a corresponding node
attribute file (both files in .txt format). Use the following command to export an edge file and a
corresponding node attribute file:

source("r-code/step16_export.edge.node.files.R")

c CRITICAL STEP Several tutorials for importing, visualizing and analyzing networks in Cytoscape
can be found here: https://github.com/cytoscape/cytoscape-tutorials/wiki.

Stage V: driver-species analysis ● Timing ~64 min

c CRITICAL This stage of the analysis allows users to test which bacterial taxa (in the sense of MGS as
defined from the metagenomic datasets themselves) are driving the functional effects seen, enabling
assessment of the extent to which different taxa explain a functional potential association with a phenotype
of interest, such as insulin resistance in the analysis we previously reported10. It is done by testing for each
functional feature (here: KEGG modules) to what extent leaving out each MGS and the genes it contains
causes a change in the association between those modules and the target phenotype (Box 2).
17 Leave-one-MGS-out analysis (~1 h). First, specify which KEGG modules and taxa to include in the

leave-one-MGS-out analysis. Then compute the contribution per taxon to each KEGG module for
all KEGG module–taxa combinations. Use the following command to perform the leave-one-MGS-
out analysis:

source("r-code/step17_leave.one.MGS.out.analysis.R")
? TROUBLESHOOTING

18 Extraction of the top driver species from leave-one-MGS-out analysis for each microbiome functional
module (2 min). Use the following command to extract the top five driver taxa for each KEGG
module for interpretation:

source("r-code/step18_extract.top.driver.species.R")
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Methanogenesis, acetate → methane
Methanogenesis, CO2 → methane
Methanogenesis, methylamine/dimethylamine/trimethylamine → methane
Methanogenesis, methanol → methane
Exosome, archaea
RNA polymerase, archaea
Branched−chain amino acid transport system
Oligopeptide transport system
NitT/TauT family transport system
Ribosome, bacteria
Ribosome, archaea
Aminoacyl−tRNA biosynthesis, prokaryotes
Pyruvate oxidation, pyruvate → acetyl−CoA
Pyruvate:ferredoxin oxidoreductase
Putative fructooligosaccharide transport system
V−type ATPase, prokaryotes
Dissimilatory nitrate reduction, nitrate → ammonia
Type III secretion system
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Fig. 3 | Sample plot produced by the Procedure in Step 15. Association map of the phenome, the gut microbiome and the fasting serum metabolome.
The left panel shows significant associations (Mann–Whitney U-test FDR < 0.1) between KEGG modules and the indicated phenotypes; coloring
indicates the direction of association (red: negative; blue: positive; gray: not significant). The right panel shows associations between the same KEGG
modules and serum metabolite clusters. Coloring represents the median Spearman correlation coefficient between metabolite clusters and the
indicated KEGG modules, corrected for background distribution (SCCbg.adj.), where MWU FDRs are denoted: +FDR < 0.1; *FDR < 0.01; **FDR < 0.001.
Module names are shown as designated by KEGG (https://www.genome.jp/kegg/module.html). Interpreting the figure, it is apparent that both the
KEGG modules and metabolite clusters segregate into two overall groups: metabolically favorable and unfavorable (here assessed by insulin
resistance), giving rise to extensive—either positive or negative—cross-omics associations; a pattern we often observe in such inter-domain
association analyses. Essentially, features that participate in the same dimension of variability in an aspect, e.g., health/sickness, will also intercorrelate
in the expected manner, if associations are robust.
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19 Plotting leave-one-MGS-out results (2 min). Use the following command to plot the top driver taxa
for the phenotype-associated gene functions:

source("r-code/step19_plot.leave.one.MGS.out.results.R")
This creates a plot similar to those shown in Fig. 4, with the following subplots:
Distribution/density plots of SCC for KOs in a KEGG module versus all other KOs
Distribution of SCC when leave-one-MGS-out is applied
Distribution of SCC.bg.adj when leave-one-MGS-out (median SCC for KOs within the respective
module minus the median SCC for all other KOs not in the module) is applied (i.e., what is shown
in Fig. 3c,d in Pedersen et al.10).
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Fig. 4 | Sample plot produced by the Procedure in Step 19 for the leave-one-MGS-out analysis, here shown for the
combined BCAA–biosynthesis module (KEGG modules M00019, M00570, M00535 and M00432; together
constituting 13 KOs). a, Distribution of SCC for KOs in the combined BCAA–biosynthesis modules (red) and all
other KOs (blue). b, Median SCC (i.e., ‘MGS influence’ in Fig. 2) between HOMA-IR and the combined
BCAA–biosynthesis module when a given MGS has been excluded from the analysis, shown as density (top) and rug
(bottom) plots. c, Background-adjusted median SCC (i.e., ‘MGS influence’ in Fig. 2) between HOMA-IR and the
combined BCAA–biosynthesis module when a given MGS has been excluded from the analysis, shown as density
(top) and rug (bottom) plots. The median SCC for KOs within a module (red) and all other remaining KOs (blue) are
indicated in a,b by dotted lines. In the rug plots (in b and c), each vertical line corresponds to an MGS (i.e., the
(background-adjusted) median SCC between the 13 KOs and HOMA-IR when the respective MGS is left out). The
majority of MGSs show no or only minor effects, as seen by the many overlapping lines around the SCC based on all
MGSs (indicated by the dotted red line); this is even clearer in the corresponding density plots. A few MGSs show
noticeable effects in driving the HOMA-IR-KEGG module association; the closer to 0 in c, the larger effect. c adapted
with permission from Pedersen et al.10, Springer Nature.
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Troubleshooting

Troubleshooting advice can be found in Table 2.

Timing

The times listed below are computation time estimates for running the source code on the provided
input files, using a MacBook Pro (2.9-GHz quad-core seventh-generation Intel Core i7 processor, 16-
GB 2133-MHz LPDDR3 memory), while also including time for reading the procedural steps and
copying/pasting the commands into R (the computation time itself is ~1 h). The run time may change
considerably with the use of other input data. In addition, one should allocate time for ensuring full
comprehension of the protocol and code and assessment of optimal parameters for the given input
data, which probably will add up to a few days, depending on prior expertise.

Stage I, Steps 1–4, starting an R session with all required packages and input files: ~32 min
Stage II, Steps 5–7, co-abundant clustering of metabolome data: ~6 min
Stage III, Steps 8–12, phenotype filtering: ~10 min

Table 2 | Troubleshooting table

Step Problem Possible reason Solution

2 Problems installing packages, or not
able to reproduce sample results from
sample input files

Missing dependency packages; using
different versions of packages or R

Make sure that all dependency packages are installed,
some of which need to be installed via Bioconductor
(see source code). Change to the same versions of
packages and R that were used to test the code, as
listed at the end of the code

5, 7 No clusters observed in -omics data -Omics data coverage and/or quality is
low

Investigate the quality of the -omics data. If data
coverage is low, i.e., few variables are measured, it may
be unnecessary to perform the clustering steps. Consult
the FAQ on the main WGCNA webpage (https://horvath.
genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA/) for further guidelines on parameter settings,
pre-processing of data and troubleshooting

Many small clusters, where members
have small kIN (intramodular
connectivity) and kME (eigengene-
based connectivity) values (for
further explanation, see Langfelder
and Horvath26)

This can be a sign of a lack of structure
within the data. It can occur if the
biological space is sampled very sparsely
or tested with randomly permuted data

Investigate the quality of the -omics data. If data
coverage is low, i.e., few variables are measured, it may
be unnecessary to perform the clustering steps

12 No significant features are obtained There may not be a relationship between
the phenotype and the -omics data
tested; phenotype is inappropriately
defined; data quality is low; sample size
is too small

Make sure that ordering of individuals is the same in the
two domains when testing for associations. Investigate
data quality and pre-processing steps. Reconsider the
outcome phenotype; if using a binary outcome, then
investigating a related continuous variable might
increase statistical power. Increase the sample size if
possible

15 Error with ‘issig = rowSums
(tmp, na.rm = T)’ or ‘issig = colSums
(tmp, na.rm=T)’

No significant metabolite clusters and/or
KEGG functional modules; consequently,
the cross-domain heatmap cannot be
defined and plotted

See solutions for Step 12

17 Out-of-memory issues The analysis of the given dataset is too
computationally expensive

Rerun the analysis on a subset of the MGSs/modules
(see source code)

Strange or unexpected results Batch effects or other confounders in
data

Make sure to use appropriate normalization methods
for your data and check for effects of technical
covariates, such as batch/run status, which should then
be accounted for in downstream analysis. In the case of
such effects, strategies forward include (i) using
residuals after regressing out the confounding factors
and (ii) replacing univariate tests with variants that can
handle multiple covariates (e.g., ppcor or nested model
comparisons). For an example of practical application of
the latter approach, see Forslund et al.65
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Stage IV, Steps 13–16, cross-domain association analyses: ~11 min
Stage V, Steps 17–19, driver-species analysis: ~64 min

Anticipated results

If successful, the provided R code will generate the following ten files, which are also, for reference,
provided in the example_output directory in the accompanying Git repository (https://bitbucket.org/
hellekp/clinical-micro-meta-integration):

individual_metabolites.txt (made in Step 6): overview of all serum polar metabolites mapped to
their corresponding 35 co-abundance clusters, including their individual associations with HOMA-IR
and HOMA-IRBMIadj (HOMA-IR adjusted for BMI). The resulting 35 clusters are named by both
module label (column: ‘module’; i.e., a color as is the default output by the WGCNA algorithm) and
our cluster annotation (column: ‘cluster_name’, i.e., MXX). Be aware that the ‘gray’ cluster
(‘M_remaining’) is not a real or meaningful cluster but rather a collection of all the metabolites that
could not be reliably assigned to any of the resulting 35 clusters and, consequently, should be
excluded from downstream analysis. The columns kIN and kME specify the within-module
connectivity, determined by summing connectivity with all other metabolites in the given cluster and
bicor correlation between the metabolite profile and module eigenvector, respectively; both measures
of intramodular hubmetabolite status. For association with HOMA-IR and HOMA-IRBMIadj, the
resulting (partial) SCC coefficients (column: ‘XX_estimate’) are reported together with both nominal
and FDR-adjusted P values (columns: ‘XX_p.value’ and ‘XX_p.adjust’, respectively).

individual_lipids.txt (made in Step 7): Overview of all serum molecular lipids mapped to their
corresponding 39 co-abundance clusters, including their individual associations with HOMA-IR and
HOMA-IRBMIadj. The file is similar in structure to that of individual_metabolites.txt explained above,
except the column ‘cluster_name’ is now in the format of LXX.

MEs_metabolite_clusters.txt (made in Step 7): Matrix with cluster ‘eigen-metabolite’ values for
each individual (rows) and metabolite cluster (columns). This file is the result of the dimensionality-
reduction step performed using the WGCNA algorithm, effectively reducing the 325 polar meta-
bolites to 35 entities and the 876 molecular lipids to 39 entities.

HOMA.IR_associations.xlsx (made in Step 11): Association of metabolite clusters (sheet: metlip), MGSs
(sheet: MGSs) and KEGG modules (sheet: keggmodules) with HOMA-IR and HOMA-IRBMIadj (adjusted
for BMI). Both nominal and FDR-adjusted P values are shown. For metabolite clusters and MGSs,
‘estimate’ refers to SCC, whereas for KEGG modules, it refers to SCC.bg.adj., defined as the median SCC
for KOs within the respective module minus the median SCC for all other KOs not in the module. By
subsetting the file to show only significant FDR-adjusted P values, one can quickly get an overview of which
metabolite clusters, MGSs and KEGG modules are associated with HOMA-IR and/or HOMA-IRBMIadj.

heatmap_KEGG_vs_metabolite_clusters.pdf (made in Step 15): The plot shown in Fig. 3.
edge_file.txt (made in (optional) Step 16): Exported edge file; can be used to explore pairwise

relationships in, e.g., Cytoscape. It contains the following four columns: KEGG_module, Metaboli-
te_cluster, association estimate (SCC.bg.adj) and FDR-adjusted P values.

node_file.txt (made in (optional) Step 16): Exported node annotation file; can be used to explore
pairwise relationships in, e.g., Cytoscape. It contains the following three columns: Node_name
(corresponds to names in the edge file), Description (where existing) and Examples (example
metabolites, only for metabolite clusters).

delta_SCC_per_MGS.RData (made in Step 17): output from the driver-species analysis; a list with
40 entries, one for each tested KEGG module. Each entry contains a data frame with one row for each
of the tested MGSs that contain at least one KO, constituting the given KEGG module (i.e., the
number of resulting MGSs varies for different KEGG modules); the MGSs are sorted by decreasing
importance in driving the HOMA-IR-KEGG module association. Thus, the analogous output for
another application would provide a similar ranking.

top_driver_species.txt (made in Step 18): For each KEGG module, the five most important species
driving the association between the microbial module and HOMA-IR are listed. For each of these
species, the following information is provided: DeltaMGS_SCC (the change in median SCC between
KOs and HOMA-IR when the respective MGS is left out) and pctSCCeffect_bg.adj (the percentage
change compared with the original background-adjusted median SCC). The larger the Del-
taMGS_SCC and the pctSCCeffect_bg.adj, the more important the species is in driving the association
between the given KEGG module and HOMA-IR.

density_plot_SCC_HOMA.IR.pdf (made in Step 19): The plots shown in Fig. 4.
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Data and code availability
An archive containing all code and the demonstration data required to run the procedural part of the
protocol is available in the Supplementary Data as well as at the accompanying Git repository
(https://bitbucket.org/hellekp/clinical-micro-meta-integration). It includes preprocessed microbiome
and metabolome data and phenotype information. For all demonstration data, pseudonymized
sample names were re-randomized to generate anonymized data.
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