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Abstract

Motivation: Untargeted mass spectrometry (MS/MS) is a powerful method for detecting metabolites in biological
samples. However, fast and accurate identification of the metabolites’ structures from MS/MS spectra is still a great
challenge.

Results: We present a new analysis method, called SubFragment-Matching (SF-Matching) that is based on the hy-
pothesis that molecules with similar structural features will exhibit similar fragmentation patterns. We combine in-
formation on fragmentation patterns of molecules with shared substructures and then use random forest models to
predict whether a given structure can yield a certain fragmentation pattern. These models can then be used to score
candidate molecules for a given mass spectrum. For rapid identification, we pre-compute such scores for common
biological molecular structure databases. Using benchmarking datasets, we find that our method has similar per-
formance to CSI: FingerID and those very high accuracies can be achieved by combining our method with CSl:
FingerID. Rarefaction analysis of the training dataset shows that the performance of our method will increase as

more experimental data become available.

Availability and implementation: SF-Matching is available from http://www.bork.embl.de/Docu/sf_matching.

Contact: mkuhn@embl.de or bork@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Untargeted mass spectrometry (MS/MS) is a common approach for
identification of metabolites in biological samples (Beger er al.,
2016; O’Kell et al., 2017; Schrimpe-Rutledge et al., 2016). Thereby,
a complex biological sample is analyzed with liquid chromatog-
raphy electrospray ionization tandem MS/MS, generating several
thousands of MS/MS spectra in a few minutes. Inferring all molecu-
lar structures from these spectra in a fast, precise manner is, how-
ever, still a challenge. The currently fastest way of analyzing such
data is to match fragmentation spectra of unknown substances to a
reference spectral library (Kind et al., 2018). These spectral libraries
are usually built from known purified metabolites or generated by
researches experiments. Some databases like METLIN (Guijas et al.,
2018), GNPS (Wang et al., 2016) and Massbank (Horai et al.,
2010) are collecting these data. This experimental approach has the
highest accuracy, however, generating these reference libraries is
money- and time-consuming.

©The Author(s) 2019. Published by Oxford University Press.

Several methods like MS2LDA (van der Hooft et al., 2016,
2017), ChemFrag (Schiiler et al., 2018) and ChembDistiller
(Laponogov et al., 2018) have been developed for the prediction of
functional chemical groups from metabolite spectra. Methods like
XCMS?2 (Benton et al., 2008) use a similarity-based search to detect
possible structural motifs of unknown metabolites in spectra. Also,
many methods have been proposed for in silico metabolite identifi-
cation from spectra (Heinonen et al., 2012; Hummel et al., 2010;
Nguyen et al., 2018; Vaniya and Fiehn, 2015). In silico fragmenta-
tion methods, such as ISIS (Kangas et al., 2012), MS-FINDER
(Tsugawa et al., 2016), MetFrag (Ruttkies et al., 2016) and CFM-ID
(Allen et al., 2015) strive to explain all fragment ions; these methods
break every possible covalent bond, scoring each broken bond based
on its strength. Some methods like CFM-ID can generate a pre-
calculated spectral library. However, as molecular rearrangements
occur during fragmentation, precise prediction of the rearrangement
is very difficult, and these methods suffer from a low identification
accuracy (Blazenovi¢ et al., 2018). Other approaches like CSI:
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FingerID (Brouard et al., 2016; Diihrkop et al., 2015, 2019; Ludwig
et al., 2018) convert a spectrum into a fragmentation tree, search
this fragmentation tree against a database of known trees, and then
infer a molecular fingerprint. These methods need to search frag-
mentation trees one by one in an online way, which makes it time-
consuming when analyzing many spectra.

Depending on the type of biological sample, different chemical
search spaces can be used. For well-studied sample types, such as
cultured cells or human plasma, many of the metabolites in these
samples have been analyzed before. In these cases, spectra can often
be matched to reference libraries. Even if reference spectra are not
available, there is a high chance that the compounds are part of
curated databases such as the KEGG pathway database (Kanehisa
et al., 2017) or the HMDB database of metabolites (Wishart et al.,
2018). For such compounds, several identification methods have be
developed (Blazenovic et al., 2018). More complex samples such as
those from plants or the environment contain many molecules
whose structures have not been determined yet, hampering com-
pound identification using MS.

Here, we describe a new method called SF-Matching
(SubFragment-Matching) to predict likely peaks in tandem mass spec-
tra for small molecules using a machine learning approach.
Circumventing the complexities of accurately modeling the fragmenta-
tion processes and probabilities of bond breakage, our new approach
relies on detecting ‘fragile’ substructures in the molecule. These enable
us to derive the respective fragmentation patterns to achieve high iden-
tification accuracy of compounds from mass spectra.

Unlike similarity-based approaches, which try to annotate spec-
tra with a few features and fail if an unknown metabolite has chem-
ical modifications, SF-Matching can be wused for precise
identification of a molecule when it contains similar substructures to
known metabolites. SF-Matching also does not treat molecular
bonds like the iz silico methods: it does not predict the chemical re-
action leading to the fragmentation, it only breaks bonds to find the
subfragments, then uses the chemical fingerprint to capture similar
molecular structures. Furthermore, the approach described here
appears complementary to the existing method CSI: FingerID as a
combination with it achieves a much higher accuracy than either
method on its own with only a small sensitivity decrease.

2 Materials and methods

2.1 Converting spectra to subfragments

Given a molecular structure, we search for molecular substructures
first. We remove all possible bonds b, connecting atoms a5 and a,,
with the exception of carbon—carbon bonds in the aliphatic chain
and bonds within ring systems. Removing a bond yields two sub-
molecules with molecular formulas F;; and F,s. For each heavy
atom g; in a molecule, the Merck Molecular Force Field (Halgren,
1996) atom type T, was determined and the bond type T}, was
defined as T}, , = (T,,, Tg,).

The molecule’s corresponding spectrum can be treated as a list of
n peaks {Py, P2, ..., P,}, here P; = (m/z M;, intensity I;), and
the formula of a fragment ion F; can be determined from M;. A
mass-to-charge ratio M; may correspond to several molecular for-
mulas F;. In this situation, only the formulas that are a subset of the
precursor ion are considered. If more than one formula meets this
criterion, we include all of them with the same weight.

Then, we test for all Fs, if they are a subset of F;. In this case, we
can calculate the difference of the molecular formulas
Aisy = Fj = F;, and define the subfragment S;= (Tp,,,As;).
Therefore, each peak P; with intensity I; corresponds to a set of sub-
fragments {(S1,1;), (S2, 1), - (Sa, 1))}

2.2 Generating models for the subfragments

To build the prediction models, we collected 16 110 molecules for
positive ion, 5884 molecules for negative ion from the GNPS,
MassBank and in-house databases (Horai ef al., 2010; Wang et al.,
2016) (Supplementary Tables S1 and S2). For each spectrum in the
database, the intensity of the spectrum was normalized so that the

sum over all peak intensities equals one. If one molecule has multiple
spectra, they will be treated individually. The spectral peaks were
converted to fragment substructures as described earlier. Models
were then built for all fragment substructures that occurred in at
least five molecules.

Machine learning methods have difficulties within imbalanced
training sets. In our case, most molecules do not generate a certain
subfragment. To address this imbalance, the training data for a ran-
dom forest can be augmented with weights for the individual items
in the training data. Spectra that contained a peak corresponding to
the fragment substructure were assigned the weight equal to the
peak’s normalized intensity (I;). The sum of weights is therefore
w =Y, I;. For spectra that did not contain a peak corresponding to
the fragment substructure were assigned equal weights such that
their sum is w. That is, if there are 7 spectra without the peak, their
weight is w/n.

For each molecule, stereoisomer information was removed, and
an 8191-bit chemical fingerprint generated using RDKit Fingerprint
(Greg Landrum). Then, an extra-trees classifier was built using the
scikit-learn (Pedregosa et al., 2012) with 100 trees, using the chem-
ical fingerprints of the complete structure as features and the pres-
ence of the fragment substructure as class label. A model will be
built if a subfragment existed in at least five molecules. In total,
models were built for 1 227 627 subfragments. Each of these models
predicts the probability P(S;,C) that a peak corresponding to the
subfragment S; , occurs given the chemical fingerprint C.

2.3 Predicting possible peaks for a given molecule

Given a molecule, its chemical fingerprint C was calculated as
described earlier. Furthermore, all possible peaks P; and their corre-
sponding subfragment S;, were determined from the molecular
structure. The molecule’s chemical fingerprint was then used to pre-
dict a probability for the existence of a peak, using the pre-built
models for the subfragment. When several subfragment had associ-
ated models for a given peak, the highest probability of these was
assigned to that peak.

P(P;|C) = max P(S;.|C)

2.4 Spectrum scoring

Given a spectrum with peaks P; normalized peak intensities I;, the
score for a molecule with chemical fingerprint C is calculated by
summing over the peak probabilities, using the intensities as
weights:

S LP(P[C)

Peaks are determined by searching for molecular formulas within
a certain mass accuracy.

2.5 Consensus scoring

For consensus scoring, candidate molecules were scored both with
our method as well with CSI: FingerID. A prediction was only
accepted if both methods have the same top prediction. When there
was a tie for the top prediction, no consensus prediction was
recorded.

2.6 Performance evaluation

For the CASMI 2016 dataset, the results of CFM-ID were obtained
from the author’s submission, the results of CSI: FingerID were cal-
culated by Sirius 4.0. For the CASMI 2017 dataset, the results of
CSI: FingerID were obtained from the author’s submission, the
results of CFM-ID were calculated by SE-CFM-trained model. For
the EMBL metabolomics core facility (EMBL-MCF) and GNPS
datasets, the results of CFM-ID were calculated by SE-CFM-trained
model, the results of CSI: FingerID were calculated by Sirius 4.0. If
one spectrum had several top predictions, the tie was broken by
randomization.
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2.7 Data availability and reproducibility

The SF-Matching software and a tutorial can be accessed from
http://www.bork.embl.de/Docu/sf_matching. The source code is
available at https://git.embl.de/grp-bork/sf-matching. An interactive
example of using SF-Matching can be accessed at https://doi.org/10.
24433/C0O.6279326.v2. We further deposited the software and pre-
calculated spectra predictions for relevant biological molecules
[taken from KEGG (Kanehisa et al., 2017), HMDB (Wishart et al.,
2018), ChEBI (Hastings et al., 2016) and ChEMBL (Gaulton et al.,
2017)] in Zenodo: http://doi.org/10.5281/zenod0.3345099.

3 Results

Our concept assumes that molecules consist of fragile and relatively
stable substructures. Molecules with similar fragile structures will
share similar fragmentation patterns even if they have different sta-
ble substructures. For example, in lysophosphatidylinositol and
phosphatidylethanolamine, the inositol moiety, ethanolamine and
the alkyl chain are stable substructures, connected by a fragile sub-
structure containing ester bonds that are likely to lead to fragmenta-
tion. During fragmentation, the two different molecules with
different alkyl chains will generate similar fatty acids as fragment
ions, although the masses of their fragment ions are different
(Fig. 1a). In the fatty acid that can be detected as a fragmentation
product, the alkyl chain is the stable substructure and the carboxyl
group is the fragment of the fragile substructure.

Our aim was therefore to develop a method that can detect the
presence of fragile substructures and based on this predict if a given
spectrum is likely to belong to a particular compound. We use ma-
chine learning to associate structural information contained in 2D
chemical fingerprints with fragmentation patterns. Molecular finger-
prints encode the presence of various substructures of the molecule
in a vector of bits. If two molecules have similar fragile substruc-
tures, some bits of the fingerprint will be the same. As the substruc-
ture may vary from molecule to molecule, in our approach, we do
not try to identify the extract fragile substructure, but instead use
the fingerprint to represent it, and use machine learning to detect the
predictive parts of the fingerprint. Given a training database of mo-
lecular structures and mass spectra, we process each spectrum indi-
vidually. On a high level, training the model works as follows
(Fig. 1b):

In the molecule associated with the spectrum, we find all substruc-
tures by individually breaking all covalent bonds in the molecules. For
each broken bond, we record the resulting molecular formulas together
with the bond type of the broken bond. For example, —C;,H;; is one
of the substructures of lysophosphatidylinositol.

For all peaks in the spectrum, we calculate the fragmentation
products’ molecular formulas based on their m/z.

For each fragmentation product, we check which substructures
found in Step 1 are a subset of the fragmentation product’s molecu-
lar formula. For any fragmentation product, there may be several
such substructures. Considering each substructure individually, we
then designate it as the stable substructure. The remaining part of
the fragmentation product must therefore be a part of the fragile
substructure, and its molecular formula can be determined from the
formulas of the fragmentation product and the stable substructure.
Together with the bond type information, we call this part of the
fragile substructure a ‘subfragment’. Each molecule in the database
can be checked if it contains a subfragment.

For each known molecule, we calculate its molecular fingerprint
based on the structure of the complete molecule. After determining the
presence of subfragments across all training spectra, random forest
classifiers are trained for each subfragment based on the molecular fin-
gerprint and the presence of the subfragment in each spectrum.

For testing if a certain molecule is likely to belong to a given
spectrum, we do the reverse: we calculate its molecular fingerprint
and find all possible subfragments based on the peaks of the spec-
trum. Then for every subfragment, we use the corresponding ran-
dom forest classifier to predict the probability of the subfragment.

After finding the possible molecular substructures, we can calculate
the mass of all possible fragment ions by adding the formula of sub-
fragment to the formula of substructure.

To increase the speed of the method, we pre-calculated the pre-
dicted spectra of all biomolecules in four databases that collect most
of the known, relevant biological molecules [KEGG (Kanehisa e al.,
2017), HMDB (Wishart ez al., 2018), ChEBI (Hastings et al., 2016)
and ChEMBL (Gaulton et al., 2017)]. This allows identification of
compounds at a rate of more than 10 spectra per second on a laptop
with a solid-state drive. The pre-calculated database and searching
scripts can be downloaded from http://www.bork.embl.de/Docu/sf_
matching.

We evaluated the performance of our approach by comparing it
with CFM-ID (Allen et al., 2015), and CSI: FingerID (Diihrkop
et al., 2015), the two methods that showed very good performance
in CASMI 2016 and can also run in batch mode (Schymanski et al.,
2017). As many of the test molecules also exist in those software’s
training dataset, we remove the test spectra from our training data-
set to achieve a fair comparison. First, we used all spectra provided
in the context of the CASMI 2016 and 2017 automated structural
identification challenge (Schymanski et al., 2017) as benchmark
dataset. To estimate the performance on multiple chemical data-
bases, we limited the candidates to the molecules that are in the
selected database. If one molecule was not present in the target data-
base, the corresponding spectrum was not considered
(Supplementary Table S3 and S4). In the CASMI 2016 dataset, SF-
Matching had the best performance when searching against four dif-
ferent databases of known molecules (Fig. 2a). In the CASMI 2017
dataset, although the performances of all methods dropped, SF-
Matching still showed better performance (Fig. 2b). As an additional
benchmark, we also evaluated the methods using spectra from the
EMBL-MCEF spectral library (Palmer e al., 2018; Supplementary
Table S5). We selected candidate molecules from the respective
chemical database with an m/z within 5 ppm of target molecules. In
this dataset, SF-Matching had a better performance than CSI:
FingerID and was also superior to CFM-ID (Fig. 2c).

For this and other approaches, the performance of in silico meth-
ods drops when removing not only test spectra, but all spectra for
these molecules from the training dataset (Diihrkop et al., 2019). In
CASMI 2016, the paper on CSI: FingerID reported its performance
on positive ion when removing part of test molecules from the train-
ing dataset (Schymanski et al., 2017). We removed all test molecules
from our training dataset and rebuilt the model (Supplementary
Table S6). In this dataset, our method has similar performance to
CSI: FingerID (Fig. 3a). Based on the published list of CSI:
FingerID’s training molecules, we also selected spectra from GNPS
dataset whose corresponding spectra are not in CSI: FingerID’s
training dataset (Supplementary Table S7). For this dataset, we also
removed molecules from our training dataset and found that our
method performed better than CSI: FingerID (Fig. 3b).

As our concept differs from existing ones, we reasoned that it
should be possible to achieve a better accuracy if we combine predic-
tion methods. As CSI: FingerID showed good performance in all the
three benchmark dataset, we selected spectra where both our
method and CSI: FingerID gave the same results. These consensus
results achieved about 20% increase in accuracy than any single
method, reaching >90% accuracy when analyzing the CASMI 2016
and EMBL-MCF datasets, and still >70% when analyzing the
CASMI 2017 dataset. Due to the consensus calculation this comes
at the cost of making predictions for fewer spectra, in average,
around 55% spectra had consensus identification. The fraction var-
ied between 40 and 80% in the CASMI 2016 and EMBL-MCF data-
sets and between 10 and 45% in CASMI 2017 (Fig. 4).

SF-matching uses structural features of molecules to build ma-
chine learning models and predict the probability that a given mol-
ecule spectrum gives rise to a measured spectrum. As machine
learning approaches gain power with increasing training sets, we
randomly selected subsets of the training dataset to evaluate the per-
formance. Indeed, we observed an increase in the prediction per-
formance with increased training set size (Fig. 5). This result
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Fig. 1. Schematic of the method. (a) The fragmentation of a molecule can be considered as breaking a fragile substructure surrounded by stable substructures. The resulting
fragment contains both a stable substructure and part of the fragile substructure (which we term ‘subfragment’). (b) For training the method, we compare possible substruc-
tures to peaks in a reference database and calculate the subfragments that were observed. The presence of such a fragile subfragment can then be predicted based on the mo-
lecular fingerprint of the complete molecule

suggests that SF-matching will increase performance with time with Taken together, we have developed a new method called SF-
more experimental spectra becoming available. As shown in Matching to identify the spectra of small molecules in biological
Supplementary Figure S1, the training data covers a wide range of samples. Depending on the goals of the MS experiments,
the chemical space. Therefore, a general increase in the number of SF-matching itself can be used to contribute to candidate molecule
training molecules should be sufficient to increase the performance identification, given its stand- alone performance, but it can also be

of SF-Matching. used in combination with CSI: FingerID for candidate predictions
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Fig. 2. Performance evaluations when removing the test spectra from training dataset. The accuracy and the sensitivity of SF-Matching, and the consensus method are com-
pared against random prediction and two established methods on (a) the CASMI 2016 dataset, (b) the CASMI 2017 dataset and (c) the EMBL-MCEF dataset. The number in
the parentheses indicates the total number of molecules which are contained in the various chemical databases; on right of the bar the number of correctly identified molecules

is shown. Details on the ranking can be found in Supplementary Tables

a b KEGG (105 96
(@) CASMI 2016 dataset (b) GNPS dataset HMDB 2105; 96 CASMI 2016
ChEBI (137) 120 dataset
KEGG KEGG ChEMBL (187) 128
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Fig. 3. Performance evaluations when removing the test molecules from training
dataset. The accuracy and the sensitivity of SF-Matching, and the consensus method
is compared against CSI: FingerID on (a) the positive ion of CASMI 2016 dataset
and (b) the GNPS dataset. The number in the parentheses indicates the total number
of molecules which are contained in the various chemical databases; on right of the
bar the number of correctly identified molecules is shown

with high accuracy. Furthermore, as expected from machine learn-
ing techniques, the power of the method will increase in the future
with the addition of diverse known spectra of biomolecules.

Fraction of spectra with consensus prediction (%)

Fig. 4. The fraction of spectra with consensus prediction. The number in the paren-
theses indicates the total number of molecules which are contained in the various
chemical databases; on right of the bar the number of spectra with consensus predic-
tion is shown
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