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Whether the human fetus and the prenatal intrauterine environment (amniotic fluid
and placenta) are stably colonized by microbial communities in a healthy pregnancy
remains a subject of debate. Here we evaluate recent studies that characterized
microbial populations in human fetuses from the perspectives of reproductive
biology, microbial ecology, bioinformatics, immunology, clinical microbiology and
gnotobiology, and assess possible mechanisms by which the fetus might interact with
microorganisms. Our analysis indicates that the detected microbial signals are likely
the result of contamination during the clinical procedures to obtain fetal samples

or during DNA extraction and DNA sequencing. Furthermore, the existence of live
and replicating microbial populations in healthy fetal tissues is not compatible with
fundamental concepts of immunology, clinical microbiology and the derivation

of germ-free mammals. These conclusions are important to our understanding of

humanimmune development and illustrate common pitfalls in the microbial analyses
of many other low-biomass environments. The pursuit of a fetal microbiome serves as
acautionary example of the challenges of sequence-based microbiome studies when
biomassis low or absent, and emphasizes the need for a trans-disciplinary approach
that goes beyond contamination controls by also incorporating biological, ecological

and mechanistic concepts.

Fetal immune development prepares the neonate for life in a micro-
bial world and underpins lifelong health'*. Neonates born at termare
not immunologically naive and are specifically adapted to cope with
abrupt exposure to microbial, dietary and environmental stimuli>®.
Several researchgroups have characterized immune cell development
in human fetal tissues”°. However, our mechanistic understanding of
how and when immune priming by microorganisms occurs, and the
factorsthatdriveit,isincomplete. The long-held view that the prenatal
intrauterine environment (placenta, amniotic fluid and fetus) is pro-
tected from live microorganisms'® has been recently challenged™ ™,
leading to the hypothesis that fetal immune development may be
driven by the presence of live microorganisms atintrauterine sites'*2°.
Some groups have reported the presence of a microbiota®, defined
as acommunity of microorganisms in a defined habitat, or a microbi-
ome®, referring to a microbiota as well as their constituent genes and
metabolites, which form a dynamic and interactive micro-ecosystem

that is integrated within environments including eukaryotic hosts®.
However, these interpretations have been debated”**®because several
concurrent studies® > suggest that contaminating microbial DNA in
sequencing datafromsites of low microbial biomass**~8islikely to be
the only source of microbial DNA detected inthe intrauterine environ-
ment. Since 2020, four studies have characterized the microbiology of
the human fetus directly, and these studies have come to opposing and
irreconcilable conclusions. Two reports described viable low-density
microbial populations in human fetal intestines® and organs*’, and
linked these microorganisms to fetal immune development. By con-
trast, two other research groups, whichinclude several of the authors
of this perspective, reported no detectable microorganismsin the fetal
meconium and intestines>**.

Such disagreement over a fundamental aspect of human biology
poses a challenge for scientific progress. The notion of a fetal micro-
biome, if proven correct, has implications for clinical medicine and
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would call for acomprehensive reappraisal of previous concepts and
research. It would require a radical revision of our understanding of
the development of the immune system and other systems in early
life and the anatomical and immunological mechanisms that mediate
host-microbe interactions within fetal tissues. Failure to resolve this
issue risks diverting finite resources into research that results in no
advancement for fetal and maternal health, and misguided attempts to
therapeutically modify anon-existent fetal microbiome. The dilemma
has further relevance for the characterization of the microbiota in
other low-biomass samples, such as those derived from blood, the
brain, other internal organs and cancer tissues. Therefore, we assem-
bled atrans-disciplinary group of scientists and clinician scientists to
examine experimental evidence relating to how and when the fetus
becomes prepared for life with microorganisms, to identify research
pitfalls and mitigation strategies, and to propose specific directions
for future research.

Claims and counterclaims

Although disagreement over the presence of microorganisms in prena-
talintrauterine locations (placenta and amniotic fluid) spans dozens of
studies with contradictory findings!>#15232931-343742-44 e focused our
analysis on four recent studies, because they provide a direct assess-
mentofthe fetus itsel****, Collecting human fetal samples is difficult
and canonly occur after the termination of a pregnancy, orimmediately
beforebirthby C-section. Three of the studies used samples collected
after vaginally delivered, elective, second-trimester pregnancy termina-
tions**, and one collected samples from breech C-section deliveries
immediately at birth®.

Rackaityte etal.” reported that 18 bacterial taxawere enriched in the
intestinal contents of vaginally delivered fetuses from second-trimester
terminations compared to negative controls using 16S rRNA gene ampli-
consequencing (V4 region). To account for contamination, the authors
removed operational taxonomic units (OTUs) that were detected in
more than 50% of procedural controls, and then identified remaining
contaminants in silico (using the decontam R package). They found
that most fetal samples were microbiologically similar to negative
controls (labelled as ‘other meconium’; n = 25), but that some samples,
dominated by Lactobacillus (six samples) or Micrococcaceae (nine
samples), had distinct bacterial profiles. The authors also detected
low amounts of total bacteria by quantitative PCR (QPCR), fluorescent
insitu hybridization (FISH), scanning electron microscopy (SEM) and
culture (as discussed below).

Several of the study’s conclusions have been challenged by de Goffau
etal.®, whoreanalysed the publicly available dataand found no evidence
for a distinct bacterial profile in the subset of samples with matched
procedural controls, and concluded that the positive findings were
caused by asequencingbatch effect (indicative of contamination) and
further contamination during culture®. In addition, the suggestion
that particles detected in SEM micrographs constitute micrococci®
was disputed, as their size exceeded that of known Micrococcaceae®.
Furthermore, the 16S rRNA gene sequence of the Micrococcus luteus
cultured from the fetal samples differed from that detected by sequenc-
ing, further supporting contamination during culture (M. luteusis a
common contaminant of clean rooms and surgical instruments***),

Mishra et al.*° detected alow but consistent microbial signal across
tissues of vaginally delivered fetuses from second-trimester termina-
tions by 16S rRNA gene amplicon sequencing (V4-V5 region), with
sevengeneraenriched infetal samples (Lactobacillus, Staphylococcus,
Pseudomonas, Flavobacterium, Afipia, Bradyrhizobium and Brevundi-
monas). The 16S rRNA gene-sequencing data were accompanied by
SEM, RNA-in situ hybridization (RNA-ISH) and culture. In recognition of
the highrisk of contamination, all samples were processed inisolation
withnegative controls collected during sample processing. In contrast
to Rackaityte et al., Mishra et al. found that Micrococcus was enriched
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in phosphate-buffered saline (PBS) reagent controls, and reported it
as a contaminant, with the M. luteus cells detected by culture being
consistent with the size and morphology of the coccoid structures
that were found by SEM*°,

Both Rackaityte etal.and Mishra et al.included assays of fetalimmune
developmentand concluded that the microorganisms detected could
contribute toimmune maturation. In Rackaityte et al.*’, this conclusion
was based on differencesin T cell composition and epithelial transcrip-
tionbetween fetal intestines in which Micrococcaceae were observed
tobe dominant and those in which this taxon was absent, leading to the
suggestion that bacterial antigens contribute to T cell activation and
immunological memory in utero. Mishra et al.*° used flow cytometry
to expand on previous findings of effector (TNF-and IFNy-producing)
memory (CD45RO") T cells in fetal tissues, including gut tissue and
mesenteric lymph nodes. Bacterial isolates cultured from the fetal
samples, including Staphylococcus and Lactobacillus strains, induced
in vitro activation of memory T cells isolated from fetal mesenteric
lymph nodes.

In contrast to these reports, Li et al.*, who also investigated fetal
intestinal tissue from second-trimester terminations, did not detect
bacterial DNA by PCR (V4 region of the 16S rRNA gene, 35 cycles) on
the basis of a visual inspection of agarose gels in any of the 101 sam-
ples tested. The authors detected a diverse set of microbially derived
metabolites that were present and enriched in the fetal intestinal sam-
ples, and hypothesized that these microbiota-derived metabolites are
passed via the mother’s blood through the placenta to ‘educate’ the
fetalimmune system. This conclusionis supported by researchin mice
that showed that fetalimmune education canbedriveninthe absence
of direct microbial exposure by trans-placental passage of microbial
metabolites originating from the maternal gut*s*,

Kennedy et al.>° used a different approach and collected samples
using rectal swabs during elective C-section for breech presentation
at term gestation®’. Comparisons with environmental and reagent-
negative controls fromtwoindependent sequencing runswereincluded
to account for contamination and stochastic noise. No microbial
signal distinct from negative controls was detected, and aerobic and
anaerobic bacteria (Staphylococcus epidermidis and Cutibacterium
acnes (formerly Propionibacterium acnes)) detected by culture of fetal
samples were identified by the authors as skin contaminants.

To compare these reports, we reanalysed the publicly available unfil-
tered microbial profiling data associated with the three publications
that reported sequence data and determined the relative abundance
of each detected genus. Although there was good agreement between
the two studies using second-trimester vaginally delivered fetuses**°,
the bacterial taxa that were detected in fetuses from C-sections® were
significantly different (Fig.1). The number of generawas much lowerin
C-section-derived fetuses, and entire groups of microorganisms—espe-
cially those usually foundin the vagina—were absent. Most importantly,
in the studies that claimed fetal microbial colonization®*°, every genus
detected in fetal samples wasalso detected inmost of the control samples.

1‘41

Reproductive biology and obstetrics perspectives

The embryo and fetus develop within the uterus but notin the uterine
cavity per se. The early embryo invades the maternal decidua and is
completely embedded by ten days after fertilization. The fetus grows
within the amniotic cavity, which originates between the trophoblast
andinner cellmass in the second week after fertilization, surrounded
by two layers of reproductive membranes and bathed inamniotic fluid.
Hence, evenif microorganisms were present in the uterine cavity*™, they
would have to pass through to the amniotic cavity and enter the amni-
otic fluid to colonize the fetus. Amniotic fluid has antimicrobial prop-
erties, being enriched for example in lysozyme®, human B-defensin 2
(ref.*?) and GP340 (DMBT1)*, which binds and agglutinates diverse
Gram-negative and Gram-positive bacteria.



The placenta mediates communication between the fetus and the
mother and is a potentimmune organ that protects the fetus. Histori-
cally, the placenta has been considered sterile (defined here as free
from living microorganisms), butin 2014 a complex but low-biomass
placental microbiome was detected by DNA sequencing. The proposed
placental microbiome showed some similarity with sequencing data
of microbial communities of the oral cavity®. Contamination controls
were notincluded inthis study, and subsequent evaluation of the work
found that most of the genera detected were also common contami-
nants®*¢3%5* Several detected taxa, such as Gloeobacter, a genus of
photosynthetic cyanobacteria, appeared biologically implausible as
a component of a putative placental microbiome?*%, Since this early
report, dozens of studies have conducted sequence-based microbial
analyses of placental tissues, with opposing conclusions (as reviewed
by Bolte et al.?°).

Regardless of whether placental samples are collected by biopsy via
the vagina, clinically by chorionic villus sampling or after delivery, itis
always necessary to control for contamination, particularly from the
tissues through which a placenta must pass before sampling. Accord-
ingly, de Goffau et al.”’ performed a comprehensive study of the pos-
sible placental microbiome, using samples from uncomplicated and
complicated (pre-eclampsia and small for gestational age) pregnancies
that were delivered both at term and preterm either vaginally or by
C-section. Sampling was confined to the placental terminal villi (fetal
tissue), as this represents the site of exchange (across the vasculosyncy-
tialmembrane) between the fetus and the mother’s blood and tissues.
The authors detected a range of species that are known to dominate
the vaginal microbiota®, such as Lactobacillus iners, Lactobacillus

jensenii,Lactobacillus crispatus, Lactobacillusgasseriand Gardnerella

vaginalis. When the presence of vaginal microorganisms and those in
the laboratory reagents (the ‘kitome’) were accounted for, there was
no evidence for a placental microbiome, which is in agreement with
several additional recent studies??%3 4%,

Pathogenicinfection of the placenta by viral or bacterial pathogens
isawell-recognized clinical phenomenon that contributes to preterm
birthand neonatal sepsis”. de Goffau et al. detected Streptococcus aga-
lactiaeinaround 5% of cases as the only verifiable bacterial signal in pla-
centas obtained by C-section deliveries that were conducted before the
rupture of the fetalmembranes and the onset of labour®. The presence
of this speciesis plausible asit colonizes the genital tract of about 20% of
women and has invasive potential, being animportant cause of mater-
nal and neonatal sepsis®®. However, the ability of specific pathogens to
colonize and/or infect the placenta s distinct from the presence of an
indigenous microbiota—that s, a prevalently stable, non-pathogenic,
complex microbial community that is metabolically active?.

Research claiming that viable low-density microbial communities
are present in the fetal intestine® and fetal organs* likewise calls for
an evaluation of the sampling process. Mishra et al. obtained fetal tis-
sues after medical termination of pregnancy in the second trimester
with prostaglandins*. This procedure typically involves the individual
going through hours of labour and often leads to the rupture of the
fetal membranes hours before vaginal delivery. Even with a standard-
ized approach, labour may be prolonged and may be accompanied by
infection and fever, which are common with second-trimester termina-
tions***°. Both Lietal.* and Rackaityte et al.* also used second-trimester
terminations but obtained the fetal tissues from core facilities. The
tissues used by Li et al. were from surgical terminations (14-23 weeks)
performed with mechanical dilation. Rackaityte et al.* did not provide
sufficient information to determine whether fetuses were obtained
through surgical procedures or medical inductions. Although the latter
increases therisk of the fetus being exposed to vaginal microorganisms
during labour, both procedures involve vaginal delivery of the fetus.
Asoutlined below, the reported microbiology of these fetuses mainly
reflects the sources of microorganisms to which they were exposed
during these procedures.

Microbial ecology perspectives

Host-microbe relationships range from mutualism (a prolonged sym-
biotic association from which both benefit), to commensalism (the host
isunaffected), to pathogenesis, in which the microorganism harms the
host. Although claims for fetal microbial exposure**° have not estab-
lished the nature of the host-microbe interaction, and the duration of
exposure or colonization, they have suggested that live organisms have
abeneficial rolein fetalimmune development, thereby implying asym-
biosis. The microbiological approaches applied by Rackaityte et al.*
andMishraetal.**are, in large part, robust, and well suited to studying
symbiotic microbial populations. The combination of 16S rRNA gene
sequencing, qPCR, microscopy, FISH and culture is laudable, as the
approaches are complementary. Next-generation sequencing of 16S
rRNA gene amplicons provides a broad community overview and can
detect microorganisms that escape cultivation, whereas qPCR, micros-
copy and bacterial cultures have a high dynamic range, low detection
limits and reasonable specificity. The DNA-sequence-based microbiota
composition datain both studies are quite consistent (Fig. 1), which
suggests that several of the bacterial taxa detected were present in
the samples and not artefacts derived from laboratory reagents or
DNA-isolation-kit contamination. However, although the microbiologi-
calanalyses of samples were sound, the sampling procedures allowed
theintroduction of contaminant species, and critical controls to deter-
mine whether contamination occurred were missing.

In agreement with the unavoidable vaginal exposure of fetuses
obtained by second-trimester abortions (see above), both Rackaityte
et al.* and Mishra et al.*’ found that the genera Lactobacillus and
Gardnerella,whichdominate the vaginal microbiota*®, were among their
most consistent findings (Fig.1). The species cultured by Mishraet al.—
G.vaginalis,L.inersand L. jensenii—are largely restricted to the human
vagina®. Other microorganisms detected, such as Staphylococcus
species and Cutibacterium acnes, are skin commensals. As shown in
Fig.1,theabundances of Lactobacillus, Gardnerella and Staphylococcus
that were found by Mishra et al. showed gradients with high population
levels in fetal samples exposed to sources of contaminants (placenta
and skin) and lower levels in internal samples (gut, lung, spleen and
thymus). The omission of vaginal controls by both Rackaityte et al. and
Mishraetal. to determine the microbiota of vaginally delivered fetuses
isaconsiderable limitation that casts doubt on the authors’ conclusion
that the microorganisms originate from the womb. Indeed, Li et al.*
obtained samples from second-trimester surgical terminations using
mechanical dilatation, which reduces the risk of bacterial exposure to
the fetus during sampling. In this study, positive bacterial PCR results
were not reported, which raises the possibility that sampling contami-
nation may be a serious confounder in both of the other studies that
claimed the presence of microorganisms at these sites.

Althoughvaginal controls were notincluded by Rackaityte etal.*® and
Mishraetal.*,direct comparisonsoftheir findingswith those of Kennedy
etal.**also provide evidence for vaginal contamination of terminated
fetuses (Fig.1). The C-section-derived fetal samples in Kennedy et al.,
which were not exposed to the vagina, carried no Gardnerella or Lac-
tobacillus, but instead contained skin and reagent contaminants®**,
Despite attempts to reduce contamination, C-section-derived fetal
meconium had at least one positive culture®. Kennedy et al. did not
consider these microorganisms to be of fetal origin, as they were skin
commensals, and half of the samples, as well as many culture replicates,
did not show growth. The authors concluded that suchinconsistencies
point to stochastic contamination and not colonization by a stable
functional microbial community.

Inaddition to the potential detection of contaminants, the bacterial
load found in terminated fetuses was extremely low***°, Signals derived
from qPCR experiments were only marginally higher than those of
controls, with Mishra et al. reporting cycle thresholds (Ct) of more
than30 cycles, with Ct values for negative controls being around 31-32
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Fig.1|Relative abundance of bacterial taxafrom three recent fetal studies.
Distribution and meanrelative abundance (%) of taxa present in fetal samples
fromthree recent studies****** investigating the fetal microbiome, and their
corresponding abundance in control samples. Taxa were selected on the basis
ofthe following criteria: generathat were cultured from or detected as enriched
infetal samples as described by Mishra et al.*’ (indicated by *) or by Rackaityte
etal.® (indicated by * including the family Micrococcaceae); all genera detected
infetal samples from Kennedy et al.>*° and the PBS-enriched genus Ralstonia*°.
Taxawere grouped by potential source of contaminationinagreement with the
likely origin of genera (for skin microorganisms) and previous studies that
characterized sources of contamination®*%, Publicly available unfiltered
relative abundance microbiota profiling data associated with each publication
weremergedintoasingle phyloseqobject (RRID:SCR_01380). Ampliconsequence
variants (ASVs) were grouped at the genus or family level (for Micrococcaceae).

cycles. Cell counts as detected by both microscopy and culture were
alsolow. Mishraet al. reported fewer than100 colonies on average per
entire fetus, with high inconsistencies among individual fetuses and
tissues (see Table S6 in the original publication*®). Such findings are
more likely to be a result of contamination than colonization.

Neonatal meconium samples have been studied for a century by
culture-based methods, and, more recently, by DNA sequencing. Evalu-
ations of such samples are also associated with contradictory find-
ings™***+% probably owing to contamination®* and because postnatal
colonization may occur before the first passage of meconium?®. How-
ever, when meconium s passed soon after birth, culturable bacteriaare
seldom detected (as reviewed by Perez-Mufoz et al.”®). In agreement
with this, an analysis of meconium samples collected from extremely
premature infants®® showed that taxa regularly identified as contami-
nants®** make up a large proportion of sequences that are collected
withinthe first three days after delivery and which drop to levels below
1% of the total microbiota profile in most samples at days 4-6 (Fig. 2).
This indicated that bacterial sequences that cannot be assigned to
contamination are initially rare in early meconium, which is consist-
entwitharecentstudy that applied strict controls for sequencing and
culture and did not detect ameconium microbiota®*
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Themeanrelative abundance of each taxonwas calculated for each sample type
within eachstudy and plottedinR (tidyverse, ggplot2; RRID:SCR_014601). Dot
size corresponds to the mean relative abundance by sample type and study
(meanrelative abundances of less than 0.0001% were excluded). Dots are
coloured by sample type: reagent controlsin grey (Mishra: PBS n =42, reagent
n=23;Rackaityte: buffer n=11; Kennedy: reagent n = 2), sampling negatives in
aqua (Kennedy: swab n = 1; Rackaityte: air swabn =19; procedural swabn =16;
moistened swab n=17) and environmental negatives in sky blue (Mishra:
environment n =47, operator n=12),internal controlsinindigo (Mishra:
thymus n=27,spleen n=12; Rackaityte: kidney n =16), fetal lung in pink
(Mishra: n=25),fetal gutin purple (Kennedy: n=20; Mishra: n=44; Rackaityte:
proximal n =41, mid n =45, distal n = 42), and external tissuesinred (Mishra:
skinn =35, placentan=16).

Members of an authentic fetal microbiota should be, in theory,
detectablein early-life faecal samplesindependent of birthmode. There
is,indeed, some overlap between the reported fetal microbial taxa®*°,
for example, staphylococci, enterococci, lactobacilli and enterobac-
teria, and the microbiota detected in infant faecal samples in the first
week of life®® *8, However, there have been few attempts to track spe-
cies and strains to confirm fetal origin. One study investigated gastric
aspirates of newborn infants immediately after birth®; this should in
theory detectinuterobacterial exposure as the fetus swallows amniotic
fluid (as demonstrated by the detection of pathogenic Ureaplasma
species’”). However, aspirates from vaginally born infants contained
the specific Lactobacillus species (L. iners and L. crispatus) that also
dominate the microbiota of the vagina, whereas most samples from
C-sectiondeliveries contained low microbial loads near the detection
limit and clustered with negative controls®. This finding is consist-
ent with vaginal transfer of microorganisms to a sterile fetus during
delivery. In addition, many of the genuine bacterial signals that were
detected in early meconium® were typical maternal skin representa-
tives (Staphylococcus spp. and Corynebacterium spp.) and were strongly
associated with C-section, or in the case of vaginal deliveries, species
that are common in the maternal faecal microbiota (Escherichia coli



and Bacteroidesfragilis) (Fig. 2), indicating that these genuine signals
were derived from microorganisms acquired ex utero.

Research is beginning to determine the origin of post-partum neo-
natal microbial colonizers and has shown adelayin the appearance of
bacterial species that are presumed to originate from the mother’s gut
(for example, Bifidobacterium and Bacteroides species) in early faecal
samples of infants born by C-section®**"’"73, A substantial proportion
of strains acquired by infants postnatally can be traced back to their
mother’s faecal samples™ 7, and faecal microbiota transplant from the
mother restores the microbiome in infants delivered by C-section’.
Thus, the published evidence, although incomplete, suggests that
the early-life microbiota in humans is acquired through the vertical
and horizontal transfer of microorganisms whose origin is faecal or
environmental (from outside) rather than fetal (from inside).

Bioinformatic and data science perspectives

Characterizing low-biomass samples by 16S rRNA gene amplicon
sequencing is challenging as DNA contamination can occur from the
microbial DNA present in reagents, labware, tools, instruments and
DNA-isolation kits** %, and through cross-contamination between
PCR tubes or wells, sequencing runs or sequencing lanes”. Acommon
misconceptioninthefield of low-microbial-biomass samplesis that the
use of negative controlsis sufficient to account for all kinds of contami-
nants. Commonly, imperfect negative controls are used that account
for only a limited number of the sample-processing steps or are not
spread evenly amongst all batches (thus not accounting for processing
days, reagent batches and different sequencing runs), leading to batch
effects that may be mistaken for genuine signals*. Overreliance on
or under-analysis of such negative controls, in combination with the
misapplication of contamination-removal programs like decontam”’,
specifically by not having negative controls in all batches, frequently
resultsin false positive signals owing to the detection of contaminants®.
Even with appropriate controls, it is challenging to separate genuine
signals from low abundance contaminants as signals may appear spo-
radically in samples and negative controls’. Thus, suboptimal process-
ing of sequencing control samples may not reveal the full spectrum of
contaminants because only the most abundant species of contami-
nants are consistently detected. On the other hand, potentially genuine
sample-associated signals sometimes also erroneously appear in
negative-control samples through cross-contamination during the
PCR or sequencing steps (machine contamination)®.

Inthe case of both Rackaityte et al.*®, and Mishra et al.*°, many of the
taxareported are common contaminants (Fig.1). The most obvious case
is Bradyrhizobium, which is one of the most dominant and consistent
contaminants found in sequencing studies®’°. Rackaityte et al. inter-
preted the presence of Micrococcus and Lactobacillus as genuine fetal
inhabitants, but areanalysis of the data suggested that these findings
werearesult of batch effects (indicative of contamination®). Although
the authors rejected this interpretation®, this batch effect is clearly
visibleifthefindings of the different batches are plotted together (Fig.3).
Furthermore, inthe study by Mishraet al., the authors concluded that
Micrococcuswas likely to be acontaminant*®, whereas the genera Afipia,
Flavobacterium, Pseudomonas and Brevundimonas were reported as
part of the fetal microbiota*’, although these taxa are also commonly
detected as kit or laboratory reagent contaminants®*,

Mishra et al. and Rackaityte et al. also reported a marginally higher
total bacterial load in fetal samples, as compared to controls, using
gPCR*#*, However, nucleic acids (DNA, RNA and tRNA) in tissue sam-
ples (which are absent in negative controls) might have a DNA carrier
effect®, leading to a more efficient DNA precipitation of prokaryotic
material. In addition, bacterial PCR primers that target the 16S rRNA
gene can also amplify mitochondrial DNA®, which is evolutionarily
of bacterial origin. Together, these factors offer alternative expla-
nations for a higher microbial burden in samples from low-biomass
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Fig.2|Reagent contaminationin meconiumsamples from extremely
premature infants. a, Representation of the percentage of reagent
contamination (% of total sequence reads) in the first meconium of extremely
prematureinfants collected ina previous study®* inrelation to the day of
procurement of said samples (day 1-3 or day 4-6) orinregard to the mode of
delivery (C-section or vaginal). Coloursindicate the percentage of sequence
reads assigned toreagent contamination (legend on top). The day of
procurementis significantly correlated with the percentage of reagent
contaminationreads (P=0.005by Mann-Whitney Utest or P=0.01by Spearman
rhotest) and the mode of delivery shows a trend (P=0.07 by Mann-Whitney
Utest). The number of samples (n) is noted below each category. b, Top, list of
reagent contaminants showntogetherina.Bottom, list of the most abundant
sample-associated-signals and their association (or lack thereof owing to
limited size of cohort) with vaginal (V) or C-section (C) delivery.

sites compared to controls. Rackaityte et al. removed human mito-
chondrial DNA (mtDNA) from their 16S rRNA gene-sequence-based
results that co-amplified in the PCR, but neither study accounted for
mtDNA in their qPCR analysis, although their qPCR primers targeted
the 16S rRNA gene and were therefore potentially susceptible to
cross-reactivity>>*°,

Immunological perspective

Theenteric microbiotais a potent driver of adaptive mucosalimmune
maturation and priming in the adult host® %, Besides their intrinsic
immunogenic nature, microorganisms also generate metabolites that
promote and shape immune maturation and priming®%, Although
the early fetal immune system is immature, recent research shows
the migration of fetal dendritic cells (DCs) to the mesenteric lymph
nodes; somatic hypermutation in fetal B cells; and an expansion of
T cell receptor repertoire diversity, evenness and activation during
late fetal development”®%°,

The existence of metabolically active microorganisms in the fetus
could, in principle, provide one possible explanation for these find-
ings. Mishra et al.*® used an autologous T cell expansion assay to show
that fetal DCs loaded with antigen from bacteria that had been iso-
lated from fetal tissues stimulated the proliferation of CD45RO" and
CD69* T cells. T cell proliferation was reduced but still detectable in
the absence of DC-derived cytokine release, suggesting an activated
memory response*’. Evidence that the fetal T cellmemory response is
specific for the bacteria presentin one individual fetus would be neces-
sary tostrengthen the interpretation that specificimmune responses
are routinely driven by fetal bacterial colonization.
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Fig.3|Relative abundance of bacterial taxainsamples from Rackaityte etal.
Distribution and meanrelative abundance (%) of taxa presentin fetaland
control samples from Rackaityte et al.* by batch as defined by Rackaityte etal.®.
Dominant taxawereselected as described in Fig. 1. Publicly available unfiltered
relative abundance microbiota data associated with each publication were
merged intoasingle phyloseqobject (RRID:SCR_01380). ASVs were grouped

There are alternative explanations for fetalimmune responses apart
from bona fide microbial colonization. Maternal antigen-IgG com-
plexes have beendetected in cord blood, and trans-placentalimmune
priming of the fetalimmune systemin early gestation has been demon-
strated”** Cross-reactivity, as observed for microbiota reactive enteric
secretoryimmunoglobulin A, would support fetal priming by maternal
microbial antigens®. Similarly, maternal-microbiota-derived molecules
partly bound toIgG stimulated innate immune maturation of the fetal
gut in mice*®, and maternal intestinal carriage of Prevotella has been
reported to protect the offspring from food allergy in humans®. Thus,
antigens and metabolites derived from the maternal microbiota can
passthe placentalfilter directly orbound toIgG, and offer an alternative
explanation for the observed fetalimmune responses®*.

The hypothesis of a low-biomass fetal microbiome requires the
identification of host mechanisms that control and tolerate bacterial
populations and prevent overt inflammation and tissue destruction
in the presence of viable microorganisms, many of which are oppor-
tunistic pathogens (see below). Alongside this, mechanisms by which
the commensal or symbiotic microorganisms survive the immune
response and antimicrobial effector molecules would also have to
be identified, and it is unclear how the fetal immune system would
differentiate between pathogens and symbionts once protective bar-
riers are breached””. Given that such immunological and anatomical
mechanisms have not beenidentified or even proposed®, the observed
immune maturation and priming during fetal development is probably
notinducedthrough colonization of the fetus with live microorganisms.
Instead, fetalimmune development might be driven through maternal
immune components or microbial fragments and metabolites crossing
the placenta, which protects the sterile fetus from live microorganisms
through multiple layers of immunological defence®.
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atthe genus or family (for Micrococcaceae) level. The meanrelative abundance
of eachtaxon was calculated for each sample type within each batch and
plottedinR (tidyverse, ggplot2; RRID:SCR_014601). Dot size corresponds to
the meanrelative abundance by sample type and batch. Dots are coloured by
sampletype: reagent controlsin grey (buffer), sampling negative controlsin
aqua, internal controlsinindigo (kidney) and fetal gut samplesin purple.

Clinical microbiology perspective

No part of the humanbody isimpregnable to bacterial invasion. Tran-
sient bloodstream bacteraemia can result from innocuous activities
such as brushing the teeth®, and most host tissues can tolerate occa-
sional ingress by microorganisms. However, to avoid serious pathology,
bacteraemia must be rapidly cleared by innate immune mechanisms
and inflammation. Some pathogens establish persistent infections
that may be asymptomatic either by evading theimmune system or by
forming persister cellsin response to antibiotic treatment®. The claims
for non-pathogenic fetal microbial exposure®*® have not established
whether host-microbe interactions reflect small-scale translocation,
asymptomatic infection, persistent symbiosis or mutualism.
Thefetal-enrichedtaxa’reportedinclude Micrococcus, Lactobacillus,
Flavobacterium, Staphylococcus, Escherichia, Enterococcus, Afipia,
Pseudomonas, Bradyrhizobium and Brevundimonas®*°. Mishra et al.
alsoreport successful culturing of lactobacilli and staphylococcifrom
fetal tissue*?, but the lack of unambiguous species-level taxonomic
identification of the cultured organisms is amajor technical limitation.
Bacteria such as Micrococcus, which were detected in fetal intestines
by Rackaityte et al.?’, rarely cause invasive infection in humans. Their
prolonged presence within healthy tissues and transmission through
the placentawould require bacterial mechanisms of resistance against
antimicrobial effector molecules of the host innate immune system®.
Such mechanisms have not been described for the genus Micrococcus,
which is an environmental organism found in water, dust and soil,
and is also a common contaminant*®*’, Lactobacilli are usually of
low pathogenic potential; they inhabit external mucosal surfaces of
healthy humans, including the nose”” and the vagina®, and are often
used as probiotics®®. However, some strains and species of lactobacilli



do express potential virulence factors® %, resist oxidative stress'®

andgrow in the absence of iron'®, which allows them to cause serious
infections such as endocarditis when provided with the opportunity
to access the bloodstream'®*'%, This raises potential problems with
theinterpretation of lactobacilli as asymptomatic colonizers of fetal
tissue rather than contaminants that are picked up during vaginal
delivery.

Aneven greater challenge arises when species of the genus Staphy-
lococcus are considered, particularly strains that were cultured from
fetal tissue and that exhibit high-level 16S rRNA gene-sequence iden-
tity (99-100%) to Staphylococcus aureus and several closely related
coagulase-negative Staphylococcus species (CONS)*°. These organ-
isms can be long-term colonizers of external mucosal surfaces of
humans'®%” and do not typically cause disease unless the mucosal
barrierisbreached. However, once they bypass mucosal barriers, they
can deploy a more extensive repertoire of virulence factors to invade
tissues by degrading connective tissues and, in the case of S. aureus, a
repertoire of over a dozen cytolytic toxins that kill human cells°%1%°,
CoNS, on the other hand, are ubiquitous skin colonizers. Their detec-
tionin clinical diagnostic laboratories is socommon thatitis considered
amajor diagnostic challenge"* and is usually assumed to reflect con-
tamination from the patient and occasionally the healthcare worker,
intheabsence of other reasons to suspect a CoNS infection””°. There
are, however, distinct clinical scenarios in which the presence of CONS
and their pathogenic capacity are considered critical: for example, in
patients withindwelling medical devices and in preterm neonates; they
are the most common cause of late-onset neonatal sepsis™> Therefore,
giventhat they are either contaminants or overt pathogens, the detec-
tion of staphylococci, nomatter whether S. aureus or CoNS, is difficult
to reconcile with in utero colonization of a healthy fetus.

Other bacteriaidentified as part of anotional ‘fetal microbiome’, such
as Enterococcus faecalis and Klebsiella pneumoniae, are equally prob-
lematic. These belong toagroup known as ‘ESKAPE pathogens’, which
include Enterococcus faecium, S. aureus, K. pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa and Enterobacter species.
The lethality of tissue colonization with ESKAPE pathogens is well
documented, and these microorganisms are leading causes of
healthcare-acquired infections worldwide, with considerable mor-
tality and morbidity, even when treated with antibiotics'. Several
ESKAPE pathogens readily survive in adverse conditions outside of
vertebrate hosts, including drying, oxidative stress and exposure to
heat or sanitation chemicals™. They are likely to persist on inanimate
surfaces including utensils or clinical fabrics™"¢, thereby increasing
theirlikelihood of being contaminants. Although these microorganisms
were not reported at the species level*, it is noteworthy that closely
related organisms can also cause neonatal sepsis”’ ", which makes
them unlikely to be colonizers of a healthy fetus.

Aconsideration prompted by anotional fetal microbiome is the pos-
sibility that the fetus might cope better with nosocomial pathogens
than neonates or even adults. However, there isample evidence to show
thatamniotic fluid, the placentaand fetal tissues are highly susceptible
to bacterial infection, and the outcomes of infections with S. agalac-
tiae or Listeria monocytogenes are often catastrophic*'?, Notably,
inL. monocytogenesinfections that occur during the third trimester of
pregnancy, fetal infection progresses, whereas the mother’s infection
canbecleared, indicating that the fetus does not have greater resistance
to infection than an adult human. Therefore, from a clinical perspec-
tive, most interpretations brought forward in recent publications®**°
with regard to the presence of microorganisms in fetuses seem to be
biologically difficult to reconcile, as it is highly plausible that they
would result in harm to or death of the fetus. In agreement with this
conclusion, in a series of well-controlled studies in various clinical
settings, DiGiulio and co-workers found no evidence for microorgan-
ismsinamniotic fluid except when associated with neonatal morbidity
and mortality'?7%,

Gnotobiology perspective

The traditional assumption that the human fetus is free from other
life forms in utero is based mainly on the observation that, with few
exceptions, bacterial and viral pathogens that infect the mother are
incapable of crossing the placental barrier to infect the fetus' %, In
addition, the amnio-chorionic membranes that enclose the fetus in
the uterine cavity, as well as the cervical mucus plug, protect the fetus
from external microorganisms. Sterility of the fetus is the basis for the
derivation by hysterectomy of germ-free mammals (mainly mice and
rats, but also pigs and other species®), which have long been used to
study the biochemical, metabolic and immunological influences of
microorganisms on theirmammalian hosts™®**', The primary consid-
erationis whether germ-free animals are truly ‘free of alldemonstrable
forms of microbial life’, If they lack microbial associates, there can-
notbe afetal microbiome. Testing germ-free animals for contaminat-
ing microorganisms uses microscopic observation of stained faecal
smears, culture of faeces in nutrient media under various conditions
of temperature and gaseous atmosphere*2** PCR using ‘universal
bacterial’ primers™*', and serological assays for viral infections™®.
These tests consistently demonstrate an absence of microbial associ-
ates. Therefore, gnotobiology provides strong evidence that the fetus
inuterois sterile.

A healthy human fetusis sterile

Through multiple angles of explanatory considerations, we conclude
thatthe evidenceisstrongly infavour of the ‘sterile womb’ hypothesis.
Although itis impossible to disprove the occasional presence of live
microorganisms in a healthy human fetus, the available data do not
support stable, abundant colonizers under normal, non-pathogenic
circumstances. We are aware that our position conflicts with dozens of
publications that claim evidence for in utero microbial populations?,
but we are confident in the validity of our multi-layered approach.

The processes by which the fetus matures and becomes immuno-
logically equipped for life in a microbial world have lifelong implica-
tions. Aside from the caution and safeguards recommended in this
perspective article (Box 1), our aim here is not to dissuade scientists
frominvestigating the microbial drivers of fetalimmune development.
We agree with proposals that there is a need to better understand
microbial interactions at the maternal-fetal interface?, but do not
think that symbiotic microbial populations in the placenta or fetus
play arole in this. Paradoxically, we contend that sterile tissues are
bothimmunologically and microbiologically fascinating, but require
an adjustment of the methodological approaches used. How does
the fetus mature and become immunologically equipped for life in a
microbial worldin the absence of direct exposure to live microorgan-
isms? Are maternal-derived microbial metabolites sufficient for fetal
immune education? Future research could include explorations of how
maternal microbial-derived metabolites and small molecules, as well
as maternalimmune components, prepare the fetus for the microbial
challenges of postnatal life®*.

Lessons for low-biomass research

Contamination is always a potential confounder in microbiology but
is of particular concern for those studying low- or no-biomass sam-
ples®**. The issue has been highlighted by recent reports of human
tissues, such as blood, brain and cancers (Box 1), which were previously
thought to containno, or very little, bacterial biomass, but apparently
containdiverse microbial communities. As with theintrauterine stud-
iesdescribed above, these microbial populations are often discussed
considering their perceived importance for human diseases and health.

In studies on low-biomass samples, it is challenging to identify
relevant signals from among contaminating noise. In instances of

Nature | Vol 613 | 26 January 2023 | 645



Perspective

Box 1

Experimental considerations for low-biomass research

High-biomass samples
Examples: Faeces, dental plague, wastewater, soil.

Impact of contamination: Very low: The high microbial biomass
derived from the sample dominates the signal from background
contamination, meaning that most observations are robust.

Mitigations: Experimental design seldom needs to be substantially
adjusted to account for contamination. Inclusion of ‘blank’ negative
sequencing controls and removing samples with substantial levels of
contamination using basic post-sequencing analysis is nevertheless
prudent.

Low-biomass samples

Examples: Skin swabs, nasal tract swabs, breast milk, most
respiratory tract samples, tissue biopsies and mucosal samples,
including intestinal crypts.

Impact of contamination: Low to high: Contaminated samples are
progressively affected with reducing input microbial biomass®.

Mitigations: Inclusion of multiple controls for recognition of
contamination. Ideally, samples should be concentrated before
processing to increase input biomass. Consideration of potential
sources of contamination during the sample acquisition stage is
always recommended. After sample collection, processing should
be carried out in a clean-room environment, preferably with all
surfaces bleached and UV-treated. DNA extraction may benefit from
the use of non-kit-based methods (for example, phenol-chloroform
extractions) in which plastic-ware and reagents can be UV-treated
before use. Contamination from DNA-isolation and PCR kits is usually
identifiable, particularly if well-defined batches are created® and
controlled using different lot numbers of kits. Regardless of the
method of DNA extraction, the presence of contaminants should
be monitored by including ‘blank’ negative controls. Inclusion of
controls generated by serial dilution of DNA of known composition
(for example, mock community) will indicate the biomass level at
which contamination becomes a dominant feature of sequencing
results. Contamination may also be estimated before sequencing by

contamination, a tissue may be misjudged as non-sterile, whereas in
others, areal microbiological signal may be obfuscated by contamina-
tion. The removal of all sequences present in negative-control sam-
ples, or that have been previously identified as contaminants in the
literature, may result in a loss of authentic signals. Post-sequencing
contamination removal using software packages such as decontam””
or other statistical approaches®*** have been developed to remove the
more abundant contaminants, leading to microbiome profiles that
are more likely to reflect the real community. Practical examples of
contamination removal in16S rRNA gene-sequence dataare provided
by Heida et al.®%, Saffarian et al.®8, and Jorissen et al.”®, and we expand
onthese examplesin Box 1.

We draw attention to the distinction between ‘low biomass” and
‘no (zero) biomass’ samples. This has practical significance; true ‘low
(microbial) biomass’ samples are amenable to contamination-removal
approaches but ‘no (microbial) biomass’ samples require a different
approach (Box1). For credible assertions of the presence of microorgan-
isms, multiplelayers of evidence arerequired. Potentially genuine signals
found with contamination-sensitive sequencing approaches, evenwith
strict controlsincluded, should be verified using a quantitative, sensitive
(lower detection limit), and less contamination-prone approachsuch as
aspecies-specific qPCR. Because contamination removal will provide
dataregardless of whether microorganisms are present or absent, the
starting proposition should be the null hypothesis to avoid confirmation
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gPCR using serially diluted known quantities of spiked input DNA.
Post-sequencing analyses, using programs like decontam, and
analysis steps described by de Goffau et al.*® and used by

Heida et al.?%, will usually identify contaminants.

Samples in which the existence of microorganisms is not
established (potential ‘'no (zero) biomass’ samples)

Examples: Placental and fetal tissues, amniotic fluid, meconium,
brain tissue and cerebrospinal fluid, blood, bone and internal cancer
tissues, healthy middle ear samples.

Impact of contamination: High and potentially up to 100% unless
infection or injury is present.

Mitigations: Experimental design should be directed specifically
against contamination. Initial assessment using quantitative methods
(for example, gPCR) with low detection limit and microscopic
visualization (for example, Gram staining or labelling by FISH) is
required to determine whether microorganisms are present, before
embarking on sequencing approaches. Such techniques are still
susceptible to sample contamination and other artefacts (for
example, non-specific staining or auto-fluorescence from mucins
can sometimes appear ‘microbe-like’ in size and shape)*™*. All
mitigations outlined for ‘low biomass’ samples above should be
adopted. Repeating sample processing with different DNA extraction
kits or methods®? and/or at different days can be informative™®.
These will track the presence of species in sequencing profiles
associated with specific kits, reagents or environment. Species
that are repeatedly detected regardless of the technical approach
are more likely to be genuine signals, unless they were introduced
during sample collection. Binary statistics (absence-presence)
are recommended. The presence of microorganisms identified by
sequencing should be verified with a different technique such as
cultivation, another sequencing technique with sufficient taxonomic
resolution, and/or species-specific qPCR or FISH using high
magnification to visualize the size and morphology of individual
microbial cells.

bias, particularly when results are inconsistent and at the outer techni-
callimits for detection, or if results defy mechanistic plausibility.
Given the limitation of sequencing approaches, confirmation by alter-
native methods, suchas FISH and culture, is required. However, as shown
by recent studies of fetal samples, even a combination of approaches
has the potential to produce false findings, because contamination
during sampling is a considerable challenge. We posit that studies on
alllow-biomass samples could benefit from a similar trans-disciplinary
assessment to that applied above for fetal samples, to interpret find-
ings considering biological and mechanistic explanations®. When
obligately photosynthetic, psychrophilic, thermophilic, halophilic or
chemolithoautotrophicbacteriaare foundinhumantissues that do not
provide the growth conditions for such organisms****, orif the detected
genera are known contaminants of laboratory kits or reagents (such
asreadily culturable Proteobacteria like Pseudomonas and E. coli, for
example)* ™, the authenticity of such signals should be questioned.
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